Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 71(4): e13035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825738

RESUMO

The phylum Parabasalia includes very diverse single-cell organisms that nevertheless share a distinctive set of morphological traits. Most are harmless or beneficial gut symbionts of animals, but some have turned into parasites in other body compartments, the most notorious example being Trichomonas vaginalis in humans. Parabasalians have garnered attention for their nutritional symbioses with termites, their modified anaerobic mitochondria (hydrogenosomes), their character evolution, and the wholly unique features of some species. The molecular revolution confirmed the monophyly of Parabasalia, but considerably changed our view of their internal relationships, prompting a comprehensive reclassification 14 years ago. This classification has remained authoritative for many subgroups despite a greatly expanded pool of available data, but the large number of species and sequences that have since come out allow for taxonomic refinements in certain lineages, which we undertake here. We aimed to introduce as little disruption as possible but at the same time ensure that most taxa are truly monophyletic, and that the larger clades are subdivided into meaningful units. In doing so, we also highlighted correlations between the phylogeny of parabasalians and that of their hosts.


Assuntos
Filogenia , Animais , Parabasalídeos/classificação , Parabasalídeos/genética , Simbiose
2.
J Eukaryot Microbiol ; 70(5): e12988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37291797

RESUMO

Lophomonas blattarum is a facultative commensal gut dweller of common pest cockroaches. Its cells are roughly spherical in shape with an apical tuft of ~50 flagella. Controversially, it has been implicated in human respiratory infections based on light microscopic observations of similarly shaped cells in sputum or bronchoalveolar lavage fluid. Here, we have sequenced the 18S rRNA gene of L. blattarum and its sole congener, Lophomonas striata, isolated from cockroaches. Both species branch in a fully supported clade with Trichonymphida, consistent with a previous study of L. striata, but not consistent with sequences from human samples attributed to L. blattarum.


Assuntos
Baratas , Parabasalídeos , Animais , Humanos , Parabasalídeos/genética , Filogenia , RNA Ribossômico 18S/genética , Flagelos
3.
J Eukaryot Microbiol ; 70(3): e12967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760170

RESUMO

Spirotrichonymphea, one of the six classes of phylum Parabasalia, are characterized by bearing many flagella in spiral rows, and they occur exclusively in the guts of termites. Phylogenetic relationships among the 13 described genera are not well understood due to complex morphological evolution and a paucity of molecular data. One such understudied genus is Spironympha. It has been variously considered a valid genus, a subgenus of Spirotrichonympha, or an "immature" life cycle stage of Spirotrichonympha. To clarify this, we sequenced the small subunit rRNA gene sequences of Spironympha and Spirotrichonympha cells isolated from the hindguts of Reticulitermes species and Hodotermopsis sjostedti and confirmed the molecular identity of H. sjostedti symbionts using fluorescence in situ hybridization. Spironympha as currently circumscribed is polyphyletic, with both H. sjostedti symbiont species branching separately from the "true" Spironympha from Reticulitermes. Similarly, the Spirotrichonympha symbiont of H. sjostedti branches separately from the "true" Spirotrichonympha found in Reticulitermes. Our data support Spironympha from Reticulitermes as a valid genus most closely related to Spirotrichonympha, though its monophyly and interspecific relationships are not resolved in our molecular phylogenetic analysis. We propose three new genera to accommodate the H. sjostedti symbionts and two new species of Spirotrichonympha from Reticulitermes.


Assuntos
Isópteros , Parabasalídeos , Animais , Parabasalídeos/genética , Filogenia , Hibridização in Situ Fluorescente , Simbiose , Sistema Digestório
4.
J Eukaryot Microbiol ; 67(6): 626-641, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32603489

RESUMO

Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattoidea: Rhinotermitidae) are invasive subterranean termite pest species with a major global economic impact. However, the descriptions of the mutualistic protist communities harbored in their respective hindguts remain fragmentary. The C. formosanus hindgut has long been considered to harbor three protist species, Pseudotrichonympha grassii (Trichonymphida), Holomastigotoides hartmanni, and Cononympha (Spirotrichonympha) leidyi (Spirotrichonymphida), but molecular data have suggested that the diversity may be higher. Meanwhile, the C. gestroi community remains undescribed except for Pseudotrichonympha leei. To complete the characterization of these communities, hindguts of workers from both termite species were investigated using single-cell PCR, microscopy, cell counts, and 18S rRNA amplicon sequencing. The two hosts were found to harbor intriguingly parallel protist communities, each consisting of one Pseudotrichonympha species, two Holomastigotoides species, and two Cononympha species. All protist species were unique to their respective hosts, which last shared a common ancestor ~18 MYA. The relative abundances of protist species in each hindgut differed remarkably between cell count data and 18S rRNA profiles, calling for caution in interpreting species abundances from amplicon data. This study will enable future research in C. formosanus and C. gestroi hybrids, which provide a unique opportunity to study protist community inheritance, compatibility, and potential contribution to hybrid vigor.


Assuntos
Sistema Digestório/parasitologia , Isópteros/parasitologia , Parabasalídeos/classificação , Parabasalídeos/genética , Animais , DNA de Protozoário/genética , Interações Hospedeiro-Parasita , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , Análise de Célula Única , Simbiose
5.
J Eukaryot Microbiol ; 67(2): 268-272, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31560813

RESUMO

Hoplonympha natator is an obligate symbiont of Paraneotermes simplicicornis (Kalotermitidae), from southwestern North America. Another Hoplonympha species inhabits Hodotermopsis sjostedti (Archotermopsidae), from montane Southeast Asia. The large phylogenetic and geographical distance between the hosts makes the distribution of Hoplonympha puzzling. Here, we report the phylogenetic position of H. natator from P. simplicicornis through maximum likelihood and Bayesian analysis of 18S rRNA genes. The two Hoplonympha species form a clade with a deep node, making a recent symbiont transfer unlikely. The distribution of Hoplonympha may be due to an ancient transfer or strict vertical inheritance with differential loss from other hosts.


Assuntos
Isópteros/parasitologia , Parabasalídeos/classificação , Animais , Arizona , Teorema de Bayes , Parabasalídeos/genética , Filogenia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Especificidade da Espécie , Simbiose
6.
BMC Evol Biol ; 19(1): 162, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375061

RESUMO

BACKGROUND: Two spliceosomal intron types co-exist in eukaryotic precursor mRNAs and are excised by distinct U2-dependent and U12-dependent spliceosomes. In the diplomonad Giardia lamblia, small nuclear (sn) RNAs show hybrid characteristics of U2- and U12-dependent spliceosomal snRNAs and 5 of 11 identified remaining spliceosomal introns are trans-spliced. It is unknown whether unusual intron and spliceosome features are conserved in other diplomonads. RESULTS: We have identified spliceosomal introns, snRNAs and proteins from two additional diplomonads for which genome information is currently available, Spironucleus vortens and Spironucleus salmonicida, as well as relatives, including 6 verified cis-spliceosomal introns in S. vortens. Intron splicing signals are mostly conserved between the Spironucleus species and G. lamblia. Similar to 'long' G. lamblia introns, RNA secondary structural potential is evident for 'long' (> 50 nt) Spironucleus introns as well as introns identified in the parabasalid Trichomonas vaginalis. Base pairing within these introns is predicted to constrain spatial distances between splice junctions to similar distances seen in the shorter and uniformly-sized introns in these organisms. We find that several remaining Spironucleus spliceosomal introns are ancient. We identified a candidate U2 snRNA from S. vortens, and U2 and U5 snRNAs in S. salmonicida; cumulatively, illustrating significant snRNA differences within some diplomonads. Finally, we studied spliceosomal protein complements and find protein sets in Giardia, Spironucleus and Trepomonas sp. PC1 highly- reduced but well conserved across the clade, with between 44 and 62 out of 174 studied spliceosomal proteins detectable. Comparison with more distant relatives revealed a highly nested pattern, with the more intron-rich fornicate Kipferlia bialata retaining 87 total proteins including nearly all those observed in the diplomonad representatives, and the oxymonad Monocercomonoides retaining 115 total proteins including nearly all those observed in K. bialata. CONCLUSIONS: Comparisons in diplomonad representatives and species of other closely-related metamonad groups indicates similar patterns of intron structural conservation and spliceosomal protein composition but significant divergence of snRNA structure in genomically-reduced species. Relative to other eukaryotes, loss of evolutionarily-conserved snRNA domains and common sets of spliceosomal proteins point to a more streamlined splicing mechanism, where intron sequences and structures may be functionally compensating for the minimalization of spliceosome components.


Assuntos
Sequência Conservada , Diplomonadida/genética , Íntrons/genética , Parabasalídeos/genética , Filogenia , Spliceossomos/genética , Regiões 5' não Traduzidas/genética , Pareamento de Bases/genética , Sequência de Bases , Genoma , Conformação de Ácido Nucleico , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Proteínas Ribossômicas/genética
7.
J Eukaryot Microbiol ; 66(6): 882-891, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31033101

RESUMO

Holomastigotes is a protist genus (Parabasalia: Spirotrichonymphea) that resides in the hindguts of "lower" termites. It can be distinguished from other parabasalids by spiral flagellar bands that run along the entire length of the cell, an anterior nucleus, a reduced or absent axostyle, the presence of spherical vesicles inside the cells, and the absence of ingested wood particles. Eight species have been described based on their morphology so far, although no molecular data were available prior to this study. We determined the 18S rRNA gene sequences of Holomastigotes from the hindguts of Hodotermopsis sjostedti, Reticulitermes flavipes, Reticulitermes lucifugus, and Reticulitermes tibialis. Phylogenetic analyses placed all sequences in an exclusive and well-supported clade with the type species, Holomastigotes elongatum from R. lucifugus. However, the phylogenetic position of Holomastigotes within the Spirotrichonymphea was not resolved. We describe two new species, Holomastigotes flavipes n. sp. and Holomastigotes tibialis n. sp., inhabiting the hindguts of R. flavipes and R. tibialis, respectively.


Assuntos
Isópteros/parasitologia , Parabasalídeos/classificação , Animais , Sistema Digestório/parasitologia , Parabasalídeos/citologia , Parabasalídeos/genética , Filogenia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Simbiose
8.
J Eukaryot Microbiol ; 65(1): 77-92, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28682523

RESUMO

The guts of lower termites are inhabited by host-specific consortia of cellulose-digesting flagellate protists. In this first investigation of the symbionts of the family Serritermitidae, we found that Glossotermes oculatus and Serritermes serrifer each harbor similar parabasalid morphotypes: large Pseudotrichonympha-like cells, medium-sized Leptospironympha-like cells with spiraled bands of flagella, and small Hexamastix-like cells; oxymonadid flagellates were absent. Despite their morphological resemblance to Pseudotrichonympha and Leptospironympha, a SSU rRNA-based phylogenetic analysis identified the two larger, trichonymphid flagellates as deep-branching sister groups of Teranymphidae, with Leptospironympha sp. (the only spirotrichosomid with sequence data) in a moderately supported basal position. Only the Hexamastix-like flagellates are closely related to trichomonadid flagellates from Rhinotermitidae. The presence of two deep-branching lineages of trichonymphid flagellates in Serritermitidae and the absence of all taxa characteristic of the ancestral rhinotermitids underscores that the flagellate assemblages in the hindguts of lower termites were shaped not only by a progressive loss of flagellates during vertical inheritance but also by occasional transfaunation events, where flagellates were transferred horizontally between members of different termite families. In addition to the molecular phylogenetic analyses, we present a detailed morphological characterization of the new spirotrichosomid genus Heliconympha using light and electron microscopy.


Assuntos
Microbioma Gastrointestinal , Isópteros/parasitologia , Parabasalídeos/classificação , Animais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Parabasalídeos/citologia , Parabasalídeos/genética , Parabasalídeos/ultraestrutura , RNA de Protozoário/análise , RNA Ribossômico/análise
9.
Appl Environ Microbiol ; 81(3): 1059-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452280

RESUMO

The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected.


Assuntos
Bactérias/classificação , Biota , Isópteros/microbiologia , Parabasalídeos/classificação , Animais , Bactérias/genética , Bacteroidetes , Análise por Conglomerados , Baratas , DNA Bacteriano/química , DNA Bacteriano/genética , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Dados de Sequência Molecular , Parabasalídeos/genética , Filogenia , Análise de Sequência de DNA , Tenericutes
10.
J Eukaryot Microbiol ; 62(2): 255-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25155455

RESUMO

Kofoidia loriculata is a parabasalid symbiont inhabiting the hindgut of the lower termite Paraneotermes simplicicornis. It was initially described as a lophomonad due to its apical tuft of multiple flagella that disintegrate during cell division, but its phylogenetic relationships have not been investigated using molecular evidence. From single cell isolations, we sequenced the small subunit rRNA gene and determined that K. loriculata falls within the Cristamonadea, but is unrelated to other lophomonads. This analysis further demonstrates the polyphyly of the lophomonads and the necessity to re-assess the morphological and cellular evolution of the Cristamonadea.


Assuntos
Parabasalídeos/classificação , Filogenia , Animais , Sequência de Bases , Evolução Biológica , Genes de RNAr , Isópteros , Parabasalídeos/genética , RNA Ribossômico/genética
11.
J Eukaryot Microbiol ; 62(4): 494-504, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25600410

RESUMO

Macrotrichomonas (Cristamonadea: Parabasalia) is an anaerobic, amitochondriate flagellate symbiont of termite hindguts. It is noteworthy for being large but not structurally complex compared with other large parabasalians, and for retaining a structure similar in appearance to the undulating membrane (UM) of small flagellates closely related to cristamonads, e.g. Tritrichomonas. Here, we have characterised the SSU rDNA from two species described as Macrotrichomonas: M. restis Kirby 1942 from Neotermes jouteli and M. lighti Connell 1932 from Paraneotermes simplicicornis. These species do not form a clade: M. lighti branches with previously characterised Macrotrichomonas sequences from Glyptotermes, while M. restis branches with the genus Metadevescovina. We examined the M. restis UM by light microscopy, scanning electron microscopy, and transmission electron microscopy, and we find common characteristics with the proximal portion of the robust recurrent flagellum of devescovinids. Altogether, we show the genus Macrotrichomonas to be polyphyletic and propose transferring M. restis to a new genus, Macrotrichomonoides. We also hypothesise that the macrotrichomonad body plan represents the ancestral state of cristamonads, from which other major forms evolved.


Assuntos
DNA de Protozoário/genética , Isópteros/parasitologia , Parabasalídeos/classificação , Parabasalídeos/genética , Animais , DNA Ribossômico/genética , Genes de RNAr , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Parabasalídeos/citologia , Filogenia , Simbiose
12.
J Eukaryot Microbiol ; 60(3): 313-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23384430

RESUMO

An important and undervalued challenge in characterizing symbiotic protists is the accurate identification of their host species. Here, we use DNA barcoding to resolve one confusing case involving parabasalian symbionts in the hindgut of the Hawaiian lowland tree termite, Incisitermes immigrans, which is host to several parabasalians, including the type species for the genus Coronympha, C. clevelandii. We collected I. immigrans from its type locality (Hawaii), confirmed its identity by DNA barcoding, and characterized the phylogenetic position of two symbionts, C. clevelandii and Trichonympha subquasilla. These data show that previous molecular surveys of "I. immigrans" are, in fact, mainly derived from the Caribbean termite I. schwarzi, and perhaps also another related species. These results emphasize the need for host barcoding, clarify the relationship between morphologically distinct Coronympha species, and also suggest some interesting distribution patterns of nonendemic termite species and their symbionts.


Assuntos
Hypermastigia/fisiologia , Isópteros/parasitologia , Parabasalídeos/fisiologia , Animais , Hypermastigia/classificação , Hypermastigia/genética , Parabasalídeos/classificação , Parabasalídeos/genética , Filogenia , RNA Ribossômico/genética , Simbiose
13.
J Eukaryot Microbiol ; 60(2): 203-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23398273

RESUMO

Staurojoenina is a large and structurally complex genus of hypermastigont parabasalians found in the hindgut of lower termites. Although several species of Staurojoenina have been described worldwide, all Staurojoenina observed to date in different species of North American termites have been treated as the same species, S. assimilis. Here, we characterize Staurojoenina from the North American termite Neotermes jouteli using light microscopy, scanning electron microscopy, and phylogenetic analysis of small subunit ribosomal RNA, and compare it with S. assimilis from its type host, Incisitermes minor. The basic morphological characteristics of the N. jouteli symbiont, including its abundant bacterial epibionts, are similar as far as they may be compared with existing data from S. assimilis, although not consistently identical. In contrast, we find that they are extremely distantly related at the molecular level, sharing a pairwise similarity of SSU rRNA genes comparable to that seen between different genera or even families of other parabasalians. Based on their evolutionary distance and habitat in different termite genera, we consider the N. jouteli Staurojoenina to be distinct from S. assimilis, and describe a new species, Staurojoenina mulleri, in honor of the pioneering parabasalian researcher, Miklos Muller.


Assuntos
Isópteros/parasitologia , Parabasalídeos/classificação , Parabasalídeos/citologia , Animais , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Microscopia , Dados de Sequência Molecular , América do Norte , Parabasalídeos/genética , Parabasalídeos/isolamento & purificação , Filogenia , RNA de Protozoário/genética , RNA Ribossômico/genética , Análise de Sequência de DNA
14.
Eukaryot Cell ; 10(8): 1013-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685318

RESUMO

Protozoa constitute the earliest branch of the eukaryotic lineage, and several groups of protozoans are serious parasites of humans and other animals. Better understanding of biochemical pathways that are either in common with or divergent from those of higher eukaryotes is integral in the defense against these parasites. In yeast and humans, the posttranslational methylation of arginine residues in proteins affects myriad cellular processes, including transcription, RNA processing, DNA replication and repair, and signal transduction. The protein arginine methyltransferases (PRMTs) that catalyze these reactions, which are unique to the eukaryotic kingdom of organisms, first become evident in protozoa. In this review, we focus on the current understanding of arginine methylation in multiple species of parasitic protozoa, including Trichomonas, Entamoeba, Toxoplasma, Plasmodium, and Trypanosoma spp., and discuss how arginine methylation may play important and unique roles in each type of parasite. We mine available genomic and transcriptomic data to inventory the families of PRMTs in different parasites and the changes in their abundance during the life cycle. We further review the limited functional studies on the roles of arginine methylation in parasites, including epigenetic regulation in Apicomplexa and RNA processing in trypanosomes. Interestingly, each of the parasites considered herein has significantly differing sets of PRMTs, and we speculate on the importance of this diversity in aspects of parasite biology, such as differentiation and antigenic variation.


Assuntos
Arginina/química , Proteína-Arginina N-Metiltransferases/metabolismo , Infecções por Protozoários/parasitologia , Proteínas de Protozoários/metabolismo , Animais , Antígenos de Protozoários/metabolismo , Entamoeba/enzimologia , Entamoeba/genética , Entamoeba/metabolismo , Regulação da Expressão Gênica , Humanos , Metilação , Parabasalídeos/enzimologia , Parabasalídeos/genética , Parabasalídeos/metabolismo , Plasmodium/enzimologia , Plasmodium/genética , Plasmodium/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/enzimologia , Toxoplasma/genética , Toxoplasma/metabolismo , Trypanosoma/enzimologia , Trypanosoma/genética , Trypanosoma/metabolismo
15.
Avian Dis ; 56(2): 441-5, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22856210

RESUMO

We report the first documented occurrence of an outbreak of trichomonosis in a free-ranging small flock of Eurasian collared doves (Streptopelia decaocto) and African collared dove hybrids (Streptopelia risoria) in the Caribbean. In total, 18 birds were examined, including six African collared dove x Eurasian collared dove hybrids and 12 Eurasian collared doves. The affected age class consisted of adults. Sex distribution was equal. With a flock population size of 200 birds, mortality rate for the outbreak was estimated at 15-20%. Living birds were weak, showing evidence of mucus-stained beaks and open-mouth breathing. Caseous ulcerative yellow lesions were restricted to the upper gastrointestinal tract, with the exception of one bird, which had lesions in the upper gastrointestinal tract and in the liver. Ninety-four percent (17/18) of the affected birds had multiple extensive lesions. Lesions located on the roof of the oral cavity extended in 33% (6/18) into the orbit and in 11% (2/18) into the braincase. Using wet-mount microscopy, we were able to confirm Trichomonas gallinae in 22% (4/18) of the sampled animals. Fifteen samples submitted for PCR analysis tested positive. Sequence analysis of the internal transcribed spacer 1 (ITS-1) region of the ribosomal RNA (rRNA) revealed two distinct genotypes of Trichomonas. One sequence had 100% identity to the prototype T. gallinae isolate, whereas the other sequences had 98-100% identity to recently described Trichomonas-like parabasalid. On the basis of gross and histologic findings, along with the sequence results from the columbids in this report, it is likely that this Trichomonas-like parabasalid is pathogenic.


Assuntos
Doenças das Aves/parasitologia , Columbidae , Parabasalídeos/isolamento & purificação , Tricomoníase/veterinária , Trichomonas/isolamento & purificação , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/patologia , Região do Caribe/epidemiologia , DNA Espaçador Ribossômico/genética , Feminino , Genótipo , Masculino , Parabasalídeos/classificação , Parabasalídeos/genética , Reação em Cadeia da Polimerase/veterinária , Trichomonas/classificação , Trichomonas/genética , Tricomoníase/epidemiologia , Tricomoníase/parasitologia , Tricomoníase/patologia
17.
Protist ; 173(4): 125883, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660751

RESUMO

The vast majority of the more than 450 described species of Parabasalia are intestinal symbionts or parasites of animals. This endobiotic life-history is presumably ancestral although the root of Parabasalia still needs to be robustly established. The half-dozen putatively free-living species thus far described are likely independently derived from endobiotic ancestors and represent the most neglected ecological group of parabasalids. Thus, we isolated and cultivated 45 free-living strains of Parabasalia obtained from a wide variety of anoxic sediments to conduct detailed morphological and SSU rRNA gene phylogenetic analyses. Sixteen species of trichomonads were recovered. Among them, we described seven new species, three new genera, two new families, and one new order. Most of the newly described species were more or less closely related to members of already described genera. However, we uncovered a new deep-branching lineage without affinity to any currently known group of Parabasalia. The newly discovered free-living parabasalids will be key taxa in comparative analyses aimed at rooting the entire lineage and deciphering the evolutionary innovations involved in transitioning between endobiotic and free-living habitats.


Assuntos
Parabasalídeos , Parasitos , Animais , Evolução Biológica , Parabasalídeos/genética , Filogenia
18.
Int J Syst Evol Microbiol ; 61(Pt 10): 2547-2558, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21112987

RESUMO

Calonymphids are a group of multinucleate, multiflagellate protists belonging to the order Cristamonadida (Parabasalia) that are found exclusively in the hindgut of termites from the family Kalotermitidae. Despite their impressive morphological complexity and diversity, few species have been formally described and fewer still have been characterized at the molecular level. In this study, four novel species of calonymphids were isolated and characterized: Calonympha chia and Snyderella yamini spp. nov., from Neotermes castaneus and Calcaritermes nearcticus from Florida, USA, and Snyderella kirbyi and Snyderella swezyae, spp. nov., from Calcaritermes nigriceps and Cryptotermes cylindroceps from Colombia. Each of these species was distinguished from its congeners by residing in a distinct host and by differences at the molecular level. Phylogenetic analyses of small subunit (SSU) rDNA indicated that the genera Calonympha and Stephanonympha were probably not monophyletic, though the genus Snyderella, previously only represented by one sequence in molecular analyses, appeared with these new data to be monophyletic. This was in keeping with the traditional evolutionary view of the group in which the morphology of the genus Snyderella is considered to be derived, while that of the genus Stephanonympha is ancestral and therefore probably plesiomorphic.


Assuntos
Parabasalídeos/classificação , Parabasalídeos/isolamento & purificação , Animais , Análise por Conglomerados , Colômbia , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Florida , Genes de RNAr , Isópteros/parasitologia , Microscopia , Dados de Sequência Molecular , Parabasalídeos/citologia , Parabasalídeos/genética , Filogenia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
19.
J Eukaryot Microbiol ; 58(6): 487-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21895839

RESUMO

Pseudotrichonympha is a large hypermastigote parabasalian found in the hindgut of several species of rhinotermitid termites. The genus was discovered more than 100 years ago, and although over a dozen species have since been described, this represents only a small fraction of its likely diversity: the termite genera from which Pseudotrichonympha is known are all species rich, and in most cases their hindgut symbionts have not been examined. Even formally described species are mostly lacking in detailed microscopic data and/or sequence data. Using small subunit ribosomal RNA gene sequences and light and scanning electron microscopy we describe here the morphology and molecular phylogenetic position of two Pseudotrichonympha species: the type species for the genus, Pseudotrichonympha hertwigi from Coptotermes testaceus (described previously in line drawing only), and Pseudotrichonympha paulistana from Heterotermes tenuis (described previously based on light microscopy only).


Assuntos
Isópteros/parasitologia , Parabasalídeos/citologia , Parabasalídeos/genética , Filogenia , Animais , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Microscopia , Dados de Sequência Molecular , Parabasalídeos/classificação , Parabasalídeos/isolamento & purificação , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
20.
Protist ; 172(5-6): 125836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34757297

RESUMO

Microjoenia are obligate symbionts of termites. The genus was erected in 1892 for small cells with many flagella that insert near, but not directly from, the cell apex, and an axostyle that can protrude from the cell posterior. Although ultrastructural studies have been carried out on three Microjoenia species to date, no molecular data have been directly attributed to any species. Microjoenia are classified within the parabasalian class Spirotrichonymphea, which is characterized by flagellar bands that emerge near the cell apex and proceed posteriorly in a right-handed helix. In Microjoenia, however, the flagellar bands are very short and proceed longitudinally or with a weakly observable helix. In this study, we have amplified and sequenced the 18S ribosomal RNA gene from individually isolated Microjoenia cells from Reticulitermes and Hodotermopsis hosts as part of an ongoing effort to understand the phylogeny of Spirotrichonymphea and their coevolution with termites. In our 18S rRNA gene phylogeny, Microjoenia forms the sister lineage to Spirotrichonympha, though many other evolutionary relationships within Spirotrichonymphea remain unresolved.


Assuntos
Isópteros , Parabasalídeos , Animais , Parabasalídeos/genética , Filogenia , RNA Ribossômico 18S/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA