Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 73(3): 562-573.e3, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595439

RESUMO

Across eukaryotes, disruption of DNA replication causes an S phase checkpoint response, which regulates multiple processes, including inhibition of replication initiation and fork stabilization. How these events are coordinated remains poorly understood. Here, we show that the replicative helicase component Cdc45 targets the checkpoint kinase Rad53 to distinct replication complexes in the budding yeast Saccharomyces cerevisiae. Rad53 binds to forkhead-associated (FHA) interaction motifs in an unstructured loop region of Cdc45, which is phosphorylated by Rad53 itself, and this interaction is necessary for the inhibition of origin firing through Sld3. Cdc45 also recruits Rad53 to stalled replication forks, which we demonstrate is important for the response to replication stress. Finally, we show that a Cdc45 mutation found in patients with Meier-Gorlin syndrome disrupts the functional interaction with Rad53 in yeast. Together, we present a single mechanism by which a checkpoint kinase targets replication initiation and elongation complexes, which may be relevant to human disease.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Microtia Congênita/enzimologia , Microtia Congênita/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Transtornos do Crescimento/enzimologia , Transtornos do Crescimento/genética , Humanos , Micrognatismo/enzimologia , Micrognatismo/genética , Mutação , Proteínas Nucleares/genética , Patela/anormalidades , Patela/enzimologia , Fosforilação , Ligação Proteica , Pontos de Checagem da Fase S do Ciclo Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
2.
Nucleic Acids Res ; 51(18): 9748-9763, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638758

RESUMO

Faithful cell division is the basis for the propagation of life and DNA replication must be precisely regulated. DNA replication stress is a prominent endogenous source of genome instability that not only leads to ageing, but also neuropathology and cancer development in humans. Specifically, the issues of how vertebrate cells select and activate origins of replication are of importance as, for example, insufficient origin firing leads to genomic instability and mutations in replication initiation factors lead to the rare human disease Meier-Gorlin syndrome. The mechanism of origin activation has been well characterised and reconstituted in yeast, however, an equal understanding of this process in higher eukaryotes is lacking. The firing of replication origins is driven by S-phase kinases (CDKs and DDK) and results in the activation of the replicative helicase and generation of two bi-directional replication forks. Our data, generated from cell-free Xenopus laevis egg extracts, show that DONSON is required for assembly of the active replicative helicase (CMG complex) at origins during replication initiation. DONSON has previously been shown to be essential during DNA replication, both in human cells and in Drosophila, but the mechanism of DONSON's action was unknown. Here we show that DONSON's presence is essential for replication initiation as it is required for Cdc45 and GINS association with Mcm2-7 complexes and helicase activation. To fulfil this role, DONSON interacts with the initiation factor, TopBP1, in a CDK-dependent manner. Following its initiation role, DONSON also forms a part of the replisome during the elongation stage of DNA replication. Mutations in DONSON have recently been shown to lead to the Meier-Gorlin syndrome; this novel replication initiation role of DONSON therefore provides the explanation for the phenotypes caused by DONSON mutations in patients.


Assuntos
Microtia Congênita , Transtornos do Crescimento , Micrognatismo , Patela , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Microtia Congênita/genética , Quinases Ciclina-Dependentes/genética , Replicação do DNA/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Patela/anormalidades , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Semin Musculoskelet Radiol ; 28(3): 257-266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768591

RESUMO

Patellofemoral instability results from impaired engagement of the patella in the trochlear groove at the start of flexion and may lead to pain and lateral patellar dislocation. It occurs most frequently in adolescents and young adults during sporting activities. Trochlear dysplasia, patella alta, and excessive lateralization of the tibial tuberosity are the most common risk factors for patellar instability. The main role of imaging is to depict and assess these anatomical factors and highlight features indicating previous lateral dislocation of the patella.


Assuntos
Instabilidade Articular , Articulação Patelofemoral , Humanos , Instabilidade Articular/diagnóstico por imagem , Articulação Patelofemoral/diagnóstico por imagem , Patela/diagnóstico por imagem , Patela/anormalidades , Luxação Patelar/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Fatores de Risco
4.
Arthroscopy ; 40(5): 1541-1543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38219109

RESUMO

When planning an adolescent's primary surgery for recurrent patella instability, the surgeon must weigh the failure risk of performing medial patellofemoral reconstruction (MPFLR) versus the potential morbidity of adding a concomitant bony procedure, such as tibial tubercle osteotomy. In this age group, isolated MPFLR is an excellent operation with high clinical success, low failure rates, and favorable complication profile. Patients with high grade J-sign and severe trochlea dysplasia, apprehension into deep flexion, and extremes of bony malalignment, including elevated tibial tubercle-trochlear groove distance, may benefit from "doing more" than MPFLR alone. Other factors to be considered include patella alta, generalized ligament laxity, femoral rotation, tibial torsion, and valgus malalignment. In challenging situations, such as syndromic patients (e.g., neuromuscular disorders), congenital (habitual) patella dislocation, fixed dislocations, and failed prior to MPFLR, a combined surgical approach is likely needed. Patients who require "unloading" for symptomatic chondrosis also benefit from combined bony and soft tissue surgery. However, for the majority of patients with recurrent instability and no prior surgery, an isolated soft tissue reconstruction is a rational, safe, efficient, and evidence-based selection.


Assuntos
Mau Alinhamento Ósseo , Instabilidade Articular , Articulação Patelofemoral , Recidiva , Humanos , Instabilidade Articular/cirurgia , Adolescente , Articulação Patelofemoral/cirurgia , Mau Alinhamento Ósseo/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Luxação Patelar/cirurgia , Patela/cirurgia , Patela/anormalidades
5.
J Med Genet ; 59(8): 776-780, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34353863

RESUMO

INTRODUCTION: Replication of the nuclear genome is an essential step for cell division. Pathogenic variants in genes coding for highly conserved components of the DNA replication machinery cause Meier-Gorlin syndrome (MGORS). OBJECTIVE: Identification of novel genes associated with MGORS. METHODS: Exome sequencing was performed to investigate the genotype of an individual presenting with prenatal and postnatal growth restriction, a craniofacial gestalt of MGORS and coronal craniosynostosis. The analysis of the candidate variants employed bioinformatic tools, in silico structural protein analysis and modelling in budding yeast. RESULTS: A novel homozygous missense variant NM_016095.2:c.341G>T, p.(Arg114Leu), in GINS2 was identified. Both non-consanguineous healthy parents carried this variant. Bioinformatic analysis supports its classification as pathogenic. Functional analyses using yeast showed that this variant increases sensitivity to nicotinamide, a compound that interferes with DNA replication processes. The phylogenetically highly conserved residue p.Arg114 localises at the docking site of CDC45 and MCM5 at GINS2. Moreover, the missense change possibly disrupts the effective interaction between the GINS complex and CDC45, which is necessary for the CMG helicase complex (Cdc45/MCM2-7/GINS) to accurately operate. Interestingly, our patient's phenotype is strikingly similar to the phenotype of patients with CDC45-related MGORS, particularly those with craniosynostosis, mild short stature and patellar hypoplasia. CONCLUSION: GINS2 is a new disease-associated gene, expanding the genetic aetiology of MGORS.


Assuntos
Proteínas Cromossômicas não Histona , Microtia Congênita , Craniossinostoses , Micrognatismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Microtia Congênita/genética , Craniossinostoses/genética , Transtornos do Crescimento/genética , Humanos , Micrognatismo/genética , Patela/anormalidades , Saccharomyces cerevisiae/genética
6.
Am J Hum Genet ; 105(6): 1294-1301, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31761294

RESUMO

The development of hindlimbs in tetrapod species relies specifically on the transcription factor TBX4. In humans, heterozygous loss-of-function TBX4 mutations cause dominant small patella syndrome (SPS) due to haploinsufficiency. Here, we characterize a striking clinical entity in four fetuses with complete posterior amelia with pelvis and pulmonary hypoplasia (PAPPA). Through exome sequencing, we find that PAPPA syndrome is caused by homozygous TBX4 inactivating mutations during embryogenesis in humans. In two consanguineous couples, we uncover distinct germline TBX4 coding mutations, p.Tyr113∗ and p.Tyr127Asn, that segregated with SPS in heterozygous parents and with posterior amelia with pelvis and pulmonary hypoplasia syndrome (PAPPAS) in one available homozygous fetus. A complete absence of TBX4 transcripts in this proband with biallelic p.Tyr113∗ stop-gain mutations revealed nonsense-mediated decay of the endogenous mRNA. CRISPR/Cas9-mediated TBX4 deletion in Xenopus embryos confirmed its restricted role during leg development. We conclude that SPS and PAPPAS are allelic diseases of TBX4 deficiency and that TBX4 is an essential transcription factor for organogenesis of the lungs, pelvis, and hindlimbs in humans.


Assuntos
Anormalidades Múltiplas/etiologia , Doenças do Desenvolvimento Ósseo/etiologia , Ectromelia/etiologia , Quadril/anormalidades , Homozigoto , Ísquio/anormalidades , Mutação com Perda de Função , Pneumopatias/etiologia , Pulmão/anormalidades , Patela/anormalidades , Pelve/anormalidades , Proteínas com Domínio T/genética , Anormalidades Múltiplas/patologia , Adolescente , Doenças do Desenvolvimento Ósseo/patologia , Criança , Ectromelia/patologia , Feminino , Quadril/patologia , Humanos , Ísquio/patologia , Pulmão/patologia , Pneumopatias/patologia , Masculino , Patela/patologia , Linhagem , Pelve/patologia , Prognóstico
7.
Am J Med Genet A ; 188(5): 1420-1425, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35075769

RESUMO

Variants involving TBX4 are associated with a wide variety of disorders, including pulmonary arterial hypertension, ischiocoxopodopatellar syndrome (ICPPS)/small patella syndrome (SPS), lethal lung developmental disorders (LLDDs) in neonates, heart defects, and prenatally lethal posterior amelia with pelvic and pulmonary hypoplasia syndrome. The objective of our study was to elucidate the wide variable phenotypic expressivity and incomplete penetrance in a three-generation family with a truncating variant in TBX4. In addition to exome and genome sequencing analyses, a candidate noncoding regulatory single nucleotide variant (SNV) within the lung-specific TBX4 enhancer was functionally tested using an in vitro luciferase reporter assay. A heterozygous frameshift variant c.1112dup (p.Pro372Serfs*14) in TBX4 was identified in patients with mild interstitial lung disease (1), bronchiolitis obliterans (1), recurrent pneumothorax (1), ICPPS/SPS (1), LLDD (2), and in unaffected individuals (4). In two deceased neonates with LLDD, we identified a noncoding SNV rs62069651-C located in trans to the mutated TBX4 allele that reduced the TBX4 promoter activity by 63% in the reporter assay. Our findings provide a functional evidence for the recently reported model of complex compound inheritance in which both TBX4 coding and in trans noncoding hypomorphic variants in the lung-specific enhancer of TBX4 contribute to LLDD.


Assuntos
Pneumopatias , Anormalidades do Sistema Respiratório , Doenças do Desenvolvimento Ósseo , Quadril/anormalidades , Humanos , Recém-Nascido , Ísquio/anormalidades , Pulmão/anormalidades , Pneumopatias/genética , Patela/anormalidades , Proteínas com Domínio T/genética
8.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012502

RESUMO

Meier−Gorlin syndrome (MGS) is a rare genetic developmental disorder that causes primordial proportional dwarfism, microtia, the absence of or hypoplastic patellae and other skeletal anomalies. Skeletal symptoms overlapping with other syndromes make MGS difficult to diagnose clinically. We describe a 3-year-old boy with short stature, recurrent respiratory infections, short-rib dysplasia, tower head and facial dysmorphisms who was admitted to the Tomsk Genetic Clinic to verify a clinical diagnosis of Jeune syndrome. Clinical exome sequencing revealed two variants (compound heterozygosity) in the ORC6 gene: c.2T>C(p.Met1Thr) and c.449+5G>A. In silico analysis showed the pathogenicity of these two mutations and predicted a decrease in donor splicing site strength for c.449+5G>A. An in vitro minigene assay indicated that variant c.449+5G>A causes complete skipping of exon 4 in the ORC6 gene. The parents requested urgent prenatal testing for MGS for the next pregnancy, but it ended in a miscarriage. Our results may help prevent MGS misdiagnosis in the future. We also performed in silico and functional analyses of ORC6 mutations and developed a restriction fragment length polymorphism and haplotype-based short-tandem-repeat assay for prenatal genetic testing for MGS. These findings should elucidate MGS etiology and improve the quality of genetic counselling for affected families.


Assuntos
Microtia Congênita , Nanismo , Pré-Escolar , Microtia Congênita/diagnóstico , Microtia Congênita/genética , Erros de Diagnóstico , Nanismo/genética , Testes Genéticos , Transtornos do Crescimento , Humanos , Masculino , Micrognatismo , Mutação , Complexo de Reconhecimento de Origem/genética , Patela/anormalidades
9.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216193

RESUMO

Small patella syndrome (SPS) is a rare autosomal dominant disorder caused by mutations in TBX4 gene which encodes a transcription factor of FGF10. However, how TBX4 mutations result in SPS is poorly understood. Here, a novel TBX4 mutation c.1241C>T (p.P414L) was identified in a SPS family and series of studies were performed to evaluate the influences of TBX4 mutations (including c.1241C>T and two known mutations c.256G>C and c.743G>T). Results showed that mesenchymal stem cells (MSCs) with stable overexpression of either TBX4 wild-type (TBX4wt) or mutants (TBX4mt) were successfully generated. Immunofluorescence study revealed that both the overexpressed TBX4 wild-type and mutants were evenly expressed in the nucleus suggesting that these mutations do not alter the translocation of TBX4 into the nucleus. Interestingly, MSCs overexpression of TBX4mt exhibited reduced differentiation activities and decreased FGF10 expression. Chromatin immunoprecipitation (ChIP) study demonstrated that TBX4 mutants still could bind to the promoter of FGF10. However, dual luciferase reporter assay clarified that the binding efficiencies of TBX4 mutants to FGF10 promoter were reduced. Taken together, MSCs were firstly used to study the function of TBX4 mutations in this study and the results indicate that the reduced binding efficiencies of TBX4 mutants (TBX4mt) to the promoter of FGF10 result in the abnormal biological processes which provide important information for the pathogenesis of SPS.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Quadril/anormalidades , Ísquio/anormalidades , Mutação/genética , Patela/anormalidades , Proteínas com Domínio T/genética , Adulto , Doenças do Desenvolvimento Ósseo/patologia , Linhagem Celular , Feminino , Células HEK293 , Quadril/patologia , Humanos , Ísquio/patologia , Células-Tronco Mesenquimais/patologia , Patela/patologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Adulto Jovem
10.
Am J Med Genet A ; 185(3): 871-876, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338304

RESUMO

Meier-Gorlin syndrome is an autosomal recessively inherited disorder of growth retardation, accompanied by microtia and patellae a/hypoplasia and characteristic facies. Pathogenic variants in genes associated with the initiation of DNA replication underlie the condition, with biallelic variants in CDT1 the most common cause. Using 10× Chromium genome sequencing, we report CDT1 variants in an adult female, with an inframe amino acid deletion inherited in trans with a deep intronic variant which likely serves as the branchpoint site in Intron 8. Splicing defects arising from this variant were confirmed through in vitro analysis. At 49 years, she represents the oldest patient with a molecular diagnosis described in the literature and is the first reported patient with Meier-Gorlin syndrome to have carried a successful pregnancy to term. Both of her pregnancies were complicated by postpartum hemorrhage and upon subsequent necessary hysterectomy, revealed uterine abnormalities. There is scant knowledge on reproductive ability and success in patients with Meier-Gorlin syndrome. Successful pregnancies among other clinically recognizable forms of primordial dwarfism have also not been described previously. This case is therefore of clinical interest for many forms of inherited growth retardation, and will assist in providing more information and clinical guidance for females of reproductive age.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Mutação da Fase de Leitura , Transtornos do Crescimento/genética , Micrognatismo/genética , Patela/anormalidades , Mutação Puntual , Complicações na Gravidez/genética , Alelos , Processamento Alternativo , Sequência de Bases , Proteínas de Ciclo Celular/deficiência , Códon sem Sentido/genética , Feminino , Haplótipos/genética , Humanos , Íntrons/genética , Pessoa de Meia-Idade , Paridade , Fenótipo , Hemorragia Pós-Parto/genética , Gravidez , Deleção de Sequência , Útero/anormalidades , Útero/patologia , Sequenciamento Completo do Genoma
11.
BMC Pregnancy Childbirth ; 21(1): 381, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34000999

RESUMO

BACKGROUND: Meier-Gorlin syndrome 7 (MGS7) is a rare autosomal recessive condition. We reported a fetus diagnosed with Meier-Gorlin syndrome 7. The antenatal sonographic images were presented, and compound heterozygous mutations of CDC45 on chromosome 22 were identified by whole-exome sequencing (WES). CASE PRESENTATION: Fetal growth restriction (FGR), craniosynostosis, and brachydactyly of right thumb were found in a fetus of 28th gestational weeks. The fetus was diagnosed as MGS7 clinically. After extensive counseling, the couple opted for prenatal diagnosis by cordocentesis and termination of pregnancy. Karyotype analysis and WES were performed. Chromosomal karyotyping showed that the fetus was 46, XY. There were 2 mutations of CDC45, the causal gene of MGS7 on chromosome 22, which were inherited from the couple respectively were identified by WES. Facial dysmorphism, brachydactyly of right thumb, and genitalia abnormally were proved by postpartum autopsy, and craniosynostosis was confirmed by three-dimensional computed tomography (3D-CT) reconstruction. CONCLUSIONS: It is possible to detect multiple clinical features of Meier-Gorlin syndrome in prenatal sonography. Deteriorative FGR complicated with craniosynostosis indicates MGS7. Combination of 2D and 3D ultrasonography helps to detect craniosynostosis. The affected fetus was confirmed a compound heterozygote of CDC45 related MGS by whole-exome sequencing, which is critical in identifying rare genetic diseases.


Assuntos
Microtia Congênita/diagnóstico por imagem , Transtornos do Crescimento/diagnóstico por imagem , Micrognatismo/diagnóstico por imagem , Patela/anormalidades , Ultrassonografia Pré-Natal , Aborto Induzido , Povo Asiático , China/etnologia , Feminino , Humanos , Masculino , Patela/diagnóstico por imagem , Gravidez , Segundo Trimestre da Gravidez , Adulto Jovem
12.
J Med Genet ; 57(3): 195-202, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784481

RESUMO

MATERIAL: Linked-read whole genome sequencing (WGS) presents a new opportunity for cost-efficient singleton sequencing in place of traditional trio-based designs while generating informative-phased variants, effective for recessive disorders when parental DNA is unavailable. METHODS: We have applied linked-read WGS to identify novel causes of Meier-Gorlin syndrome (MGORS), a condition recognised by short stature, microtia and patella hypo/aplasia. There are eight genes associated with MGORS to date, all encoding essential components involved in establishing and initiating DNA replication. RESULTS: Our successful phasing of linked-read data led to the identification of biallelic rare variants in four individuals (24% of our cohort) in DONSON, a recently established DNA replication fork surveillance factor. The variants include five novel missense and one deep intronic variant. All were demonstrated to be deleterious to function; the missense variants all disrupted the nuclear localisation of DONSON, while the intronic variant created a novel splice site that generated an out-of-frame transcript with no residual canonical transcript produced. CONCLUSION: Variants in DONSON have previously been associated with extreme microcephaly, short stature and limb anomalies and perinatal lethal microcephaly-micromelia syndrome. Our novel genetic findings extend the complicated spectrum of phenotypes associated with DONSON variants and promote novel hypotheses for the role of DONSON in DNA replication. While our findings reiterate that MGORS is a disorder of DNA replication, the pathophysiology is obviously complex. This successful identification of a novel disease gene for MGORS highlights the utility of linked-read WGS as a successful technology to be considered in the genetic studies of recessive conditions.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Predisposição Genética para Doença , Transtornos do Crescimento/genética , Micrognatismo/genética , Proteínas Nucleares/genética , Patela/anormalidades , Adulto , Alelos , Sequência de Bases/genética , Criança , Microtia Congênita/fisiopatologia , Replicação do DNA/genética , Feminino , Genoma Humano/genética , Transtornos do Crescimento/fisiopatologia , Humanos , Masculino , Micrognatismo/fisiopatologia , Patela/metabolismo , Patela/fisiopatologia , Gravidez
13.
Eur Respir J ; 55(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32079640

RESUMO

INTRODUCTION: TBX4 mutation causes small patella syndrome (SPS) and/or pulmonary arterial hypertension (PAH). The characteristics and outcomes of PAH associated with TBX4 mutations are largely unknown. METHODS: We report the clinical, functional, radiologic, histologic and haemodynamic characteristics and outcomes of heritable PAH patients carrying a TBX4 mutation from the French pulmonary hypertension (PH) network. RESULTS: 20 patients were identified in 17 families. They were characterised by a median age at diagnosis of 29 years (0-76 years) and a female to male ratio of three. Most of the patients (70%) were in New York Heart Association (NYHA) functional class III or IV with a severe haemodynamic impairment (median pulmonary vascular resistance (PVR) of 13.6 (6.2-41.8) Wood units). Skeletal signs of SPS were present in 80% of cases. Half of the patients had mild restrictive or obstructive limitation and diffusing capacity of the lung for carbon monoxide (D LCO) was decreased in all patients. High-resolution computed tomography (HRCT) showed bronchial abnormalities, peri-bronchial cysts, mosaic distribution and mediastinal lymphadenopathies. PAH therapy was associated with significant clinical improvement. At follow-up (median 76 months), two patients had died and two had undergone lung transplantation. One-year, three-year and five-year event-free survival rates were 100%, 94% and 83%, respectively. Histologic examination of explanted lungs revealed alveolar growth abnormalities, major pulmonary vascular remodelling similar to that observed in idiopathic pulmonary arterial hypertension (IPAH) and accumulation of cholesterol crystals within the lung parenchyma. CONCLUSION: PAH due to TBX4 mutations may occur with or without skeletal abnormalities across a broad age range from birth to late adulthood. PAH is usually severe and associated with bronchial and parenchymal abnormalities.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Quadril/anormalidades , Ísquio/anormalidades , Mutação , Patela/anormalidades , Hipertensão Arterial Pulmonar/genética , Proteínas com Domínio T/genética , Adolescente , Adulto , Idoso , Doenças do Desenvolvimento Ósseo/complicações , Criança , Pré-Escolar , Feminino , França , Humanos , Lactente , Recém-Nascido , Transplante de Pulmão , Masculino , Pessoa de Meia-Idade , Fenótipo , Hipertensão Arterial Pulmonar/complicações , Hipertensão Arterial Pulmonar/epidemiologia , Estudos Retrospectivos , Taxa de Sobrevida , Resistência Vascular , Adulto Jovem
14.
PLoS Genet ; 13(10): e1007041, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29036220

RESUMO

A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Replicação do DNA/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Complexo de Reconhecimento de Origem/genética , Patela/anormalidades , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos/genética , Quebra Cromossômica , DNA Ribossômico/genética , Humanos , Mutação de Sentido Incorreto , Patela/fisiologia , RNA Ribossômico , Saccharomyces cerevisiae/genética
15.
Genes Dev ; 26(16): 1797-810, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22855792

RESUMO

Like DNA replication, centrosomes are licensed to duplicate once per cell division cycle to ensure genetic stability. In addition to regulating DNA replication, the Orc1 subunit of the human origin recognition complex controls centriole and centrosome copy number. Here we report that Orc1 harbors a PACT centrosome-targeting domain and a separate domain that differentially inhibits the protein kinase activities of Cyclin E-CDK2 and Cyclin A-CDK2. A cyclin-binding motif (Cy motif) is required for Orc1 to bind Cyclin A and inhibit Cyclin A-CDK2 kinase activity but has no effect on Cyclin E-CDK2 kinase activity. In contrast, Orc1 inhibition of Cyclin E-CDK2 kinase activity occurs by a different mechanism that is affected by Orc1 mutations identified in Meier-Gorlin syndrome patients. The cyclin/CDK2 kinase inhibitory domain of Orc1, when tethered to the PACT domain, localizes to centrosomes and blocks centrosome reduplication. Meier-Gorlin syndrome mutations that disrupt Cyclin E-CDK2 kinase inhibition also allow centrosome reduplication. Thus, Orc1 contains distinct domains that control centrosome copy number and DNA replication. We suggest that the Orc1 mutations present in some Meier-Gorlin syndrome patients contribute to the pronounced microcephaly and dwarfism observed in these individuals by altering centrosome duplication in addition to DNA replication defects.


Assuntos
Centrossomo/patologia , Transtornos do Crescimento/genética , Micrognatismo/genética , Complexo de Reconhecimento de Origem/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Centríolos/metabolismo , Microtia Congênita , Quinases Ciclina-Dependentes/metabolismo , Orelha/anormalidades , Transtornos do Crescimento/enzimologia , Células HEK293 , Humanos , Micrognatismo/enzimologia , Dados de Sequência Molecular , Mutação , Patela/anormalidades , Patela/enzimologia , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência
16.
Dermatol Online J ; 26(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32898401

RESUMO

Nail-patella syndrome (NPS) is a hereditary disorder characterized by fingernail changes, elbow dysplasia, hypoplastic patellae, and presence of iliac horns. Clinical presentation can be subtle, and the spectrum of presentation often makes NPS a challenging diagnosis. Herein, we describe three family members with nail-patella syndrome who presented with different features and varying severity. The opportunity to recognize this rare syndrome in three linear generations provided a unique insight into NPS, and a moment to appreciate the random and unpredictable clinical presentation.


Assuntos
Síndrome da Unha-Patela/genética , Adolescente , Adulto , Idoso , Família , Feminino , Humanos , Masculino , Unhas Malformadas/genética , Patela/anormalidades , Gravidade do Paciente
17.
Hum Mol Genet ; 26(21): 4168-4180, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985365

RESUMO

Cell Division Cycle 6 (Cdc6) is a component of pre-replicative complex (preRC) forming on DNA replication origins in eukaryotes. Recessive mutations in ORC1, ORC4, ORC6, CDT1 or CDC6 of the preRC in human cause Meier-Gorlin syndrome (MGS) that is characterized by impaired post-natal growth, short stature and microcephaly. However, vertebrate models of MGS have not been reported. Through N-ethyl-N-nitrosourea mutagenesis and Cas9 knockout, we generate several cdc6 mutant lines in zebrafish. Loss-of-function mutations of cdc6, as manifested by cdc6tsu4305 and cdc6tsu7cd mutants, lead to embryonic lethality due to cell cycle arrest at the S phase and extensive apoptosis. Embryos homozygous for a cdc6 hypomorphic mutation, cdc6tsu21cd, develop normally during embryogenesis. Later on, compared with their wild-type (WT) siblings, cdc6tsu21cd mutant fish show growth retardation, and their body weight and length in adulthood are greatly reduced, which resemble human MGS. Surprisingly, cdc6tsu21cd mutant fish become males with a short life and fail to mate with WT females, suggesting defective reproduction. Overexpression of Cdc6 mutant forms, which mimic human CDC6(T323R) mutation found in a MGS patient, in zebrafish cdc6tsu4305 mutant embryos partially represses cell death phenotype, suggesting that the human CDC6(T323R) mutation is a hypomorph. cdc6tsu21cd mutant fish will be useful to detect more tissue defects and develop medical treatment strategies for MGS patients.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Proteínas Nucleares/genética , Patela/anormalidades , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Modelos Animais de Doenças , Feminino , Mutação com Perda de Função/genética , Masculino , Proteínas Nucleares/metabolismo , Fenótipo , Origem de Replicação , Peixe-Zebra/metabolismo
18.
Am J Hum Genet ; 99(1): 125-38, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27374770

RESUMO

DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Craniossinostoses/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Mutação , Patela/anormalidades , Adolescente , Adulto , Alelos , Processamento Alternativo/genética , Sequência de Aminoácidos , Âmnio/citologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Análise Mutacional de DNA , Replicação do DNA , Exoma/genética , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Modelos Moleculares , Conformação Proteica , Síndrome , Adulto Jovem
19.
Am J Med Genet A ; 179(2): 290-294, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30569622

RESUMO

Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) and Genitopatellar syndrome (GTPTS) are very rare conditions caused by KAT6B truncating variants. Because of both syndromes often share common features the associated phenotypes are usually grouped under the term "KAT6B-related disorders." However, particular signs of each syndrome have been reported and their appearance seems to be dependent on where the KAT6B variant is located. Thus, whereas truncating variants associated with SBBYSS have their highest density in the distal part of exon 18, those resulting in GTPTS are distributed between the end of exon 17 and beginning of exon 18. Here, we reported two de novo heterozygous KAT6B truncating variants. The first variant (c.5802delA; p.A1935Pfs*16), identified in a boy with SSBYSS phenotype, resulting in the most distal KAT6B truncating variant reported up-to-date in the scientific literature. The second variant (c.3152delG; p.S1051Tfs*63), located in a region hitherto defined as specific of SBBYSS, seems to cause an overlapping SBBYSS/GTPTS phenotype. The clinical and genetic characterization of these patients could contribute to the understanding of the KAT6B-related disorders.


Assuntos
Anormalidades Múltiplas/genética , Blefarofimose/genética , Hipotireoidismo Congênito/genética , Anormalidades Craniofaciais/genética , Cardiopatias Congênitas/genética , Histona Acetiltransferases/genética , Deficiência Intelectual/genética , Instabilidade Articular/genética , Rim/anormalidades , Patela/anormalidades , Transtornos Psicomotores/genética , Escroto/anormalidades , Anormalidades Urogenitais/genética , Anormalidades Múltiplas/fisiopatologia , Blefarofimose/fisiopatologia , Criança , Hipotireoidismo Congênito/fisiopatologia , Anormalidades Craniofaciais/fisiopatologia , Éxons/genética , Fácies , Cardiopatias Congênitas/fisiopatologia , Heterozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Instabilidade Articular/fisiopatologia , Rim/fisiopatologia , Masculino , Mutação , Patela/fisiopatologia , Fenótipo , Transtornos Psicomotores/fisiopatologia , Escroto/fisiopatologia , Anormalidades Urogenitais/fisiopatologia
20.
Int Orthop ; 43(9): 2071-2075, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30225588

RESUMO

PURPOSE: Medial patellofemoral ligament reconstruction (MPFL-R) is the gold standard in patella soft tissue surgery for patellofemoral instability. Although claimed, recent reports indicate that MPFL-R may fail to distalize the patella in mild cases of patella alta. The present study is a retrospective case-control study to compare radiographic patella height between MPFL-R and historical Insall's proximal realignment (IPR) pre- and post-operatively with respect to distalization and assess redislocation rates at a mid-term follow-up. METHODS: Sixty-four patients were age/sex matched (1:1), yielding 32 patients for group 1 MPFL-R (cases) and 32 patients for group 2 IPR (controls). Insall-Salvati, Blackburne-Peel and Caton-Deschamps indices were analyzed for differences pre- and post-operatively. An additional inter-rater reliability analysis was performed by means of intra-class correlation (ICC). Redislocation rates were considered as treatment failures in this study. RESULTS: ICC was excellent for all three patella indices. MPFL-R failed to show significant differences if compared to IPR with respect to distalization in mild stages of patella alta. Moreover, redislocation rates significantly favored MPFL-R (3.1%) over IPR (12.5%; p < 0.0001). CONCLUSIONS: MPFL-R has become a popular option to restore native patellofemoral biomechanics after ligament rupture. However, the procedure's potential to correct concomitant patella alta should not be overestimated and indications considered carefully.


Assuntos
Instabilidade Articular/cirurgia , Ligamentos Articulares/cirurgia , Patela/cirurgia , Luxação Patelar/cirurgia , Articulação Patelofemoral/cirurgia , Procedimentos de Cirurgia Plástica/efeitos adversos , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Instabilidade Articular/diagnóstico por imagem , Instabilidade Articular/etiologia , Masculino , Patela/anormalidades , Patela/diagnóstico por imagem , Luxação Patelar/diagnóstico por imagem , Luxação Patelar/etiologia , Articulação Patelofemoral/diagnóstico por imagem , Articulação Patelofemoral/lesões , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA