Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Genet ; 70(1): 4, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555312

RESUMO

Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.


Assuntos
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fusarium/genética , Genômica
2.
Plant Cell Environ ; 47(7): 2377-2395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38516721

RESUMO

The root rot mainly caused by Fusarium solani is a bottleneck in the cultivation of Panax notoginseng. In this study, we reported a gene encoding a plant cell wall structural protein, P. notoginseng proline-rich protein (PnPRPL1), whose transcription was upregulated by F. solani and induced by some hormone signals. The PnPRPL1 recombinant protein significantly inhibited the growth and conidial germination of the root rot pathogens. Downregulation of PnPRPL1 by RNA interference (RNAi) in P. notoginseng leaves increased the susceptibility to F. solani, whereas overexpression of PnPRPL1 in tobacco (Nicotiana tabacum) enhanced the resistance to F. solani. Compared with wild-type tobacco, the PnPRPL1-overexpressing transgenic tobacco had higher reactive oxygen species (ROS)-scavenging enzyme activities, lower ROS levels, and more lignin and callose deposition. The opposite results were obtained for the P. notoginseng expressing PnPRPL1 RNAi fragments. Furthermore, the PnPRPL1 promoter transcription activity was induced by several plant hormones and multiple stress stimuli. In addition, the transcription factor PnWRKY27 activated the expression of PnPRPL1 by directly binding to the promoter region. Thus, PnPRPL1, which is positively regulated by a WRKY transcription factor, encodes an antimicrobial protein that also mediates ROS homoeostasis and callose/lignin deposition during the response to F. solani infection.


Assuntos
Parede Celular , Fusarium , Nicotiana , Panax notoginseng , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Fusarium/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/microbiologia , Nicotiana/microbiologia , Nicotiana/genética , Nicotiana/metabolismo , Panax notoginseng/microbiologia , Panax notoginseng/metabolismo , Panax notoginseng/fisiologia , Regulação da Expressão Gênica de Plantas , Resistência à Doença , Regiões Promotoras Genéticas/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38767616

RESUMO

A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28 °C and pH 7, with a NaCl concentration of 0 % (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8 %), Streptomyces liliiviolaceus BH-SS-21T (99.6 %) and Streptomyces umbirnus JCM 4521T (98.9 %). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3 %, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of ß-glucosidase. The recombinant ß-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Fermentação , Ginsenosídeos , Hibridização de Ácido Nucleico , Panax notoginseng , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Streptomyces , Vitamina K 2 , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/classificação , Vitamina K 2/análogos & derivados , DNA Bacteriano/genética , China , Panax notoginseng/microbiologia , Ginsenosídeos/metabolismo , Peptidoglicano , Grão Comestível/microbiologia , Ácido Diaminopimélico , Fosfolipídeos/química , Composição de Bases
4.
Environ Microbiol ; 24(12): 6238-6251, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36229418

RESUMO

The core rhizosphere microbiome is critical for plant fitness. However, its contribution to the belowground biomass and saponin contents of Panax notoginseng remains unclear. High-throughput sequencing of amplicon and metagenome was performed to obtain the microbiome profiles and functional traits in P. notoginseng rhizosphere across a large spatial scale. We obtained 639 bacterial and 310 fungal core OTUs, which were mainly affected by soil pH and organic matter (OM). The core taxa were grouped into four ecological clusters (i.e. high pH, low pH, high OM and low OM) for sharing similar habitat preferences. Furthermore, structural equation modelling (SEM) and correlation analyses revealed that the diversity and composition of core microbiomes, as well as the metagenome-derived microbial functions, were related to belowground biomass and saponin contents. Key microbial genera related to the two plant indicators were also identified. In short, this study explored the main driving environmental factors of core microbiomes in the P. notoginseng rhizosphere and revealed that the core microbiomes and microbial functions potentially contributed to the belowground biomass and saponin contents of the plant. This work may enhance our understanding of interactions between microbes and perennial plants and improve our ability to manage root microbiota for the sustainable production of herbal medicine.


Assuntos
Microbiota , Panax notoginseng , Saponinas , Rizosfera , Panax notoginseng/microbiologia , Microbiologia do Solo , Biomassa , Raízes de Plantas/microbiologia , Microbiota/genética
5.
Arch Microbiol ; 204(7): 435, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35763100

RESUMO

Panax notoginseng is a traditional Chinese medicinal herb with diverse properties that is cultivated in a narrow ecological range because of its sensitivity to high temperatures. Endophytic bacteria play a prominent role in plant response to climate warming. However, the endophytic bacterial structures in P. notoginseng at high temperatures are yet unclear. In the present study, the diversity and composition of the endophytic bacterial community, and their relationships with two P. notoginseng plants with different heat tolerance capacities were compared using the full-length 16S rRNA PacBio sequencing system. The results revealed that the diversity and richness of endophytic bacteria were negatively associated with the heat tolerance of P. notoginseng. Beneficial Cyanobacteria, Rhodanobacter and Sphingomonas may be recruited positively by heat-tolerant plants, while higher amounts of adverse Proteobacteria such as Cellvibrio fibrivorans derived from soil destructed the cellular protective barriers of heat-sensitive plants and caused influx of pathogenic bacteria Stenotrophomonas maltophilia. Harmonious and conflicting bacterial community was observed in heat-tolerant and heat-sensitive P. notoginseng, respectively, based on the co-occurrence network. Using functional gene prediction of metabolism, endophytic bacteria have been proposed to be symbiotic with host plants; the bacteria improved primary metabolic pathways and secondary metabolite production of plants, incorporated beneficial endophytes, and combated adverse endophytes to prompt the adaptation of P. notoginseng to a warming environment. These findings provided a new perspective on the function of endophytes in P. notoginseng adaptation to high temperatures, and could pave the way for expanding the cultivable range of P. notoginseng.


Assuntos
Panax notoginseng , Bactérias/genética , Endófitos , Temperatura Alta , Panax notoginseng/genética , Panax notoginseng/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Temperatura
6.
Lett Appl Microbiol ; 75(1): 89-102, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35334116

RESUMO

To screen natural drugs with strong inhibitory effects against pathogenic fungi related to P. notoginseng, the antifungal activities of garlic and fennel EOs were studied by targeting P. notoginseng disease-associated fungi, and the possible action mechanisms of garlic and fennel EOs as plant fungicides were preliminarily discussed. At present, the antifungal mechanism of EOs has not been fully established. Therefore, understanding the antifungal mechanism of plant EOs is helpful to address P. notoginseng diseases continuous cropping disease-related obstacles and other agricultural cultivation problems. First, the Oxford cup method and chessboard were used to confirm that the EOs and oxamyl had a significant inhibitory effect on the growth of Fusarium oxysporum. F. oxysporum is the main pathogen causing root rot of P. notoginseng and the preliminary study on the antifungal mechanisms of the EOs against F. oxysporum showed that the inhibition of EOs mainly affects cell membrane permeability and cell processes and affects the enzyme activities of micro-organism, to achieve antifungal effects. Finally, an in vivo model verified that both two EOs could significantly inhibit the occurrence of root rot caused by F. oxysporum.


Assuntos
Foeniculum , Ingredientes de Alimentos , Alho , Óleos Voláteis , Panax notoginseng , Antifúngicos/farmacologia , Fungos , Óleos Voláteis/farmacologia , Panax notoginseng/microbiologia
7.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144749

RESUMO

Essential oils (EOs) have been proposed as an alternative to conventional pesticides to inhibit fungal pathogens. However, the application of EOs is considerably limited due to their highly volatile nature and unpredictable effects on other microbes. In our study, the composition of bacterial and fungal communities from the rhizosphere soil of P. notoginseng under four treatment levels of Alpinia officinarum Hance EO was characterized over several growth stages. Leaf weight varied dramatically among the four EO treatment levels after four months of growth, and the disease index at a low concentration (0.14 mg/g) of EO addition was the lowest among the P. notoginseng growth stages. The content of monomeric saponins was elevated when EO was added. Bacterial and fungal diversity in the absence of plants showed a decreasing trend with increasing levels of EO. Bacterial diversity recovery was more correlated with plant growth than was fungal diversity recovery. Compared with the control (no EO addition), a low concentration of EO significantly accumulated Actinomycota, including Acidothermus, Blastococcus, Catenulispora, Conexibacter, Rhodococcus, and Sinomonas, after one month of plant-microbial interaction. Overall, the results showed that both the plant growth stage and EOs drive changes in the microbial community composition in the rhizosphere of P. notoginseng. Plant development status had a stronger influence on bacterial diversity than on fungal diversity. EO had a more significant effect on fungal community composition, increasing the dominance of Ascomycota when EO concentration was increased. Under the interaction of P. notoginseng growth and EO, a large number of bacterial genera that have been described as plant growth-promoting rhizobacteria (PGPR) responded positively to low concentrations of EO application, suggesting that EO may recruit beneficial microbes in the root zone to cope with pathogens and reduce root rot disease. These results offer novel insights into the relationship between EO application, altered microbial communities in the plant roots, plant growth stage, and disease occurrence.


Assuntos
Alpinia , Ascomicetos , Microbiota , Óleos Voláteis , Panax notoginseng , Praguicidas , Saponinas , Bactérias , Óleos Voláteis/farmacologia , Panax notoginseng/microbiologia , Desenvolvimento Vegetal , Raízes de Plantas , Rizosfera , Solo , Microbiologia do Solo
8.
J Appl Microbiol ; 130(2): 592-603, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32026569

RESUMO

AIMS: Diseases caused by pathogenic fungi was a major constrain in increasing productivity and improving quality of Panax notoginseng. The aim of this research was to evaluate the inhibitory activity of essential oils (EOs) from Asteraceae family, Chrysanthemum indicum and Laggera pterodonta, against pathogenic fungi of P. notoginseng. METHODS AND RESULTS: The antifungal activity was investigated using multiple methods, disclosing that the EOs from C. indicum and L. pterodonta are active against hypha growth of different fungi but with different degrees of potency. Checkerboard testing indicated that the combination of EOs with hymexazol had synergistic effect against Pythium aphanidermatum, and exhibited additive effects against bulk of targeted pathogenic fungi. Besides, we found that the baseline sensitivity of Fusarium oxysporum to L. pterodonta EOs was higher than those of C. indicum by means of mycelium growth rate method. Finally, the practicability of those EOs as plant pesticide was confirmed by in vivo model showing that EOs can significantly inhibit the occurrence of root rot of P. notoginseng caused by F. oxysporum. CONCLUSION: Those studies suggest that the EOs from C. indicum and L. pterodonta had the potential to develop into new pollution-free pesticides for the protection of precious Chinese herbal medicines. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided a new way of biological control for overcoming the frequent diseases occurrence of P. notoginseng.


Assuntos
Asteraceae/química , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Óleos Voláteis/farmacologia , Panax notoginseng/microbiologia , Asteraceae/classificação , Sinergismo Farmacológico , Fungos/classificação , Fungos/crescimento & desenvolvimento , Hifas/classificação , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Oxazóis/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Óleos de Plantas/farmacologia
9.
Chem Biodivers ; 18(12): e2100638, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34788487

RESUMO

Cuminum cyminum L. (Cumin) is a flavoring agent that is commonly used worldwide, and is rich in essential oil. Essential oils (Eos) have been intensively investigated in regard to their potential for disease control in plants, which is provided a chance for the blossom of green pesticides. The chemical components of Cumin essential oil (CEO) were revealed by GC/MS, such as cuminaldehyde (44.53 %), p-cymene (12.14 %), (-)-ß-pinene (10.47 %) and γ-terpinene (8.40 %), and found they can inhibit the growth of P. notoginseng-associated pathogenic fungi in vitro and the inhibitory effect of cuminaldehyde was similar to that of hymexazol. SEM and TEM images demonstrated that cuminaldehyde and CEO increased cell permeability and disrupted membrane integrity. The expression of disease-related genes of Fusarium oxysporum showed that CEO induced the expression of most genes, which disrupted biosynthesis, metabolism and signaling pathways. These studies verified the potential of CEO as a plant fungicide that is environmentally friendly and provided ideas for developing new products for controlling root diseases that affect P. notoginseng.


Assuntos
Antifúngicos/farmacologia , Cuminum/química , Fusarium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Panax notoginseng/microbiologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação
10.
Chem Biodivers ; 18(3): e2000964, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533151

RESUMO

Endophytic fungi play important roles for host's stress tolerance including invasion by pathogenic microbes. Small molecules are common weapons in the microbe-microbe interactions. Panax notoginseng is a widely used traditional Chinese medicinal plant and harbors many endophytes, some exert functions against pathogens. Here, we report six new compounds named myrothins A-F (1-6) produced by Myrothecium sp. BS-31, an endophyte isolated from P. notoginseng, and their antifungal activities against pathogenic fungi causing host root-rot disease. Their structures were elucidated with analysis of spectroscopic data including 1D and 2D NMR, HR-ESI-MS. Myrothins B (2) and E (5) showed the weak activity against Fusarium oxysporum and Phoma herbarum, and myrothins F (6) showed weak activity against F. oxysporum.


Assuntos
Antifúngicos/farmacologia , Endófitos/química , Hypocreales/química , Panax notoginseng/microbiologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Relação Dose-Resposta a Droga , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Phoma/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade
11.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32086303

RESUMO

Autotoxic ginsenosides have been implicated as one of the major causes for replant failure of Sanqi ginseng (Panax notoginseng); however, the impact of autotoxic ginsenosides on the fungal microbiome, especially on soilborne fungal pathogens, remains poorly understood. In this study, we aimed to investigate the influence of the ginsenoside monomers Rg1, Rb1, and Rh1, and that of their mixture (Mix), on the composition and diversity of the soil fungal community, as well as on the abundance and growth of the soilborne pathogen Fusarium oxysporum in pure culture. The addition of autotoxic ginsenosides altered the composition of the total fungal microbiome, as well as the taxa within the shared and unique treatment-based components, but did not alter alpha diversity (α-diversity). In particular, autotoxic ginsenosides enriched potentially pathogenic taxa, such as Alternaria, Cylindrocarpon, Gibberella, Phoma, and Fusarium, and decreased the abundances of beneficial taxa such as Acremonium, Mucor, and Ochroconis Relative abundances of pathogenic taxa were significantly and negatively correlated with those of beneficial taxa. Among the pathogenic fungi, the genus Fusarium was most responsive to ginsenoside addition, with the abundance of Fusarium oxysporum consistently enhanced in the ginsenoside-treated soils. Validation tests confirmed that autotoxic ginsenosides promoted mycelial growth and conidial germination of the root rot pathogen F. oxysporum In addition, the autotoxic ginsenoside mixture exhibited synergistic effects on pathogen proliferation. Collectively, these results highlight that autotoxic ginsenosides are capable of disrupting the equilibrium of fungal microbiomes through the stimulation of potential soilborne pathogens, which presents a significant hurdle in remediating replant failure of Sanqi ginseng.IMPORTANCE Sanqi ginseng [Panax notoginseng (Burk.) F. H. Chen] is geoauthentically produced in a restricted area of southwest China, and successful replanting requires a rotation cycle of more than 15 to 30 years. The increasing demand for Sanqi ginseng and diminishing arable land resources drive farmers to employ consecutive monoculture systems. Replant failure has severely threatened the sustainable production of Sanqi ginseng and causes great economic losses annually. Worse still, the acreage and severity of replant failure are increased yearly, which may destroy the Sanqi ginseng industry in the near future. The significance of this work is to decipher the mechanism of how autotoxic ginsenosides promote the accumulation of soilborne pathogens and disrupt the equilibrium of soil fungal microbiomes. This result may help us to develop effective approaches to successfully conquer the replant failure of Sanqi ginseng.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Micobioma/efeitos dos fármacos , Panax notoginseng/microbiologia , Microbiologia do Solo , Ginsenosídeos/farmacologia
12.
BMC Microbiol ; 20(1): 143, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493249

RESUMO

BACKGROUND: Streptomycetes from the rhizospheric soils are a rich resource of novel secondary metabolites with various biological activities. However, there is still little information related to the isolation, antimicrobial activity and biosynthetic potential for polyketide and non-ribosomal peptide discovery associated with the rhizospheric streptomycetes of Panax notoginseng. Thus, the aims of the present study are to (i) identify culturable streptomycetes from the rhizospheric soil of P. notoginseng by 16S rRNA gene, (ii) evaluate the antimicrobial activities of isolates and analyze the biosynthetic gene encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) of isolates, (iii) detect the bioactive secondary metabolites from selected streptomycetes, (iv) study the influence of the selected isolate on the growth of P. notoginseng in the continuous cropping field. This study would provide a preliminary basis for the further discovery of the secondary metabolites from streptomycetes isolated from the rhizospheric soil of P. notoginseng and their further utilization for biocontrol of plants. RESULTS: A total of 42 strains representing 42 species of the genus Streptomyces were isolated from 12 rhizospheric soil samples in the cultivation field of P. notoginseng and were analyzed by 16S rRNA gene sequencing. Overall, 40 crude cell extracts out of 42 under two culture conditions showed antibacterial and antifungal activities. Also, the presence of biosynthesis genes encoding type I and II polyketide synthase (PKS I and PKS II) and nonribosomal peptide synthetases (NRPSs) in 42 strains were established. Based on characteristic chemical profiles screening by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD), the secondary metabolite profiles of strain SYP-A7257 were evaluated by High Performance Liquid Chromatography-High Resolution Mass Spectrometry (HPLC-HRMS). Finally, four compounds actinomycin X2 (F1), fungichromin (F2), thailandin B (F7) and antifungalmycin (F8) were isolated from strain SYP-A7257 by using chromatography techniques, UV, HR-ESI-MS and NMR, and their antimicrobial activities against the test bacteria and fungus were also evaluated. In the farm experiments, Streptomyces sp. SYP-A7257 showed healthy growth promotion and survival rate improvement of P. notoginseng in the continuous cropping field. CONCLUSIONS: We demonstrated the P. notoginseng rhizospheric soil-derived Streptomyces spp. distribution and diversity with respect to their metabolic potential for polyketides and non-ribosomal peptides, as well as the presence of biosynthesis genes PKS I, PKS II and NRPSs. Our results showed that cultivatable Streptomyces isolates from the rhizospheric soils of P. notoginseng have the ability to produce bioactive secondary metabolites. The farm experiments suggested that the rhizospheric soil Streptomyces sp. SYP-A7257 may be a potential biological control agent for healthy growth promotion and survival rate improvement of P. notoginseng in the continuous cropping field.


Assuntos
Panax notoginseng/microbiologia , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Streptomyces/classificação , Proteínas de Bactérias/genética , Cromatografia Líquida de Alta Pressão , DNA Bacteriano/genética , DNA Ribossômico/genética , Dactinomicina/análogos & derivados , Dactinomicina/isolamento & purificação , Farmacorresistência Bacteriana , Macrolídeos/isolamento & purificação , Filogenia , Polienos/isolamento & purificação , RNA Ribossômico 16S/genética , Rizosfera , Metabolismo Secundário , Microbiologia do Solo , Streptomyces/genética , Streptomyces/isolamento & purificação
13.
Int J Syst Evol Microbiol ; 70(5): 3162-3166, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32250241

RESUMO

An endophytic member of the genus Trichoderma was isolated from the root of a healthy 3-year-old Panax notoginseng in Yunnan province, PR China. The results of phylogenetic analyses based on a combined of ITS, tef1 and rpb2 indicated that this isolate was distinct from other species of the genus Trichoderma and closely related to Trichoderma songyi. It can be distinguished from T. songyi by its slower growth rates on PDA and colony morphology. The novel isolate formed conidia in thick white pustules scattered mostly at the margin. Its conidiophores tended to be regularly verticillium-like, little branched, sometimes substituted by phialides singly or in whorls. Conidia are smooth, mostly broadly subglobose to ellipsoidal. In combination with the genotypic and phenotypic characteristics, all data demonstrated that the fungus studied represented a unique and distinguishable novel species of the genus Trichoderma, for which the name Trichoderma panacis sp. nov. is proposed.


Assuntos
Panax notoginseng/microbiologia , Filogenia , Trichoderma/classificação , China , DNA Fúngico/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Técnicas de Tipagem Micológica , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esporos Fúngicos/crescimento & desenvolvimento , Trichoderma/isolamento & purificação
14.
Mol Plant Microbe Interact ; 32(11): 1468-1471, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31272283

RESUMO

Ilyonectria mors-panacis is the cause of a serious disease hampering the production of Panax notoginseng, an important Chinese medicinal herb, widely used for its anti-inflammatory, antifatigue, hepato-protective, and coronary heart disease prevention effects. Here, we report the first Illumina-Pacbio hybrid sequenced draft genome assembly of I. mors-panacis strain G3B and its annotation. The availability of this genome sequence not only represents an important tool toward understanding the genetics behind the infection mechanism of I. mors-panacis strain G3B but also will help illuminate the complexities of the taxonomy of this species.


Assuntos
Genoma Fúngico , Hypocreales , Panax notoginseng , Genoma Fúngico/genética , Hypocreales/classificação , Hypocreales/genética , Anotação de Sequência Molecular , Panax notoginseng/microbiologia , Raízes de Plantas/microbiologia
15.
Int J Syst Evol Microbiol ; 69(2): 567-571, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30605074

RESUMO

A novel Gram-positive bacterium, designated strain YIM PH21725T, was isolated from a sample of rhizospheric soil of Panaxnotoginseng cultivated in Anning, Yunnan. The strain contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The main fatty acids identified were C17 : 0, iso-C15 : 0, iso-C16 : 0 and C16 : 0. The main menaquinone was MK-9 (H4). The polar lipids included phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol, phospholipids and phospholipids of an unidentified structure containing glucosamine. The G+C content of genomic DNA was 69.43 mol%. On the basis of its 16S rRNA gene sequence, strain YIM PH21725T should belong to the genus Amycolatopsis, and was closely related to Amycolatopsis sulphurea DSM 46092T (98.57 %), Amycolatopsis jejuensis JCM13280T (97.27 %), Amycolatopsis jiangsuensis KCTC 19885T (96.88 %) and Amycolatopsis ultiminotia JCM 16989T (96.8 %). The phenotypic, chemotaxonomic, phylogenetic and digital DNA-DNA hybridization results clearly indicated that strain YIM PH21725T represents a novel species of the genus Amycolatopsis, for which the name Amycolatopsispanacis sp. nov. is proposed. The type strain is YIM PH21725T (=CCTCC AA 2017044T=KCTC 49031T=DSM 105902T).


Assuntos
Actinobacteria/classificação , Panax notoginseng/microbiologia , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
16.
Chem Biodivers ; 16(11): e1900416, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31631505

RESUMO

The frequent disease of Panax notoginseng caused by the pathogenic fungi in field cultivation has become the major threaten to the sustainable development of it. The present study was conducted to find natural agent with potential inhibition against pathogen. Therefore, the inhibitory effects of Cinnamomum cassia (L.) J.Presl essential oils (EOs) against P. notoginseng associated pathogenic fungi were conducted both in vitro and in vivo experiments. The results of the Oxford cup test revealed that C. cassia dry bark EO (50 mg/mL) had significant inhibitory activity on the growth of all tested fungi, and the growth of various pathogens was completely inhibited, except for that of Fusarium solani. Therefore, the constituents of C. cassia EOs were analyzed by GC/MS, and the research demonstrated that the main constituents of C. cassia dry bark EO were trans-cinnamaldehyde (75.65 %), (E)-2-methoxycinnamaldehyde (6.08 %), cinnamaldehyde (3.47 %) and cinnamyl acetate (1.02 %). The MIC results showed that C. cassia dry bark EO and the main compounds had good antifungal effect on the tested strains, and the inhibitory effect was similar to that of hymexazol (chemical pesticide). By analyzing the value of the fraction inhibitory concentration index (FICI), additive effects, irrelevant effects and synergistic effects were observed after the mixture of hymexazol against various pathogens. Moreover, in vivo model showed that C. cassia dry bark EO could reduce the occurrence of anthrax in P. notoginseng. To widen the resources of C. cassia available, the compositions of both C. cassia fresh bark and leaf EOs were also tested and many common compositions existed among them. Taken together, it was concluded that C. cassia EO had the potential use in the field to reduce the pathogenic disease.


Assuntos
Antifúngicos/farmacologia , Cinnamomum aromaticum/química , Fusarium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Panax notoginseng/efeitos dos fármacos , Antifúngicos/química , Antifúngicos/isolamento & purificação , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Panax notoginseng/microbiologia
17.
Molecules ; 24(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626142

RESUMO

Root rot of Panax notoginseng has received great attention due to its threat on the plantation and sustainable utilization of P. notoginseng. To suppress the root-rot disease, natural ingredients are of great importance because of their environment friendly properties. In this study, we found that the methanol extract from Artemisia annua leaves has strong antifungal effects on the growth of Fusarium oxysporum and Fusarium solani resulting into root-rot disease. Essential oil (EO) thereof was found to be the most active. GC-MS analysis revealed 58 ingredients and camphor, camphene, ß-caryophyllene, and germacrene D were identified as the major ingredients. Further antifungal assays showed that the main compounds exhibit various degrees of inhibition against all the fungi tested. In addition, synergistic effects between A. annua EO and chemical fungicides were examined. Finally, in vivo experiments were conducted and disclosed that P. notoginseng root rot could be largely inhibited by the petroleum ether extract from A. annua, indicating that A. annua could be a good source for controlling P. notoginseng root-rot.


Assuntos
Antifúngicos/farmacologia , Artemisia annua/química , Fusarium/efeitos dos fármacos , Panax notoginseng/microbiologia , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Raízes de Plantas/microbiologia , Antifúngicos/química , Sinergismo Farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Extratos Vegetais/química
18.
Int J Syst Evol Microbiol ; 68(8): 2468-2472, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29927367

RESUMO

A strain (SYPF 7183T) was isolated from rhizosphere soil of Panax notoginseng in southwest China. Phylogenetic analyses indicated that strain SYPF 7183T was distinct from the other Absidia species with well-supported values. Strain SYPF 7183T produced spherical or subpyriform sporangia and short cylindrical sporangiospores. The azygospores were globose to oval. Based on morphological and phylogenetic evidence, the novel strain Absidia panacisoli sp. nov. is proposed.


Assuntos
Absidia/classificação , Panax notoginseng/microbiologia , Filogenia , Rizosfera , Microbiologia do Solo , Absidia/genética , Absidia/isolamento & purificação , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA
19.
Int J Syst Evol Microbiol ; 68(10): 3255-3259, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30113296

RESUMO

An endophytic strain (designated as strain SYPF 8335T) was isolated from a root of Panax notoginseng in Wenshan district, Yunnan province of China. Strain SYPF 8335T grew very slowly and formed white colonies. Phylogenetic analysis of four loci indicated that strain SYPF 8335T was placed in the Drechmeria clade with Drechmeria campanulata as its closest phylogenetic neighbour. The nucleotide differences between strain SYPF 8335T and D. campanulata are 30 substitutions in the internal transcriber region region. A key morphological feature that differentiates the two fungi is that D. campanulata produces campanulate conidia. Combined with the morphology and molecular analyses, a new species named Drechmeria panacis sp. nov., is proposed.


Assuntos
Hypocreales/classificação , Panax notoginseng/microbiologia , Filogenia , Raízes de Plantas/microbiologia , China , DNA Fúngico , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Hypocreales/genética , Hypocreales/isolamento & purificação , Técnicas de Tipagem Micológica , Análise de Sequência de DNA
20.
Int J Syst Evol Microbiol ; 68(8): 2499-2503, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29923818

RESUMO

An endophytic strain (designated as strain SYPF 8337T) was isolated from the root of 3-year-old Panax notoginseng in Yunnan province of China. Strain SYPF 8337T grew slowly and formed pale brown to brown colonies. Phylogenetic analyses indicated that strain SYPF 8337T was placed in the Verruconis clade. Different from other Verruconis species, strain SYPF 8337T produced four-cell conidia. Furthermore, strain SYPF 8337T is the first fungus isolated as an endophyte of P. notoginseng in the genus Verruconis. Combined with the morphology and molecular analyses, a new species named Verruconis panacis sp. nov. is proposed.


Assuntos
Ascomicetos/classificação , Panax notoginseng/microbiologia , Filogenia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , China , DNA Fúngico/genética , Endófitos/isolamento & purificação , Técnicas de Tipagem Micológica , Raízes de Plantas/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA