Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38752993

RESUMO

Two novel bacterial strains, designated as SYSU D00823T and SYSU D00873T, were isolated from sandy soil of the Gurbantunggut Desert in Xinjiang, north-west China. SYSU D00823T and SYSU D00873T shared 99.0 % 16S rRNA gene sequence identity, and were both most closely related to Pedobacter xinjiangensis 12157T with 96.1 % and 96.0 % similarities, respectively. Phylogenetic and phylogenomic analyses revealed that the two isolates and P. xinjiangensis 12157T formed a separate distinct cluster in a stable subclade with the nearby species Pedobacter mongoliensis 1-32T, as well as the genera Pararcticibacter and Arcticibacter. Furthermore, P. mongoliensis 1-32T formed a separate deep-branching lineage and did not form a cluster with members of the genus Pedobacter. The average nucleotide identity and digital DNA-DNA hybridization values between SYSU D00823T and SYSU D00873T and related species were well below the thresholds for species delineation (<81.0 % and <24.0 %, respectively). The genomes of SYSU D00823T and SYSU D00873T were 6.19 and 6.43 Mbp in size with 40.4 % and 40.5 % DNA G+C contents, respectively. The predominant fatty acids (>10 %) of SYSU D00823T and SYSU D00873T were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). Menaquinone-7 was the only respiratory quinone. The major polar lipids were phosphatidylethanolamine, glycosphingolipid, aminoglycolipid/glycolipid, aminophospholipid and three or four unidentified polar lipids. These data indicated that strains SYSU D00823T and SYSU D00873T should be assigned to two novel species of a new genus within the family Sphingobacteriaceae, for which the names Desertivirga arenae gen. nov., sp. nov. and Desertivirga brevis sp. nov. are proposed. The type strains are SYSU D00823T (=CGMCC 1.18630T=MCCC 1K04973T=KCTC 82278T) and SYSU D00873T (=CGMCC 1.18629T=MCCC 1K04974T=KCTC 82281T), respectively. Accordingly, the reclassification of P. xinjiangensis as Desertivirga xinjiangensis comb. nov., and P. mongoliensis as Paradesertivirga mongoliensis gen. nov., comb. nov. are also proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Clima Desértico , Ácidos Graxos , Pedobacter , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2 , RNA Ribossômico 16S/genética , Pedobacter/genética , Pedobacter/classificação , Pedobacter/isolamento & purificação , Ácidos Graxos/química , China , DNA Bacteriano/genética , Vitamina K 2/análogos & derivados , Hibridização de Ácido Nucleico
2.
Antonie Van Leeuwenhoek ; 117(1): 98, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981868

RESUMO

An aerobic, Gram-stain-negative bacterium, designated as SYSU D00382T, was sourced from soil of Gurbantunggut Desert, PR China. The strain was short-rod-shaped, oxidase-positive and catalase-negative, with yellow-colored, convex, round, and smooth colonies on TSA plate. Growth and proliferation occurred at 4-37 °C (optimal: 28-30 °C), pH 5.0-8.0 (optimal: pH 6.0-7.0) and NaCl concentration of 0-2.5% (optimal: 0-0.5%). The 16S rRNA gene based phylogenetic assessment showed that SYSU D00382T belonged to the genus Pedobacter, and was most closely related to Pedobacter ginsengisoli Gsoil 104T with similarity of 97.7%. The genomic DNA G+C content of SYSU D00382T was 46.4%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SYSU D00382T and P. ginsengisoli Gsoil 104T were 75.7% and 17.5%, respectively. The main polar lipid was phosphatidylethanolamine. The major fatty acids (> 5%) were iso-C15:0, iso-C17:0 3-OH, summed features 3 and 9. The sole respiratory quinone identified was MK-7. The phylogeny based on 16S rRNA gene and whole-genome sequences revealed that SYSU D00382T formed a robust lineage with P. ginsengisoli Gsoil 104T. Based on phenotypic, phylogenetic and genotypic data, a novel specie named Pedobacter deserti sp. nov. is proposed. The type strain is SYSU D00382T (= CGMCC 1.18627T = MCCC 1K04972T = KCTC 82279T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Clima Desértico , Ácidos Graxos , Pedobacter , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , Pedobacter/genética , Pedobacter/classificação , Pedobacter/isolamento & purificação , Pedobacter/fisiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , China , Hibridização de Ácido Nucleico , Análise de Sequência de DNA
3.
Antonie Van Leeuwenhoek ; 117(1): 72, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671237

RESUMO

Two Gram-staining negative, catalase- and oxidase-positive, pinkish-colored and rod-shaped strains, designated SJ11T and HCMS5-2 T, were isolated from soil in South Korea. The growth of strain SJ11T was observed from 15℃ to 35℃ (optimum, 30℃), from pH 6.0 to 11.0 (optimum, pH 6.0-7.0) and with NaCl 0-1% (w/v) (optimum, 0%) and that of strain HCMS5-2 T was observed from 4℃ to 40℃ (optimum, 25℃), from pH 6.0 to pH 8.0 (optimum, pH 7.0) and with NaCl 0-5% (w/v) (optimum, 0-1%). Phylogenetic analysis based on 16S rRNA gene sequences showed that both strains belonged to the genus Pedobacter. Strain SJ11T had the highest 16S rRNA similarities with Pedobacter jejuensis THG-DR3T (98.5%) and strain HCMS5-2 T had the highest similarities with Pedobacter nototheniae 36B243T (98.7%). The digital DNA-DNA hybridization value of strain SJ11T with Pedobacter jejuensis THG-DR3T was 23.6%, with an average nucleotide identity value of 79.6%, and that of strain HCMS5-2 T with Pedobacter nototheniae 36B243T was 26.4%, with an average nucleotide identity value of 83.1%. The predominant cellular fatty acids (> 10%) of SJ11T and HCMS5-2 T were iso-C15:0, summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c) and iso-C17:0 3-OH. The genome size of strain SJ11T was approximately 4.7 Mb with a G + C content of 37.7% and that of strain HCMS5-2 T was approximately 4.1 Mb with a G + C content of 36.4%. The major polar lipid and respiratory quinone of SJ11T and HCMS5-2 T were phosphatidylethanolamine and menaquinone NK-7, respectively. Results of this study showed that strains SJ11T and HCMS5-2 T belonged to the genus Pedobacter as novel species, of which the name Pedobacter rhodius sp. nov., with the type strain SJ11T (= KACC 22884 T = TBRC 16597 T) and Pedobacter punctiformis sp. nov., with the type strain HCMS5-2 T (= KACC 22863 T = TBRC 16598 T) were respectively proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Pedobacter , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , Pedobacter/genética , Pedobacter/classificação , Pedobacter/isolamento & purificação , Pedobacter/fisiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , República da Coreia , Análise de Sequência de DNA , Fosfolipídeos/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-37216277

RESUMO

A white-pigmented, non-motile, Gram-stain-negative, rod-shaped bacterium, designated CYS-01T, was obtained from soil sampled at Suwon, Gyeonggi-do, Republic of Korea. Cells were strictly aerobic, grew optimally at 28 °C. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain CYS-01T formed a lineage within the family Sphingobacteriaceae and clustered with members of the genus Pedobacter. The closest relatives were Pedobacter xixiisoli CGMCC 1.12803T (95.70 % sequence similarity), Pedobacter ureilyticus THG-T11T (95.35 %), Pedobacter helvus P-25T (95.28 %), Pedobacter chitinilyticus CM134L-2T (94.94 %), Pedobacter nanyangensis Q-4T (94.73 %) and Pedobacter zeaxanthinifaciens TDMA-5T (94.07 %). The principal respiratory quinone was MK-7 and the major polar lipids were phosphatidylethanolamine, an unidentified aminolipid, unidentified lipids and an unidentified glycolipid. The predominant cellular fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C17 : 0 3-OH. The DNA G+C content was 36.6 mol%. Based on the results of genomic, chemotaxonomic, phenotypic and phylogenetic analyses, strain CYS-01T represents novel species in the genus Pedobacter, for which the name Pedobacter montanisoli sp. nov. is proposed. The type strain is CYS-01T (=KACC 22655T=NBRC 115630T).


Assuntos
Pedobacter , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Solo , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Microbiologia do Solo
5.
Appl Microbiol Biotechnol ; 107(11): 3579-3591, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115252

RESUMO

2'-Fucosyllactose (2'-FL) is known for its ability to provide various health benefits to infants, such as gut maturation, pathogen resistance, improved immunity, and nervous system development. However, the production of 2'-FL using α-L-fucosidases is hindered by the lack of low-cost natural fucosyl donors and high-efficiency α-L-fucosidases. In this work, a recombinant xyloglucanase from Rhizomucor miehei (RmXEG12A) was applied to produce xyloglucan-oligosaccharide (XyG-oligos) from apple pomace. Then, an α-L-fucosidase gene (PbFucB) was screened from the genomic DNA of Pedobacter sp. CAU209 and expressed in Escherichia coli. The capability of purified PbFucB to catalyze XyG-oligos and lactose to synthesize 2'-FL was further evaluated. The deduced amino acid sequence of PbFucB shared the highest identity (38.4%) with that of other reported α-L-fucosidases. PbFucB showed the highest activity at pH 5.5 and 35 °C. It catalyzed the hydrolysis of 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc, 20.3 U mg-1), 2'-FL (8.06 U mg-1), and XyG-oligos (0.43 U mg-1). Furthermore, PbFucB demonstrated a high enzymatic conversion rate in 2'-FL synthesis with pNP-Fuc or apple pomace-derived XyG-oligos as donors and lactose as acceptor. Under the optimized conditions, PbFucB converted 50% of pNP-Fuc or 31% of the L-fucosyl residue in XyG-oligos into 2'-FL. This work elucidated an α-L-fucosidase that mediates the fucosylation of lactose and provided an efficient enzymatic strategy to synthesize 2'-FL either from artificial pNP-Fuc or natural apple pomace-derived XyG-oligos. KEY POINTS: • Xyloglucan-oligosaccharide (XyG-oligos) was produced from apple pomace by a xyloglucanase from Rhizomucor miehei. • An α-L-fucosidase (PbFucB) from Pedobacter sp. CAU209 shared the highest identity (38.4%) with reported α-L-fucosidases. •PbFucB synthesized 2'-FL using apple pomace-derived XyG-oligos and lactose with a conversion ratio of 31%.


Assuntos
Malus , Pedobacter , Lactente , Humanos , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Malus/metabolismo , Lactose/metabolismo , Oligossacarídeos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-35442878

RESUMO

Strains P8930T and 478 were isolated from Antarctic glaciers located on James Ross Island and King George Island, respectively. They comprised Gram-stain-negative short rod-shaped cells forming pink pigmented colonies and exhibited identical 16S rRNA gene sequences and highly similar MALDI TOF mass spectra, and hence were assigned as representatives of the same species. Phylogenetic analysis based on 16S rRNA gene sequences assigned both isolates to the genus Pedobacter and showed Pedobacter frigidisoli and Pedobacter terrae to be their closest phylogenetic neighbours, with 97.4 and 97.2 % 16S rRNA gene sequence similarities, respectively. These low similarity values were below the threshold similarity value of 98.7%, confirming the delineation of a new bacterial species. Further genomic characterization included whole-genome sequencing accompanied by average nucleotide identity (ANI) and digital DNA-DNA hybridization calculations, and characterization of the genome features. The ANI values between P8930T and P. frigidisoli RP-3-11T and P. terrae DSM 17933T were 79.7 and 77.6 %, respectively, and the value between P. frigidisoli RP-3-11T and P. terrae DSM 17933T was 77.7 %, clearly demonstrating the phylogenetic distance and the novelty of strain P8930T. Further characterization included analysis of cellular fatty acids, quinones and polar lipids, and comprehensive biotyping. All the obtained results proved the separation of strains P8930T and 478 from the other validly named Pedobacter species, and confirmed that they represent a new species for which the name Pedobacter fastidiosus sp. nov. is proposed. The type strain is P8930T (=CCM 8938T=LMG 32098T).


Assuntos
Pedobacter , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ecossistema , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Artigo em Inglês | MEDLINE | ID: mdl-35819898

RESUMO

A rod-shaped, Gram-stain-negative, non-motile and aerobic bacterium, designated Q8-18T, was isolated from soil of glacier foreland in Austre Lovénbreen, Arctic, and subjected to a polyphasic taxonomic study. Strain Q8-18T grew optimally at 20 °C, pH 5.0-8.0 and in the presence of 0-1.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Q8-18T belonged to the family Sphingobacteriaceae. Strain Q8-18T showed the highest sequence similarity to Pedobacter mendelii CCM 8685T (96.8%), Pedobacter lithocola CCM 8691T (96.8%), Pedobacter roseus CL-GP80T (96.7%), Pedobacter changchengzhani E01020T (96.7%), Pedobacter alluvionis DSM 19624T (96.6%), Pedobacter jejuensis THG-DR3T (96.3%), Pedobacter ginsengiterrae DCY49T (95.9%) and Pedobacter jamesrossensis CCM 8689T (95.9%). A whole genome-level comparison of strain Q8-18T with P. roseus CL-GP80T, P. changchengzhani E01020T, P. alluvionis DSM 19624T and Pedobacter heparinus LMG 10339T revealed average nucleotide identity values of 77.0, 76.0, 77.0 and 70.4%, respectively. The only respiratory isoprenoid quinone was menaquinone-7. The polar lipid profile of strain Q8-18T was found to contain one phosphatidylethanolamine, eight unidentified aminolipids, one aminophospholipids and five unidentified lipids. The G+C content of the genomic DNA was determined to be 35.4 mol%. The main fatty acids were summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c), iso-C15 : 0 and anteiso-C15 : 0. On the basis of the evidence presented in this study, a novel species of the genus Pedobacter, Pedobacter mucosus sp. nov., is proposed, with the type strain Q8-18T (=CCTCC AB 2020009T=KCTC 82636T).


Assuntos
Pedobacter , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Camada de Gelo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
8.
Appl Microbiol Biotechnol ; 106(4): 1583-1597, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35122154

RESUMO

Secondary metabolites (SMs) are compounds with relevant biological activities. Their production under laboratory conditions, especially in broth, is still challenging. An example is the pedopeptins, which are nonribosomal peptides active against some bacteria listed by the WHO for which new antibiotics are urgently needed. Their biosynthesis is inhibited by high concentrations of peptone from casein (PC) in tryptic soy broth (TSB), and we applied a RNA-seq approach to identify Pedobacter lusitanus NL19 cellular pathways modulated by this condition. Results were validated by qPCR and revealed 261 differentially expressed genes (DEGs), 46.3% of them with a predicted biological function. Specifically, high concentration of PC significantly repressed the de novo biosynthesis of biotin (- 60X) and the production of nonribosomal peptide synthetases (NRPS) of pedopeptins (about - 14X), but no effect was observed on the expression of other NRPS. Transcription of a L-Dap synthesis operon that includes a protein with a σ70-like domain was also reduced (about - 7X). High concentrations of PC led to a significant overexpression of MFS and RND efflux pumps and a ferrous iron uptake system, suggesting the redirection of cell machinery to export compounds such as amino acids, sugars and metal divalent cations, alongside with a slight increase of iron import. KEY POINTS: • Higher concentrations of phosphate sources highly repress many operons • High concentrations of peptone from casein (PC) cause biotin's operon repression • High concentrations of PC downregulate the production of peptides of unknown function.


Assuntos
Pedobacter , Transcriptoma , Nitrogênio/metabolismo , Pedobacter/genética , Peptídeo Sintases/genética , Peptonas/metabolismo
9.
Antonie Van Leeuwenhoek ; 115(3): 445-457, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35124766

RESUMO

A novel bacterial strain designated CJ43T was isolated from fresh water located in Gangwon-do, South Korea, displaying multi-drug resistance. The isolate was Gram-stain-negative, aerobic, orange-pigmented, and rod-shaped. Strain CJ43T grew optimally at 30 °C and pH 7 on R2A agar in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain CJ43T belonged to the genus Pedobacter in the family Sphingobacteriaceae and was most closely related to Pedobacter puniceum HX-22-1 T and P. glucosidilyticus 1-2 T (98.3 and 98.1% sequence similarity). The genome size of strain CJ43T was 3.9 Mb in a single contig with DNA G + C content of 34.9%. The genome included 3144 predicted protein-coding genes, as well as 55 tRNA, 9 rRNA and 3 ncRNA genes. The genome also contained 128 putative antibiotic resistance genes, reflecting its phenotypes. The average nucleotide identity values between strain CJ43T and two closely related strains P. puniceum HX-22-1 T and P. glucosidilyticus 1-2 T were 91.0 and 88.7%, respectively. In silico digital DNA-DNA hybridization results between strain CJ43T and the related strains were 42.8 and 38.6%, respectively. The major fatty acids of strain CJ43T were iso-C15:0, iso-C17:0 3-OH, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). Strain CJ43T contained phosphatidylethanolamine as the major polar lipid and menaquinone-7 as the sole respiratory quinone. Based on the polyphasic taxonomy data, strain CJ43T represents a novel species of the genus Pedobacter, for which the name Pedobacter aquae sp. nov. is proposed with the type strain CJ43T (= KACC 21350 T = JCM 33709 T).


Assuntos
Pedobacter , Preparações Farmacêuticas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Resistência a Múltiplos Medicamentos , Ácidos Graxos/análise , Água Doce , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/química
10.
Curr Microbiol ; 79(2): 71, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35059849

RESUMO

A Gram-negative, motile by gliding, rod-shaped, aerobic bacterium, designated SD-bT, was isolated from a soil sample collected on Dokdo Island, South Korea. A polyphasic approach based on phenotypic, phylogenetic, and genomic analyses was used to characterize the new isolate. Phylogenetic analysis of 16S rRNA gene sequence showed that strain SD-bT belonged to the family Sphingobacteriaceae and most closely related to Pedobacter psychrophilus P4487AT (95.9% similarity). The isolate contained MK-7 as the predominant respiratory quinone; its main polar lipid was phosphatidylethanolamine; and the major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c; 32.0%), C15:0 iso (19.1%), C17:0 iso 3-OH (8.3%), and C16:0 (8.2%). The draft genome had a length of 3,842,102 bp with a G+C content of 36.0 mol%, predicting 3282 coding sequences, 3 rRNA genes, 3 ncRNAs, and 36 tRNAs genes. The digital DNA-DNA hybridization and average nucleotide identity values between strain SD-bT and P. psychrophilus LMG 29436T were 22.0% and 78.9%, respectively. The results of phenotypic properties, genotypic distinctiveness, and chemotaxonomic features support the discrimination of SD-bT from its phylogenetic relatives. Pedobacter segetis sp. nov. is therefore proposed with SD-bT (= KCTC 82351T = JCM 34283T) as the type strain.


Assuntos
Pedobacter , DNA Bacteriano/genética , Pedobacter/genética , Filogenia , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
11.
Appl Environ Microbiol ; 87(19): e0134421, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288708

RESUMO

Within soil, bacteria are found in multispecies communities, where interactions can lead to emergent community properties. Studying bacteria in a social context is critical for investigating community-level functions. We previously showed that cocultured Pseudomonas fluorescens Pf0-1 and Pedobacter sp. V48 engage in interspecies social spreading (ISS) on a hard agar surface, a behavior which required close contact and depended on the nutritional environment. Here, we investigate whether social spreading is widespread among P. fluorescens and Pedobacter isolates and whether the requirements for interaction vary. We find that this phenotype is not restricted to the interaction between P. fluorescens Pf0-1 and Pedobacter sp. V48 but is a prevalent behavior found in one clade in the P. fluorescens group and two clades in the Pedobacter genus. We show that the interaction with certain Pedobacter isolates occurred without close contact, indicating induction of spreading by a putative diffusible signal. As with ISS by Pf0-1+V48, the motility of interacting pairs is influenced by the environment, with no spreading behaviors (or induction of motility) observed under high nutrient conditions. While Pf0-1+V48 require low nutrient but high NaCl conditions, in the broader range of interacting pairs, the high salt influence was variable. The prevalence of motility phenotypes observed here and found within the literature indicates that community-induced locomotion in general, and social spreading in particular, is likely important within the environment. It is crucial that we continue to study microbial interactions and their emergent properties to gain a fuller understanding of the functions of microbial communities. IMPORTANCE Interspecies social spreading (ISS) is an emergent behavior observed when Pseudomonas fluorescens Pf0-1 and Pedobacter sp. V48 interact, during which both species move together across a surface. Importantly, this environment does not permit the movement of either individual species. This group behavior suggests that communities of microbes can function in ways not predictable by knowledge of the individual members. Here, we have asked whether ISS is widespread and thus potentially of importance in soil microbial communities. The significance of this research is the demonstration that surface spreading behaviors are not unique to the Pf0-1-V48 interaction but rather is a more widespread phenomenon observed among members of distinct clades of both P. fluorescens and Pedobacter isolates. Furthermore, we identify differences in mechanisms of signaling and nutritional requirements for ISS. Emergent traits resulting from bacterial interactions are widespread, and their characterization is necessary for a complete understanding of microbial community function.


Assuntos
Interações Microbianas , Pedobacter/fisiologia , Pseudomonas fluorescens/fisiologia , Pedobacter/genética , Fenótipo , Filogenia , Pseudomonas fluorescens/genética , RNA Ribossômico 16S , Microbiologia do Solo
12.
Arch Microbiol ; 203(8): 4829-4838, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34213597

RESUMO

In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. Leaves appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died. Bark was sunken and discolored, often loosened and split. Trunks decayed from the base. Phloem and xylem showed brown necrosis. Ten per cent of trees died in 1-2 months. None of these symptoms was typical for known poplar diseases. Bacteria in soil and in the necrotic base of poplar trunk were analyzed with Illumina sequencing. Soil and wood were colonized by at least 615 and 249 taxa. The majority of bacteria were common to soil and wood. The most common taxa in soil were: Acidobacteria (14.76%), Actinobacteria (14.58%), Proteobacteria (36.87) with Betaproteobacteria (6.52%), (6.10%), Comamonadaceae (2.79%), and Verrucomicrobia (5.31%).The most common taxa in wood were: Bacteroidetes (22.72%) including Chryseobacterium (5.07%), Flavobacteriales (10.87%), Sphingobacteriales (9.40%) with Pedobacter cryoconitis (7.31%), Proteobacteria (73.79%) with Enterobacteriales (33.25%) including Serratia (15.30%) and Sodalis (6.52%), Pseudomonadales (9.83%) including Pseudomonas (9.02%), Rhizobiales (6.83%), Sphingomonadales (5.65%), and Xanthomonadales (11.19%). Possible pathogens were Pseudomonas, Rhizobium and Xanthomonas. The potential initial, endophytic character of bacteria is discussed. Soil and possibly planting material might be the reservoir of pathogen inoculum.


Assuntos
Pedobacter , Doenças das Plantas/microbiologia , Populus , Pedobacter/patogenicidade , Populus/microbiologia , Microbiologia do Solo , Verrucomicrobia
13.
Artigo em Inglês | MEDLINE | ID: mdl-34590995

RESUMO

A Gram-stain-negative, aerobic, motile by gliding, rod-shaped and pink-coloured bacterium, designated strain SW-16T, was isolated from the sediment of small stream in the Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SW-16T formed a lineage within the genus Pedobacter of the family Sphingobacteriaceae. Phylogenetic analysis also showed that strain SW-16T was most closely related to Pedobacter soli 15-51T (98.0% 16S rRNA gene sequence similarity), Pedobacter humicola R135T (97.5%), Pedobacter suwonensis 15-52T (97.4%), Pedobacter sandarakinus DS-27T (97.0%) and Pedobacter kyungheensis THG-T17T (97.0%). Growth was observed at 10-37 °C (optimum at 30 °C), pH 6-8 (optimum at pH 7) and with 0-2.0 % NaCl (optimum at 0%). The major fatty acids of the bacterial strain were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). The predominant respiratory quinone was menaquinone-7 and the major polar lipids were phosphatidylethanolamine, two unidentified amino lipids, one unidentified phospholipid and three unidentified lipids. The genome size of strain SW-16T was 5.8 Mbp and the G+C content was 38.5 mol%. Based on the results of phenotypic, genomic and phylogenetic analyses, strain SW-16T represents a novel species of the genus Pedobacter, for which the name Pedobacter riviphilus sp. nov. is proposed. The type strain is SW-16T (=KEMB 1602-396T=KCTC 82079T=JCM 34181T).


Assuntos
Pedobacter , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Pedobacter/genética , Filogenia , RNA Ribossômico 16S/genética , Rios , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2
14.
Artigo em Inglês | MEDLINE | ID: mdl-34296986

RESUMO

An aerobic, Gram-stain-negative, weak-motile, short-rod-shaped bacterial strain, designated JBR3-12T, was isolated from halophyte Carex pumila plants, and its taxonomic position was investigated by using a polyphasic taxonomic approach. The strain produced a pink pigment on tryptic soy agar and grew optimally at 25 °C, pH 8 and in the presence of 3 % (w/v) NaCl. Results of phylogenetic analysis based on 16S rRNA gene sequences showed that strain JBR3-12T formed a lineage within the genus Pedobacter and was most closely related to Pedobacter sandarakinus DS-27T (98.0 %) and Pedobacter agri PB92T (97.6 %). The DNA G+C content of the genome was 41.3 mol%; the whole genome length was 5 426 070 bp. The major fatty acids of JBR3-12T were iso-C15 : 0, summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c) and iso-C17 : 0 3-OH. The predominant polar lipid was phosphatidylethanolamine. The predominant quinone was menaquinone-7. Based on its phenotypic, phylogenetic and genotypic features, strain JBR3-12T is proposed to represent a novel species of the genus Pedobacter, for which the name is Pedobacter endophyticus sp. nov. The type strain is JBR3-12T (=KCTC 82363T=NBRC 114901T).


Assuntos
Carex (Planta)/microbiologia , Pedobacter/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Pedobacter/isolamento & purificação , Fosfatidiletanolaminas/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Microb Cell Fact ; 20(1): 41, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568151

RESUMO

BACKGROUND: Microbes are present in almost every environment on Earth, even in those with extreme environmental conditions such as Antarctica, where rocks may represent the main refuge for life. Lithobiontic communities are composed of microorganisms capable of colonizing rocks and, as it is a not so well studied bacterial community, they may represent a very interesting source of diversity and functional traits with potential for biotechnological applications. In this work we analyzed the ability of Antarctic lithobiontic bacterium to synthesize cadmium sulfide quantum dots (CdS QDs) and their potential application in solar cells. RESULTS: A basaltic andesite rock sample was collected from Fildes Peninsula, King George Island, Antarctica, and processed in order to isolate lithobiontic bacterial strains. Out of the 11 selected isolates, strain UYP1, identified as Pedobacter, was chosen for further characterization and analysis due to its high cadmium tolerance. A protocol for the biosynthesis of CdS QDs was developed and optimized for this strain. After 20 and 80 min of synthesis, yellow-green and orange-red fluorescent emissions were observed under UV light, respectively. QDs were characterized through spectroscopic techniques, dynamic light scattering analysis, high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy. Nanostructures of 3.07 nm, composed of 51.1% cadmium and 48.9% sulfide were obtained and further used as photosensitizer material in solar cells. These solar cells were able to conduct electrons and displayed an open circuit voltage of 162 mV, a short circuit current density of 0.0110 mA cm-2, and had an efficiency of conversion up to 0.0016%, which is comparable with data previously reported for solar cells sensitized with biologically produced quantum dots. CONCLUSIONS: We report a cheap, rapid and eco-friendly protocol for the production of CdS QDs by an Antarctic lithobiontic bacterium, Pedobacter, a genus that was not previously reported as a quantum dot producer. The application of the biosynthesized QDs as sensitizer material in solar cells was validated.


Assuntos
Compostos de Cálcio/química , Pedobacter/química , Pontos Quânticos/química , Energia Solar , Sulfetos/química , Regiões Antárticas
16.
Curr Microbiol ; 78(3): 944-953, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33638002

RESUMO

Pedobacter are a representative genus of soil-associated bacteria. Here we have provided the complete genome sequence of Pedobacter sp. PAMC26386 isolated from Antarctic soil, and functionally annotated the genome, describing the unique features of carbohydrate active enzymes (CAZymes) and α-L-arabinofuranosidase (α-L-ABF). The genome of Pedobacter sp. PAMC26386 is circular and comprises 4,796,773 bp, with a 38.2% GC content. The genome encodes 4,175 genes, including 7 rRNA and 44 tRNA genes. We identified 172 genes (8 auxiliary activities, 8 carbohydrate binding modules, 23 carbohydrate esterases, 86 glycoside hydrolases, 42 glycosyl transferases, and 5 polysaccharide lyases) related to CAZymes using the dbCAN2 tool. We checked enzyme activity on 11 substrates using the AZCL assay and obtained strong activity for arabinooligosaccharide and hemicellulose. This includes information regarding α-L-ABF, which is active at low temperatures, based on the annotation results. Our findings on Pedobacter sp. PAMC26386 provide the basis for research in the future. The favorable properties of Pedobacter sp. PAMC26386 make it a good candidate for industrial applications involving low temperatures.


Assuntos
Pedobacter , Regiões Antárticas , Arabinose , DNA Bacteriano/genética , Ácidos Graxos , Pedobacter/genética , Filogenia , Polissacarídeos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
17.
Molecules ; 26(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576992

RESUMO

The extracellular polysaccharide (EPS) matrix embedding microbial cells and soil particles plays an important role in the development of biological soil crusts (BSCs), which is widely recognized as beneficial to soil fertility in dryland worldwide. This study examined the EPS-producing bacterial strains YL24-1 and YL24-3 isolated from sandy soil in the Mu Us Desert in Yulin, Shaanxi province, China. The strains YL24-1 and YL24-3 were able to efficiently produce EPS; the levels of EPS were determined to be 257.22 µg/mL and 83.41 µg/mL in cultures grown for 72 h and were identified as Sinorhizobium meliloti and Pedobacter sp., respectively. When the strain YL24-3 was compared to Pedobacter yulinensis YL28-9T using 16S rRNA gene sequencing, the resemblance was 98.6% and the strain was classified as Pedobacter sp. using physiological and biochemical analysis. Furthermore, strain YL24-3 was also identified as a subspecies of Pedobacter yulinensis YL28-9T on the basis of DNA-DNA hybridization and polar lipid analysis compared with YL28-9T. On the basis of the EPS-related genes of relevant strains in the GenBank, several EPS-related genes were cloned and sequenced in the strain YL24-1, including those potentially involved in EPS synthesis, assembly, transport, and secretion. Given the differences of the strains in EPS production, it is possible that the differences in gene sequences result in variations in the enzyme/protein activities for EPS biosynthesis, assembly, transport, and secretion. The results provide preliminary evidence of various contributions of bacterial strains to the formation of EPS matrix in the Mu Us Desert.


Assuntos
Matriz Extracelular de Substâncias Poliméricas/química , Pedobacter/isolamento & purificação , Pedobacter/fisiologia , Sinorhizobium meliloti/isolamento & purificação , Sinorhizobium meliloti/fisiologia , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Clima Desértico , Matriz Extracelular de Substâncias Poliméricas/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Espaço Extracelular/química , Ácidos Graxos/análise , Metais Pesados/farmacologia , Hibridização de Ácido Nucleico , Pedobacter/citologia , Pedobacter/efeitos dos fármacos , Filogenia , RNA Ribossômico 16S/genética , Sinorhizobium meliloti/citologia , Sinorhizobium meliloti/efeitos dos fármacos , Microbiologia do Solo
18.
Molecules ; 27(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011319

RESUMO

Sulfatases are ubiquitous enzymes that hydrolyze sulfate from sulfated organic substrates such as carbohydrates, steroids, and flavones. These enzymes can be exploited in the field of biotechnology to analyze sulfated metabolites in humans, such as steroids and drugs of abuse. Because genomic data far outstrip biochemical characterization, the analysis of sulfatases from published sequences can lead to the discovery of new and unique activities advantageous for biotechnological applications. We expressed and characterized a putative sulfatase (PyuS) from the bacterium Pedobacter yulinensis. PyuS contains the (C/S)XPXR sulfatase motif, where the Cys or Ser is post-translationally converted into a formylglycine residue (FGly). His-tagged PyuS was co-expressed in Escherichia coli with a formylglycine-generating enzyme (FGE) from Mycobacterium tuberculosis and purified. We obtained several crystal structures of PyuS, and the FGly modification was detected at the active site. The enzyme has sulfatase activity on aromatic sulfated substrates as well as phosphatase activity on some aromatic phosphates; however, PyuS did not have detectable activity on 17α-estradiol sulfate, cortisol 21-sulfate, or boldenone sulfate.


Assuntos
Pedobacter/enzimologia , Sulfatases/química , Sulfatases/isolamento & purificação , Sulfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Fracionamento Químico/métodos , Estabilidade Enzimática , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Environ Microbiol ; 22(11): 4604-4619, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32743948

RESUMO

Dead fungal biomass is an abundant source of nutrition in both litter and soil of temperate forests largely decomposed by bacteria. Here, we have examined the utilization of dead fungal biomass by the five dominant bacteria isolated from the in situ decomposition of fungal mycelia using a multiOMIC approach. The genomes of the isolates encoded a broad suite of carbohydrate-active enzymes, peptidases and transporters. In the extracellular proteome, only Ewingella americana expressed chitinases while the two Pseudomonas isolates attacked chitin by lytic chitin monooxygenase, deacetylation and deamination. Variovorax sp. expressed enzymes acting on the side-chains of various glucans and the chitin backbone. Surprisingly, despite its genomic potential, Pedobacter sp. did not produce extracellular proteins to decompose fungal mycelia but presumably feeds on simple substrates. The ecological roles of the five individual strains exhibited complementary features for a fast and efficient decomposition of dead fungal biomass by the entire bacterial community.


Assuntos
Comamonadaceae/metabolismo , Enterobacteriaceae/metabolismo , Fungos/metabolismo , Pseudomonas/metabolismo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Biomassa , Quitina/metabolismo , Comamonadaceae/genética , Comamonadaceae/isolamento & purificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Florestas , Genoma Bacteriano/genética , Micélio/metabolismo , Pedobacter/genética , Pedobacter/isolamento & purificação , Pedobacter/metabolismo , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Proteômica , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
20.
Int J Syst Evol Microbiol ; 70(4): 2537-2553, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32160145

RESUMO

Fifteen isolates of the genus Pedobacter were obtained from Arctic soil samples. All isolates were Gram-stain-negative and rod-shaped. Cells were strictly aerobic, psychrotolerant and grew optimally at 15-20 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all the isolated strains formed a lineage within the family Sphingobacteriaceae and clustered as members of the genus Pedobacter. The sole respiratory quinone was MK-7 and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were summed feature 3 (iso-C15 : 02-OH/C16 : 1ω7c/ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH. The DNA G+C content of the novel strains was 33.9-41.8 mol%. In addition, the average nucleotide identity and in silico DNA-DNA hybridization relatedness values between the novel type strains and phylogenetically related type strains were below the threshold values used for species delineation. Based on genomic, chemotaxonomic, phenotypic, phylogenetic and phylogenomic analyses, the isolated strains represent novel species in the genus Pedobacter, for which the names Pedobacter cryotolerans sp. nov. (type strain AR-2-6T=KEMB 9005-717T=KACC 19998T=NBRC 113826T), Pedobacter cryophilus sp. nov. (type strain AR-3-17T=KEMB 9005-718T=KACC 19999T=NBRC 113827T), Pedobacter frigiditerrae sp. nov. (type strain RP-1-13T=KEMB 9005-720T=KACC 21147T=NBRC 113829T), Pedobacter psychroterrae sp. nov. (type strain RP-1-14T=KEMB 9005-721T=KACC 21148T=NBRC 113830T), Pedobacter hiemivivus sp. nov. (type strain RP-3-8T=KEMB 9005-724T=KACC 21152T=NBRC 113833T), Pedobacter frigidisoli sp. nov. (type strain RP-3-11T=KEMB 9005-725T=KACC 21153T=NBRC 113927T), Pedobacter frigoris sp. nov. (type strain RP-3-15T=KEMB 9005-726T=KACC 21154T=NBRC 113834T), Pedobacter psychrodurus sp. nov. (type strain RP-3-21T=KEMB 9005-728T=KACC 21156T=NBRC 113835T) and Pedobacter polaris sp. nov. (type strain RP-3-22T=KEMB 9005-729T=KACC 21157T=NBRC 113836T) are proposed.


Assuntos
Antioxidantes/análise , Pedobacter/classificação , Filogenia , Microbiologia do Solo , Regiões Árticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Canadá , DNA Bacteriano/genética , Ácidos Graxos/química , Pedobacter/isolamento & purificação , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Svalbard , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA