Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(12): e202400064, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568158

RESUMO

Bacterial isoprenoids are necessary for many biological processes, including maintaining membrane integrity, facilitating intercellular communication, and preventing oxidative damage. All bacterial isoprenoids are biosynthesized from two five carbon structural isomers, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are cell impermeant. Herein, we demonstrate exogenous delivery of IPP and DMAPP into Bacillus subtilis by utilizing a self-immolative ester (SIE)-caging approach. We initially evaluated native B. subtilis esterase activity, which revealed a preference for short straight chain esters. We then examined the viability of the SIE-caging approach in B. subtilis and demonstrate that the released caging groups are well tolerated and the released IPP and DMAPP are bioavailable, such that isoprenoid biosynthesis can be rescued in the presence of pathway inhibitors. We further show that IPP and DMAPP are both toxic and inhibit growth of B. subtilis at the same concentration. Lastly, we establish the optimal ratio of IPP to DMAPP (5 : 1) for B. subtilis growth and find that, surprisingly, DMAPP alone is insufficient to rescue isoprenoid biosynthesis under high concentrations of fosmidomycin. These findings showcase the potential of the SIE-caging approach in B. subtilis and promise to both aid in novel isoprenoid discovery and to inform metabolic engineering efforts in bacteria.


Assuntos
Bacillus subtilis , Hemiterpenos , Compostos Organofosforados , Terpenos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Hemiterpenos/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Terpenos/metabolismo , Terpenos/química , Pentanóis/metabolismo , Pentanóis/química
2.
Trends Biochem Sci ; 43(1): 10-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183665

RESUMO

In the three domains of life, lipid-linked glycans contribute to various cellular processes ranging from protein glycosylation to glycosylphosphatidylinositol anchor biosynthesis to peptidoglycan assembly. In generating many of these glycoconjugates, phosphorylated polyprenol-based lipids are charged with single sugars by polyprenol phosphate glycosyltransferases. The resultant substrates serve as glycosyltransferase donors, complementing the more common nucleoside diphosphate sugars. It had been accepted that these polyprenol phosphate glycosyltransferases acted similarly, given their considerable sequence homology. Recent findings, however, suggest that matters may not be so simple. In this Opinion we propose that the stereochemistry of sugar addition by polyprenol phosphate glycosyltransferases is not conserved across evolution, even though the GT-A fold that characterizes such enzymes is omnipresent.


Assuntos
Glicosiltransferases/metabolismo , Pentanóis/química , Pentanóis/metabolismo , Fosfatos/metabolismo , Polímeros/química , Polímeros/metabolismo , Hemiterpenos , Humanos , Fosfatos/química , Estereoisomerismo
3.
Proc Natl Acad Sci U S A ; 116(26): 12810-12815, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31186357

RESUMO

The more than 50,000 isoprenoids found in nature are all derived from the 5-carbon diphosphates isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Natively, IPP and DMAPP are generated by the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways, which have been engineered to produce compounds with numerous applications. However, as these pathways are inherently constrained by carbon, energy inefficiencies, and their roles in native metabolism, engineering for isoprenoid biosynthesis at high flux, titer, and yield remains a challenge. To overcome these limitations, here we develop an alternative synthetic pathway termed the isoprenoid alcohol (IPA) pathway that centers around the synthesis and subsequent phosphorylation of IPAs. We first established a lower IPA pathway for the conversion of IPAs to isoprenoid pyrophosphate intermediates that enabled the production of greater than 2 g/L geraniol from prenol as well as limonene, farnesol, diaponeurosporene, and lycopene. We then designed upper IPA pathways for the generation of (iso)prenol from central carbon metabolites with the development of a route to prenol enabling its synthesis at more than 2 g/L. Using prenol as the linking intermediate further facilitated an integrated IPA pathway that resulted in the production of nearly 0.6 g/L total monoterpenoids from glycerol as the sole carbon source. The IPA pathway provides an alternative route to isoprenoids that is more energy efficient than native pathways and can serve as a platform for targeting a repertoire of isoprenoid compounds with application as high-value pharmaceuticals, commodity chemicals, and fuels.


Assuntos
Terpenos/síntese química , Monoterpenos Acíclicos/química , Biocatálise , Glicerol/química , Hemiterpenos/química , Pentanóis/química , Biologia Sintética
4.
Biomed Chromatogr ; 36(1): e5239, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34494281

RESUMO

Coumarins are a group of natural compounds commonly found in the families of Rutaceae and Umbelliferae. 7-Isopentenyloxycoumarin (ISC), auraptene (AUR), and umbelliprenin (UM) belong to prenyloxycoumarins (PYCs), which link isopentenyl, geranyl, and farnesyl group at C7 position, respectively. The substituent of 7-ethoxycoumarin (ETC) is the ethyl group. In this study, UPLC-ESI-QTOF-MS (ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-MS)-based metabolomics was used to evaluate the in vivo and in vitro metabolism of PYCs. Results showed that ETC produced 10 known metabolites, and ISC was transformed into 17 metabolites in vivo and in vitro, which were undescribed compounds. A total of 35 AUR metabolites, including 34 undescribed metabolites were identified, and 21 metabolites were reported for the first time in UM. The results indicated that hydroxylation and N-acetylcysteine conjugation were the common metabolic reactions for PYCs. The metabolic rates of ETC, ISC, AUR and UM were 26%, 36%, 81%, and 38%, respectively, in human liver microsome, while they were 24%, 40%, 80%, and 37%, respectively, in mouse liver microsomes. In addition, recombinant cytochrome P450s (CYPs) screening showed that CYP1A1, 2C19, 3A4, and 3A5 were the major metabolic enzymes involved in the formation of hydroxylation metabolites. Together, these results suggest that the isopentenyl group plays an important role in the metabolism of PYCs.


Assuntos
Cumarínicos , Metabolômica/métodos , Pentanóis , Animais , Cromatografia Líquida de Alta Pressão , Cumarínicos/análise , Cumarínicos/química , Cumarínicos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Pentanóis/análise , Pentanóis/química , Pentanóis/metabolismo , Espectrometria de Massas em Tandem
5.
Chembiochem ; 22(13): 2325-2334, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33938632

RESUMO

Linalool is a monoterpenoid used as a fragrance ingredient, and is a promising source for alternative fuels. Synthetic biology offers attractive alternative production methods compared to extraction from natural sources and chemical synthesis. Linalool/nerolidol synthase (bLinS) from Streptomyces clavuligerus is a bifunctional enzyme, producing linalool as well as the sesquiterpenoid nerolidol when expressed in engineered Escherichia coli harbouring a precursor terpenoid pathway such as the mevalonate (MVA) pathway. Here we identified two residues important for substrate selection by bLinS, L72 and V214, where the introduction of bulkier residues results in variants with reduced nerolidol formation. Terpenoid production using canonical precursor pathways is usually limited by numerous and highly regulated enzymatic steps. Here we compared the canonical MVA pathway to the non-canonical isopentenol utilization (IU) pathway to produce linalool using the optimised bLinS variant. The IU pathway uses isoprenol and prenol to produce linalool in only five steps. Adjusting substrate, plasmid system, inducer concentration, and cell strain directs the flux towards monoterpenoids. Our integrated approach, combining enzyme engineering with flux control using the artificial IU pathway, resulted in high purity production of the commercially attractive monoterpenoid linalool, and will guide future efforts towards efficient optimisation of terpenoid production in engineered microbes.


Assuntos
Monoterpenos Acíclicos/química , Pentanóis/química , Sesquiterpenos/metabolismo , Transferases/metabolismo , Monoterpenos Acíclicos/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Hemiterpenos/metabolismo , Ácido Mevalônico/metabolismo , Pentanóis/metabolismo , Conformação Proteica , Engenharia de Proteínas , Transdução de Sinais , Streptomyces/enzimologia , Terpenos/metabolismo , Transferases/genética
6.
J Chem Ecol ; 47(4-5): 463-475, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761047

RESUMO

Ambrosia beetles (Coleoptera: Scolytinae) cultivate their fungal symbiont within host substrates as the sole source of nutrition on which the larvae and adults must feed. To investigate a possible role for semiochemicals in this interaction, we characterized electrophysiological and behavioral responses of Xylosandrus germanus to volatiles associated with its fungal symbiont Ambrosiella grosmanniae. During still-air walking bioassays, X. germanus exhibited an arrestment response to volatiles of A. grosmanniae, but not antagonistic fungi Beauveria bassiana, Metarhizium brunneum, Trichoderma harzianum, the plant pathogen Fusarium proliferatum, or malt extract agar. Solid phase microextraction-gas chromatography-mass spectrometry identified 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate and 3-methyl-1-butanol in emissions from A. grosmanniae; the latter two compounds were also detected in emissions from B. bassiana. Concentration-responses using electroantennography documented weak depolarizations to A. grosmanniae fungal volatiles, unlike the comparatively strong response to ethanol. When tested singly in walking bioassays, volatiles identified from A. grosmanniae elicited relatively weak arrestment responses, unlike the responses to ethanol. Xylosandrus germanus also exhibited weak or no long-range attraction to the fungal volatiles when tested singly during field trials in 2016-2018. None of the fungal volatiles enhanced attraction of X. germanus to ethanol when tested singly; in contrast, 2-phenylethanol and 3-methyl-1-butanol consistently reduced attraction to ethanol. Volatiles emitted by A. grosmanniae may represent short-range olfactory cues that could aid in distinguishing their nutritional fungal symbiont from other fungi, but these compounds are not likely to be useful as long-range attractants for improving detection or mass trapping tactics.


Assuntos
Feromônios/química , Compostos Orgânicos Voláteis/química , Animais , Ascomicetos/metabolismo , Comportamento Animal , Benzoatos/química , Benzoatos/metabolismo , Evolução Biológica , Fenômenos Eletrofisiológicos , Etanol/química , Etanol/metabolismo , Feminino , Fusarium/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hexanóis/química , Hexanóis/metabolismo , Controle de Insetos , Pentanóis/química , Pentanóis/metabolismo , Feromônios/metabolismo , Microextração em Fase Sólida , Simbiose , Compostos Orgânicos Voláteis/metabolismo , Gorgulhos
7.
Molecules ; 26(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401727

RESUMO

The performance of the previously optimized magnetic cross-linked enzyme aggregate of Eversa (Eversa-mCLEA) in the enzymatic synthesis of biolubricants by transesterification of waste cooking oil (WCO) with different alcohols has been evaluated. Eversa-mCLEA showed good activities using these alcohols, reaching a transesterification activity with isoamyl alcohol around 10-fold higher than with methanol. Yields of isoamyl fatty acid ester synthesis were similar using WCO or refined oil, confirming that this biocatalyst could be utilized to transform this residue into a valuable product. The effects of WCO/isoamyl alcohol molar ratio and enzyme load on the synthesis of biolubricant were also investigated. A maximum yield of around 90 wt.% was reached after 72 h of reaction using an enzyme load of 12 esterification units/g oil and a WCO/alcohol molar ratio of 1:6 in a solvent-free system. At the same conditions, the liquid Eversa yielded a maximum ester yield of only 34%. This study demonstrated the great changes in the enzyme properties that can be derived from a proper immobilization system. Moreover, it also shows the potential of WCO as a feedstock for the production of isoamyl fatty acid esters, which are potential candidates as biolubricants.


Assuntos
Enzimas Imobilizadas/química , Lubrificantes/química , Óleos/química , Resíduos , Álcoois/química , Catálise , Culinária , Enzimas Imobilizadas/metabolismo , Esterificação , Ésteres/química , Lipase/química , Lipase/metabolismo , Metanol/química , Pentanóis/química , Solventes , Óleo de Soja/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Biotechnol Bioeng ; 116(12): 3269-3281, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429926

RESUMO

Cell-free systems are growing in importance for the biosynthesis of complex molecules. These systems combine the precision of traditional chemistry with the versatility of biology in creating superior overall processes. Recently, a new synthetic pathway for the biosynthesis of isoprenoids using the substrate isopentenol, dubbed the isopentenol utilization pathway (IUP), was demonstrated to be a promising alternative to the native 2C-methyl-d-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathways. This simplified pathway, which contains a minimum of four enzymes to produce basic monoterpenes and only depends on ATP and isopentenol as substrates, allows for a highly flexible approach to the commercial synthesis of isoprenoid products. In this work, we use metabolic reconstitution to characterize this new pathway in vitro and demonstrate its use for the cell-free synthesis of mono-, sesquit-, and diterpenoids. Kinetic modeling and sensitivity analysis were also used to identify the most significant parameters for taxadiene productivity, and metabolic control analysis was employed to elucidate protein-level interactions within this pathway, which demonstrated that the IUP enzymatic system is primarily controlled by the concentration and kinetics of choline kinase (CK) and not regulated by any pathway intermediates. This is a significant advantage over the natural MEP or MVA pathways as it greatly simplifies future metabolic engineering efforts, both in vitro and in vivo, aiming at improving the kinetics of CK. Finally, we used the insights gathered to demonstrate an in vitro IUP system that can produce 220 mg/L of the diterpene taxadiene, in 9 hr, almost 3-fold faster than any system reported thus far.


Assuntos
Modelos Químicos , Pentanóis/química , Terpenos/síntese química , Sistema Livre de Células/química , Cinética
9.
J Nat Prod ; 82(7): 1791-1796, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31268714

RESUMO

NFAT-133, isolated from Streptomyces sp., is an immunosuppressive, antidiabetic, and antitrypanosomal aromatic polyketide with three contiguous stereocenters. The first enantioselective total synthesis of the proposed structure of NFAT-133 [(10R,11R,12S)-1] and its C10 epimer [(10S,11R,12S)-1] was achieved from a known aromatic ester (5) by a 10-step sequence that featured chiral auxiliary-directed asymmetric alkylation and the Evans asymmetric aldol reaction as the chirality-inducing steps. The 1H and 13C NMR data as well as the specific rotation value of natural NFAT-133 were not identical to those of the proposed structure, but were in good agreement with those of its C10 epimer. This led us to conclude that the absolute configuration of NFAT-133 should be revised to 10S, 11R, and 12S.


Assuntos
Pentanóis/química , Pentanonas/química , Estrutura Molecular , Pentanóis/síntese química , Pentanonas/síntese química , Análise Espectral/métodos , Estereoisomerismo
10.
Molecules ; 24(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108938

RESUMO

The distribution and diffusion behaviors of microscopic particles at fluorobenzene-water and pentanol-water interfaces are investigated using molecular dynamics simulation. The influences of Na+/Cl- ions and the steric effects of organic molecules are examined. The concentration distributions of different species, the orientations of oil molecules at the interface, and oil-water interface morphology as well as the diffusion behaviors of water molecules are explored and analyzed. The results indicate that a few fluorobenzene molecules move into the water phase influenced by Na+/Cl- ions, while the pentanol molecules at the interface prefer orientating their hydrophilic groups toward the water phase due to their large size. The water molecules more easily burst into the pentanol phase with larger molecular spaces. As the concentration of ions in the water phase increases, more water molecules enter into the pentanol molecules, leading to larger interface roughness and interface thickness. In addition, a lower diffusion coefficient for water molecules at the fluorobenzene-water interface are observed when introducing Na+/Cl- ions in the water phase, while for the pentanol-water system, the mobility of interfacial water molecules are enhanced with less ions and inhibited with more ions.


Assuntos
Fluorbenzenos/química , Pentanóis/química , Água/química , Cloretos/química , Difusão , Modelos Moleculares , Simulação de Dinâmica Molecular , Sódio/química
11.
Microb Pathog ; 118: 290-300, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29578062

RESUMO

Essential oil of fresh leaves of Ocimum gratissimum (OGEO) was water-steam distilled and analyzed by GC-MS. Thirty-seven compounds were identified, with eugenol (55.6%) as the major component followed by cis-ocimene (13.9%), γ-muurolene (11.6%), (Z,E)-α-farnesene (5.6%), α-trans-bergamotene (4.1%), and ß-caryophyllene (2.7%). Antimicrobial activity of OGEO was tested against four gastroenteritis pathogens (Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and Shigella flexneri). OGEO exhibited antibacterial effect, with MICs of 1-2 mg ml-1, against the tested species. OGEO also displayed rapid killing effect within 5 s at four times of MIC against both E. coli and S. Typhimurium. Various assays were performed to investigate the mode of action of the oil. OGEO increased the permeability of microbial cell membrane as evidenced by LIVE/DEAD BacLight assay. Analyses of the release of absorbing materials at 260 nm, protein leakage, SDS-PAGE, and SEM strongly suggested the disruptive action of the oil on the cytoplasmic membrane of the tested microorganisms. Results revealed that the antibacterial property of OGEO could be due to membrane disruption.


Assuntos
Antibacterianos/farmacologia , Gastroenterite/microbiologia , Ocimum/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Óleos de Plantas/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Eugenol/química , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Óleos Voláteis/farmacologia , Pentanóis/química , Óleos de Plantas/química , Sesquiterpenos Policíclicos , Salmonella typhimurium/efeitos dos fármacos , Sesquiterpenos/química , Shigella flexneri/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
12.
Bioorg Med Chem Lett ; 28(3): 302-309, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29292226

RESUMO

A series of thirty-four diarylpentanoids derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity. Eleven compounds (19, 20, 21, 24, 27, 28, 29, 31, 32, 33 and 34) were found to significantly inhibit α-glucosidase in which compounds 28, 31 and 32 demonstrated the highest activity with IC50 values ranging from 14.1 to 15.1 µM. Structure-activity comparison shows that multiple hydroxy groups are essential for α-glucosidase inhibitory activity. Meanwhile, 3,4-dihydroxyphenyl and furanyl moieties were found to be crucial in improving α-glucosidase inhibition. Molecular docking analyses further confirmed the critical role of both 3,4-dihydroxyphenyl and furanyl moieties as they bound to α-glucosidase active site in different mode. Overall result suggests that diarylpentanoids with both five membered heterocyclic ring and polyhydroxyphenyl moiety could be a new lead design in the search of novel α-glucosidase inhibitor.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Pentanóis/farmacologia , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Estrutura Molecular , Pentanóis/síntese química , Pentanóis/química , Relação Estrutura-Atividade
13.
Org Biomol Chem ; 16(11): 1939-1957, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29492483

RESUMO

Mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce a complex cell wall that is critical for their survival. The largest structural component of the cell wall, the mycolyl-arabinogalactan-peptidoglycan complex, has at its core a galactan domain composed of d-galactofuranose residues. Mycobacterial galactan biosynthesis has been proposed to involve two glycosyltransferases, GlfT1 and GlfT2, which elongate polyprenol-pyrophosphate linked glycosyl acceptor substrates using UDP-galactofuranose as the donor substrate. We here report the first chemical synthesis of GlfT1 and GlfT2 acceptor substrates containing pyrophosphate and polyprenol moieties (compounds 3, 4, 22 and 23). The approach involves chemical synthesis of an oligosaccharide, subsequent phosphorylation at the reducing end and coupling to a polyprenol phosphate. These compounds were shown to be substrates for either GlfT1 (22 and 23) or GlfT2 (3 and 4) and all were substantially more active than the corresponding alkyl glycoside substrates reported previously. Mass spectrometric analysis of the products formed from the reaction of 3, 4, 22 and 23 with the respective cognate enzyme and UDP-galactofuranose provide additional evidence for the galactan biosynthetic model in which GlfT1 adds the first two galactofuranose residues with the remainder being installed via GlfT2. Overall, these results highlight the importance of the pyrophosphate motif in recognition of acceptor substrates by both enzymes and demonstrate a straightforward route for the preparation of such compounds. The work also provides additional support for the process by which this important glycan is biosynthesized using, for the first time, close structural analogs to the natural substrates.


Assuntos
Difosfatos/metabolismo , Galactanos/metabolismo , Galactosiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Oligossacarídeos/metabolismo , Difosfatos/síntese química , Difosfatos/química , Hemiterpenos , Humanos , Oligossacarídeos/síntese química , Oligossacarídeos/química , Pentanóis/síntese química , Pentanóis/química , Pentanóis/metabolismo , Especificidade por Substrato , Tuberculose/microbiologia
14.
Molecules ; 23(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257494

RESUMO

Aromatic compounds are important for fruit quality and can vary among fruit cultivars. Volatile compounds formed during the ripening of two banana cultivars, Brazilian and Fenjiao, were determined using headspace solid-phase micro-extraction (SPME) and gas chromatography coupled with mass spectrometry (GC-MS). These two cultivars exhibited different physiological characteristics during storage. Fenjiao fruit exhibited faster yellowing and softening, a higher respiration rate and greater ethylene production. Also, the soluble sugar content in Fenjiao fruit was much higher than in Brazilian fruit. In total, 62 and 59 volatile compounds were detected in Fenjiao and Brazilian fruits, respectively. The predominant volatile components isoamyl acetate, butanoic acid, 3-methyl-3-methylbutyl ester, hexanal, trans-2-hexenal and 1-hexanol varied during ripening stages. Moreover, esters were more abundant in Fenjiao, and propanoic acid 2-methylbutyl ester, and octanoic acid were only detected in Fenjiao. These compounds contribute to the unique flavors and aromas of the two cultivars.


Assuntos
Frutas/química , Musa/química , Compostos Orgânicos Voláteis/química , Aldeídos/química , Brasil , Cromatografia Gasosa , Ésteres/química , Frutas/crescimento & desenvolvimento , Hexanóis/química , Musa/crescimento & desenvolvimento , Pentanóis/química , Microextração em Fase Sólida
15.
J Proteome Res ; 16(2): 889-897, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28088865

RESUMO

Protein precipitation in acetone is frequently employed ahead of mass spectrometry for sample preconcentration and purification. Unfortunately, acetone is not chemically inert; mass artifacts have previously been observed on glycine-containing peptides when exposed to acetone under acidic conditions. We herein report a distinct chemical modification occurring at the level of intact proteins when incubated in acetone. This artifact manifests as one or more satellite peaks in the MS spectrum of intact protein, spaced 98 u above the mass of the unmodified protein. Other artifacts (+84, +112 u) also appear upon incubation of proteins or peptides in acetone. The reaction is pH-sensitive, being suppressed when proteins are exposed to acetone under acidic conditions. The +98 u artifact is speculated to originate through an intermediate product of aldol condensation of acetone to form diacetone alcohol and mesityl oxide. A +98 u product could originate from nucleophilic attack on mesityl oxide or through condensation with diacetone alcohol. Given the extent of modification possible upon exposure of proteins to acetone, particularly following overnight solvent exposure or incubation at room temperature, an awareness of the variables influencing this novel modification is valued by proteomics researchers who employ acetone precipitation for protein purification.


Assuntos
Acetona/química , Artefatos , Citocromos c/análise , Proteínas de Escherichia coli/análise , Espectrometria de Massas/normas , Peptídeos/análise , Animais , Precipitação Química , Citocromos c/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Hemoglobinas/análise , Hemoglobinas/química , Hexanonas/química , Concentração de Íons de Hidrogênio , Mioglobina/análise , Mioglobina/química , Pentanóis/química , Pentanonas/química , Peptídeos/química , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/normas , Ubiquitina/análise , Ubiquitina/química
16.
J Biol Chem ; 291(21): 10976-85, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27002156

RESUMO

Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys(32) of B. subtilis EF-P that is required for swarming motility. A fluorescent in vivo B. subtilis reporter system identified peptide motifs whose efficient synthesis was most dependent on 5-aminopentanol EF-P. Examination of the B. subtilis genome sequence showed that these EF-P-dependent peptide motifs were represented in flagellar genes. Taken together, these data show that, in B. subtilis, a previously uncharacterized posttranslational modification of EF-P can modulate the synthesis of specific diprolyl motifs present in proteins required for swarming motility.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Fatores de Alongamento de Peptídeos/fisiologia , Motivos de Aminoácidos , Bacillus subtilis/citologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos , Lisina/química , Movimento , Pentanóis/química , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Chem Senses ; 42(3): 195-210, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916748

RESUMO

The detection of key food odorants appears to be an important capability of odorant receptors. Here, thiols occupy an outstanding position among the 230 known key food odorants because of their very low odor thresholds. Members of the homologous series of 3-mercapto-2-methylalkan-1-ols have been described as onion key food odorants or food constituents and are detected at logarithmically different thresholds. 3-Mercapto-2-methylpentan-1-ol being the only key food odorant within this series also has the lowest odor threshold. Most odorants typically activate combinations of odorant receptors, which may be narrowly or broadly tuned. Consequently, a specific receptor activation pattern will define an odor quality. In contrast, here we show that just 1 of the 391 human odorant receptors, OR2M3, responded exclusively to 3-mercapto-2-methylpentan-1-ol of the 190 key food odorants tested, with a half maximal effective concentration at submicromolar concentration. Moreover, neither the Denisovan OR2M3 nor the closest OR2M3 homologs from five species did respond to this compound. This outstanding specificity of extremely narrowly tuned human OR2M3 can explain both odor qualities and odor threshold trend within a homologous series of 3-mercapto-2-methylalkan-1-ols and suggests a modern human-specific, food-related function of OR2M3 in detecting a single onion key food odorant.


Assuntos
Odorantes/análise , Cebolas/química , Pentanóis/análise , Receptores Odorantes/metabolismo , Olfato , Compostos de Sulfidrila/análise , Células Cultivadas , Humanos , Estrutura Molecular , Pentanóis/química , Compostos de Sulfidrila/química
18.
J Ind Microbiol Biotechnol ; 44(1): 107-117, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27826727

RESUMO

Isoamyl alcohol can be used not only as a biofuel, but also as a precursor for various chemicals. Saccharomyces cerevisiae inherently produces a small amount of isoamyl alcohol via the leucine degradation pathway, but the yield is very low. In the current study, several strategies were devised to overproduce isoamyl alcohol in budding yeast. The engineered yeast cells with the cytosolic isoamyl alcohol biosynthetic pathway produced significantly higher amounts of isobutanol over isoamyl alcohol, suggesting that the majority of the metabolic flux was diverted to the isobutanol biosynthesis due to the broad substrate specificity of Ehrlich pathway enzymes. To channel the key intermediate 2-ketosiovalerate (KIV) towards α-IPM biosynthesis, we introduced an artificial protein scaffold to pull dihydroxyacid dehydratase and α-IPM synthase into the close proximity, and the resulting strain yielded more than twofold improvement of isoamyl alcohol. The best isoamyl alcohol producer yielded 522.76 ± 38.88 mg/L isoamyl alcohol, together with 540.30 ± 48.26 mg/L isobutanol and 82.56 ± 8.22 mg/L 2-methyl-1-butanol. To our best knowledge, our work represents the first study to bypass the native compartmentalized α-IPM biosynthesis pathway for the isoamyl alcohol overproduction in budding yeast. More importantly, artificial protein scaffold based on the feature of quaternary structure of enzymes would be useful in improving the catalytic efficiency and the product specificity of other enzymatic reactions.


Assuntos
Engenharia Genética/métodos , Leucina/química , Pentanóis/química , Saccharomyces cerevisiae/metabolismo , 1-Butanol/metabolismo , Vias Biossintéticas , Butanóis , Citosol/metabolismo , Hemiterpenos , Hidroliases , Redes e Vias Metabólicas , Ácidos Pentanoicos/química , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Proteínas/metabolismo , RNA/análise
19.
Magn Reson Chem ; 55(5): 452-463, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26987451

RESUMO

We applied Pulsed Gradient Spin Echo diffusion with high-resolution magic angle spinning NMR to study sol-gel matrices used to encapsulate enzymes for biocatalysis (TMOS/MTMS and TMOS/BTMS) to gain insight into the local chemical microenvironment. Transport properties of solvents with different polarities (1-pentanol, acetonitrile and n-hexane) were studied through their apparent self-diffusion coefficients. The spin echo attenuation of the solvents shows two distinct diffusion domains, one with fast diffusion (Dfast ) associated with interparticle diffusion and another with slow diffusion (Dslow ) corresponding to the displacement inside the pores within the sol-gel particles. The analysis of the root mean square displacements at different diffusion times showed that the Dfast domain has a free diffusion regime in both matrices (the root mean square displacement is linearly dependent of the diffusion time), while the Dslow domain shows a different regime that depends on the matrix. We investigated the exchange regime between the two diffusion sites. In both matrices, n-hexane was in intermediate exchange between diffusion domains, while the polar solvents were in slow exchange in TMOS/BTMS and in intermediate exchange in TMOS/MTMS. Data were fitted for TMOS/BTMS with the Kärger model, and the physical parameters were obtained. The results add to the evidence that the pores are a hydrophobic environment but that the presence of some free hydrophilic groups inside the pore, as observed in the TMOS/BTMS, has a key role in slowing down the exchange of polar solvents and that this is relevant to explain previously reported enzyme activity in these materials. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Silanos/química , Solventes/química , Acetonitrilas/química , Difusão , Hexanos/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia Eletrônica de Varredura , Modelos Moleculares , Pentanóis/química , Transição de Fase , Álcool de Polivinil/química , Porosidade , Dióxido de Silício/química
20.
J Lipid Res ; 57(6): 1051-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27127078

RESUMO

Acne is a multifactorial skin disorder frequently observed during adolescence with different grades of severity. Multiple factors centering on sebum secretion are implicated in acne pathogenesis. Despite the recognized role of sebum, its compositional complexity and limited analytical approaches have hampered investigation of alterations specifically associated with acne. To examine the profiles of lipid distribution in acne sebum, 61 adolescents (29 males and 32 females) were enrolled in this study. Seventeen subjects presented no apparent clinical signs of acne. The 44 affected individuals were clinically classified as mild (13 individuals), moderate (19 individuals), and severe (12 individuals) acne. Sebum was sampled from the forehead with Sebutape(TM) adhesive patches. Profiles of neutral lipids were acquired with rapid-resolution reversed-phase/HPLC-TOF/MS in positive ion mode. Univariate and multivariate statistical analyses led to the identification of lipid species with significantly different levels between healthy and acne sebum. The majority of differentiating lipid species were diacylglycerols (DGs), followed by fatty acyls, sterols, and prenols. Overall, the data indicated an association between the clinical grading of acne and sebaceous lipid fingerprints and highlighted DGs as more abundant in sebum from adolescents affected with acne.


Assuntos
Acne Vulgar/metabolismo , Diglicerídeos/isolamento & purificação , Lipídeos/isolamento & purificação , Pele/metabolismo , Esteróis/isolamento & purificação , Acne Vulgar/patologia , Adolescente , Adulto , Cromatografia Líquida de Alta Pressão , Diglicerídeos/metabolismo , Feminino , Hemiterpenos , Humanos , Lipídeos/química , Lipídeos/classificação , Masculino , Pentanóis/química , Pentanóis/isolamento & purificação , Sebo/metabolismo , Índice de Gravidade de Doença , Pele/química , Pele/patologia , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA