Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 389(18): 1685-1692, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37913506

RESUMO

Two siblings presented with cardiomyopathy, hypertension, arrhythmia, and fibrosis of the left atrium. Each had a homozygous null variant in CORIN, the gene encoding atrial natriuretic peptide (ANP)-converting enzyme. A plasma sample obtained from one of the siblings had no detectable levels of corin or N-terminal pro-ANP but had elevated levels of B-type natriuretic peptide (BNP) and one of the two protein markers of fibrosis that we tested. These and other findings support the hypothesis that BNP cannot fully compensate for a lack of activation of the ANP pathway and that corin is critical to normal ANP activity, left atrial function, and cardiovascular homeostasis.


Assuntos
Arritmias Cardíacas , Cardiomiopatias , Átrios do Coração , Hipertensão , Humanos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Fibrilação Atrial , Fator Natriurético Atrial/sangue , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Fibrose , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Serina Endopeptidases/sangue , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Irmãos
2.
Circ Res ; 132(5): 586-600, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36756875

RESUMO

BACKGROUND: Myocardial infarction (MI) elicits cardiac fibroblast activation and extracellular matrix (ECM) deposition to maintain the structural integrity of the heart. Recent studies demonstrate that Fap (fibroblast activation protein)-a prolyl-specific serine protease-is an important marker of activated cardiac fibroblasts after MI. METHODS: Left ventricle and plasma samples from patients and healthy donors were used to analyze the expression level of FAP and its prognostic value. Echocardiography and histological analysis of heart sections were used to analyze cardiac functions, scar formation, ECM deposition and angiogenesis after MI. RNA-Sequencing, biochemical analysis, cardiac fibroblasts (CFs) and endothelial cells co-culture were used to reveal the molecular and cellular mechanisms by which Fap regulates angiogenesis. RESULTS: We found that Fap is upregulated in patient cardiac fibroblasts after cardiac injuries, while plasma Fap is downregulated and functions as a prognostic marker for cardiac repair. Genetic or pharmacological inhibition of Fap in mice significantly improved cardiac function after MI. Histological and transcriptomic analyses showed that Fap inhibition leads to increased angiogenesis in the peri-infarct zone, which promotes ECM deposition and alignment by cardiac fibroblasts and prevents their overactivation, thereby limiting scar expansion. Mechanistically, we found that BNP (brain natriuretic peptide) is a novel substrate of Fap that mediates postischemic angiogenesis. Fap degrades BNP to inhibit vascular endothelial cell migration and tube formation. Pharmacological inhibition of Fap in Nppb (encoding pre-proBNP) or Npr1 (encoding the BNP receptor)-deficient mice showed no cardioprotective effects, suggesting that BNP is a physiological substrate of Fap. CONCLUSIONS: This study identifies Fap as a negative regulator of cardiac repair and a potential drug target to treat MI. Inhibition of Fap stabilizes BNP to promote angiogenesis and cardiac repair.


Assuntos
Infarto do Miocárdio , Peptídeo Natriurético Encefálico , Animais , Camundongos , Cicatriz , Endopeptidases/genética , Células Endoteliais/patologia , Infarto do Miocárdio/patologia , Peptídeo Natriurético Encefálico/genética
3.
Physiol Genomics ; 56(6): 436-444, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586874

RESUMO

This study aimed to investigate the relationship between pre- and postexercise cardiac biomarker release according to athletic status (trained vs. untrained) and to establish whether the I/D polymorphism in the angiotensin-converting enzyme (ACE) gene had an influence on cardiac biomarkers release with specific regard on the influence of the training state. We determined cardiac troponin I (cTnI) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in 29 trained and 27 untrained male soccer players before and after moderate-intensity continuous exercise (MICE) and high-intensity interval exercise (HIIE) running tests. Trained soccer players had higher pre (trained: 0.014 ± 0.007 ng/mL; untrained: 0.010 ± 0.005 ng/mL) and post HIIE (trained: 0.031 ± 0.008 ng/mL; untrained: 0.0179 ± 0.007) and MICE (trained: 0.030 ± 0.007 ng/mL; untrained: 0.018 ± 0.007) cTnI values than untrained subjects, but the change with exercise (ΔcTnI) was similar between groups. There was no significant difference in baseline and postexercise NT-proBNP between groups. NT-proBNP levels were elevated after both HIIE and MICE. Considering three ACE genotypes, the mean pre exercise cTnI values of the trained group (DD: 0.015 ± 0.008 ng/mL, ID: 0.015 ± 0.007 ng/mL, and II: 0.014 ± 0.008 ng/mL) and their untrained counterparts (DD: 0.010 ± 0.004 ng/mL, ID: 0.011 ± 0.004 ng/mL, and II: 0.010 ± 0.006 ng/mL) did not show any significant difference. To sum up, noticeable difference in baseline cTnI was observed, which was related to athletic status but not ACE genotypes. Neither athletic status nor ACE genotypes seemed to affect the changes in cardiac biomarkers in response to HIIE and MICE, indicating that the ACE gene does not play a significant role in the release of exercise-induced cardiac biomarkers indicative of cardiac damage in Iranian soccer players.NEW & NOTEWORTHY Our study investigated the impact of athletic status and angiotensin-converting enzyme (ACE) gene I/D polymorphism on cardiac biomarkers in soccer players. Trained players showed higher baseline cardiac troponin I (cTnI) levels, whereas postexercise ΔcTnI remained consistent across groups. N-terminal pro-brain natriuretic peptide increased after exercise in both groups, staying within normal limits. ACE genotypes did not significantly affect pre-exercise cTnI. Overall, athletic status influences baseline cTnI, but neither it nor ACE genotypes significantly impact exercise-induced cardiac biomarker responses in this population.


Assuntos
Biomarcadores , Exercício Físico , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Peptidil Dipeptidase A , Polimorfismo Genético , Troponina I , Masculino , Humanos , Peptidil Dipeptidase A/genética , Biomarcadores/sangue , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Troponina I/sangue , Troponina I/genética , Fragmentos de Peptídeos/sangue , Exercício Físico/fisiologia , Adulto Jovem , Adulto , Treinamento Intervalado de Alta Intensidade/métodos , Futebol/fisiologia , Mutação INDEL/genética , Coração/fisiologia
4.
Mol Biol Rep ; 51(1): 661, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758505

RESUMO

SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and ßMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.


Assuntos
Cardiomegalia , Isoproterenol , Canal de Sódio Disparado por Voltagem NAV1.5 , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Ratos , Linhagem Celular , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Animais , Técnicas de Silenciamento de Genes , Humanos , Mioblastos Cardíacos/metabolismo , Metabolismo Energético/genética , Regulação da Expressão Gênica/genética
5.
BMC Cardiovasc Disord ; 24(1): 308, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886631

RESUMO

AIM: The purpose of this study was to investigate the diagnostic and prognostic value of miR-320a-3p in chronic heart failure (CHF). METHODS: A total of 103 patients with CHF and 95 healthy controls were included in the study population. The expression level of serum miR-320a-3p was detected by qRT-PCR. The diagnostic effect of miR-320a-3p on CHF was evaluated by receiver operating characteristic curve. Kaplan-Meier curve and Cox regression were used to analyze the risk factors for 4-year prognosis of CHF patients. Bioinformatics analysis was used to analyze the possible target genes of miR-320a-3p and related signaling pathways. RESULTS: Serum miR-320a-3p expression was increased in CHF patients, and the levels of BNP and LVEF were positively and negatively correlated with miR-320a-3p, respectively. The AUC value of ROC curve was 0.866, indicating that miR-320a-3p had high diagnostic accuracy for CHF. Survival curve and Cox analysis showed that high expression of miR-320a-3p was associated with poor prognosis in CHF patients, and age and miR-320a-3p were independent risk factors for prognosis in CHF patients. GO and KEGG analysis showed that the downstream target genes of miR-320a-3p were involved in biological processes such as cell adhesion, stem cell differentiation and neural development, and were enriched in mTOR, TNF, AMPK and other signaling pathways. CONCLUSIONS: miR-320a-3p increased abnormally in CHF and was related to the severity of CHF. miR-320a-3p has the potential to be a diagnostic and prognostic marker for CHF.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Valor Preditivo dos Testes , Volume Sistólico , Função Ventricular Esquerda , Humanos , MicroRNAs/genética , MicroRNAs/sangue , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Doença Crônica , Estudos de Casos e Controles , Fatores de Risco , Medição de Risco , Fatores de Tempo , Transdução de Sinais , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Marcadores Genéticos
6.
Scand Cardiovasc J ; 58(1): 2373083, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39024033

RESUMO

OBJECTIVE: This paper was performed to decipher the serum microRNA (miR)-125b-5p expression in patients with dilated cardiomyopathy (DCM) combined with heart failure (HF) and its effect on myocardial fibrosis. METHODS: Serum miR-125b-5p expression, LVEDD, LVESD, LVEF, LVFS, and NT-proBNP levels were evaluated in clinical samples. A rat DCM model was established by continuous intraperitoneal injection of adriamycin and treated with miR-125b-5p agomir and its negative control. Cardiac function, serum TNF-α, hs-CRP, and NT-proBNP levels, pathological changes in myocardial tissues, cardiomyocyte apoptosis, and the expression levels of miR-125b-5p and fibrosis-related factors were detected in rats. RESULTS: In comparison to the control group, the case group had higher levels of LVEDD, LVESD, and NT-pro-BNP, and lower levels of LVEF, LVFS, and miR-125b-5p expression levels. Overexpression of miR-125b-5p effectively led to the improvement of cardiomyocyte hypertrophy and collagen arrangement disorder in DCM rats, the reduction of blue-stained collagen fibers in the interstitial myocardium, the reduction of the levels of TNF-α, hs-CRP, and NT-proBNP and the expression levels of TGF-1ß, Collagen I, and α-SMA, and the reduction of the number of apoptosis in cardiomyocytes. CONCLUSION: Overexpression of miR-125b-5p is effective in ameliorating myocardial fibrosis.


Assuntos
Apoptose , Cardiomiopatia Dilatada , Insuficiência Cardíaca , MicroRNAs , Miocárdio , Função Ventricular Esquerda , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/patologia , Estudos de Casos e Controles , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Fragmentos de Peptídeos/sangue , Ratos Sprague-Dawley , Volume Sistólico , Remodelação Ventricular
7.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468654

RESUMO

Therapies for heart failure with preserved ejection fraction (HFpEF) are lacking. Growth hormone-releasing hormone agonists (GHRH-As) have salutary effects in ischemic and nonischemic heart failure animal models. Accordingly, we hypothesized that GHRH-A treatment ameliorates chronic kidney disease (CKD)-induced HFpEF in a large-animal model. Female Yorkshire pigs (n = 16) underwent 5/6 nephrectomy via renal artery embolization and 12 wk later were randomized to receive daily subcutaneous injections of GHRH-A (MR-409; n = 8; 30 µg/kg) or placebo (n = 8) for 4 to 6 wk. Renal and cardiac structure and function were serially assessed postembolization. Animals with 5/6 nephrectomy exhibited CKD (elevated blood urea nitrogen [BUN] and creatinine) and faithfully recapitulated the hemodynamic features of HFpEF. HFpEF was demonstrated at 12 wk by maintenance of ejection fraction associated with increased left ventricular mass, relative wall thickness, end-diastolic pressure (EDP), end-diastolic pressure/end-diastolic volume (EDP/EDV) ratio, and tau, the time constant of isovolumic diastolic relaxation. After 4 to 6 wk of treatment, the GHRH-A group exhibited normalization of EDP (P = 0.03), reduced EDP/EDV ratio (P = 0.018), and a reduction in myocardial pro-brain natriuretic peptide protein abundance. GHRH-A increased cardiomyocyte [Ca2+] transient amplitude (P = 0.009). Improvement of the diastolic function was also evidenced by increased abundance of titin isoforms and their ratio (P = 0.0022). GHRH-A exerted a beneficial effect on diastolic function in a CKD large-animal model as demonstrated by improving hemodynamic, structural, and molecular characteristics of HFpEF. These findings have important therapeutic implications for the HFpEF syndrome.


Assuntos
Cardiotônicos/farmacologia , Hormônio Liberador de Hormônio do Crescimento/agonistas , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Sermorelina/análogos & derivados , Volume Sistólico/fisiologia , Animais , Nitrogênio da Ureia Sanguínea , Cálcio/metabolismo , Conectina/genética , Conectina/metabolismo , Creatinina/sangue , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Nefrectomia/métodos , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Sermorelina/farmacologia , Suínos
8.
Circ Res ; 128(1): 115-129, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33107387

RESUMO

RATIONALE: ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide), encoded by the clustered genes Nppa and Nppb, are important prognostic, diagnostic, and therapeutic proteins in cardiac disease. The spatiotemporal expression pattern and stress-induction of the Nppa and Nppb are tightly regulated, possibly involving their coregulation by an evolutionary conserved enhancer cluster. OBJECTIVE: To explore the physiological functions of the enhancer cluster and elucidate the genomic mechanism underlying Nppa-Nppb coregulation in vivo. METHODS AND RESULTS: By analyzing epigenetic data we uncovered an enhancer cluster with super enhancer characteristics upstream of Nppb. Using CRISPR/Cas9 genome editing, the enhancer cluster or parts thereof, Nppb and flanking regions or the entire genomic block spanning Nppa-Nppb, respectively, were deleted from the mouse genome. The impact on gene regulation and phenotype of the respective mouse lines was investigated by transcriptomic, epigenomic, and phenotypic analyses. The enhancer cluster was essential for prenatal and postnatal ventricular expression of Nppa and Nppb but not of any other gene. Enhancer cluster-deficient mice showed enlarged hearts before and after birth, similar to Nppa-Nppb compound knockout mice we generated. Analysis of the other deletion alleles indicated the enhancer cluster engages the promoters of Nppa and Nppb in a competitive rather than a cooperative mode, resulting in increased Nppa expression when Nppb and flanking sequences were deleted. The enhancer cluster maintained its active epigenetic state and selectivity when its target genes are absent. In enhancer cluster-deficient animals, Nppa was induced but remained low in the postmyocardial infarction border zone and in the hypertrophic ventricle, involving regulatory sequences proximal to Nppa. CONCLUSIONS: Coordinated ventricular expression of Nppa and Nppb is controlled in a competitive manner by a shared super enhancer, which is also required to augment stress-induced expression and to prevent premature hypertrophy.


Assuntos
Fator Natriurético Atrial/genética , Elementos Facilitadores Genéticos , Hipertrofia Ventricular Esquerda/genética , Família Multigênica , Infarto do Miocárdio/genética , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/genética , Animais , Fator Natriurético Atrial/metabolismo , Sítios de Ligação , Ligação Competitiva , Sistemas CRISPR-Cas , Linhagem Celular , Modelos Animais de Doenças , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/metabolismo , Regiões Promotoras Genéticas
9.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 180-188, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158669

RESUMO

The research explored the link between Brain Natriuretic Peptides (BNP) gene promoter T-381C polymorphism, serum BNP, and lipid profiles in Kurdish people from Iraq with stable coronary artery disease (CAD). The study was conducted on 62 individuals with CAD and 31 without CAD (control group). DNA was extracted from each individual's sample using the Sanger sequencing method to study the BNP gene's polymorphism. The identified alleles were TT, TC, and CC. The frequency of the TT genotype decreased significantly among the patient group compared to the control group, while the CC genotype's frequency was higher (p<0.05). However, there was no significant increase in BNP levels in TC and CC genotypes compared to the TT genotype. Lipid profile values were not significantly different among the genotypes. The study utilized a cut-off value for BNP activity for predicting CAD and found that individuals with a BNP activity value less than the cut-off had significantly greater changes in lipid profile and renal function (p<0.05). Stepwise multivariate regression analysis showed that cholesterol was not the only primary determinant of BNP rate in subjects with stable CAD; oxidized low-density lipoprotein (Ox-LDL), a history of heart attacks, and oxidative stress malondialdehyde (MDA) had a significant effect. Homozygous C allele carriers at position 381 of the BNP precursors gene promoter were more likely to exhibit atherosclerosis lesions. We found that BNP rs198389 was not correlated with lipid profile and kidney disease.


Assuntos
Doença da Artéria Coronariana , Lipídeos , Peptídeo Natriurético Encefálico , Humanos , Doença da Artéria Coronariana/genética , Genótipo , Peptídeo Natriurético Encefálico/genética , Polimorfismo Genético , Lipídeos/sangue
10.
Cell Tissue Res ; 388(2): 225-238, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35171324

RESUMO

The diversified natriuretic peptide (NP) family, consisting of four CNPs (CNP1-4), ANP, BNP, and VNP, has been identified in the eel. Here, we successfully cloned additional cnp genes from the brain of eel (a basal teleost) and zebrafish (a later branching teleost). The genes were identified as paralogues of cnp4 generated by the third round of whole genome duplication (3R) in the teleost lineage, thereby being named eel cnp4b and zebrafish cnp4-like, respectively. To examine the histological patterns of their expressions, we employed a newly developed in situ hybridization (ISH) chain reaction using short hairpin DNAs, in addition to conventional ISH. Eel cnp4b was expressed in the medulla oblongata, while mRNAs of eel cnp4a (former cnp4) were localized in the preoptic area. In the zebrafish brain, cnp4-like mRNA was undetectable, while the known cnp4 was expressed in both the preoptic area and medulla oblongata. Together with the different mRNA distribution of cnp4a and cnp4b in eel peripheral tissues determined by RT-PCR and ISH, it is suggested that subfunctionalization by duplicated cnp4s in ancestral teleosts has been retained only in basal teleosts. Intriguingly, cnp4b-expressing neurons in the glossopharyngeal-vagal motor complex of the medulla oblongata were co-localized with choline acetyltransferase, suggesting an involvement of Cnp4b in swallowing and respiration functions that are modulated by the vagus. Since teleost Cnp4 is an ortholog of mammalian CNP, the identified localization of teleost Cnp4 will contribute to future studies aimed at deciphering the physiological functions of CNP.


Assuntos
Duplicação Gênica , Peptídeo Natriurético Tipo C , Animais , Fator Natriurético Atrial/genética , Mamíferos/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Tipo C/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
FASEB J ; 35(4): e21495, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33689182

RESUMO

Enhancers regulate gene expressions in a tissue- and pathology-specific manner by altering its activities. Plasma levels of atrial and brain natriuretic peptides, encoded by the Nppa and Nppb, respectively, and synthesized predominantly in cardiomyocytes, vary depending on the severity of heart failure. We previously identified the noncoding conserved region 9 (CR9) element as a putative Nppb enhancer at 22-kb upstream from the Nppb gene. However, its regulatory mechanism remains unknown. Here, we therefore investigated the mechanism of CR9 activation in cardiomyocytes using different kinds of drugs that induce either cardiac hypertrophy or cardiac failure accompanied by natriuretic peptides upregulation. Chronic treatment of mice with either catecholamines or doxorubicin increased CR9 activity during the progression of cardiac hypertrophy to failure, which is accompanied by proportional increases in Nppb expression. Conversely, for cultured cardiomyocytes, doxorubicin decreased CR9 activity and Nppb expression, while catecholamines increased both. However, exposing cultured cardiomyocytes to mechanical loads, such as mechanical stretch or hydrostatic pressure, upregulate CR9 activity and Nppb expression even in the presence of doxorubicin. Furthermore, the enhancement of CR9 activity and Nppa and Nppb expressions by either catecholamines or mechanical loads can be blunted by suppressing mechanosensing and mechanotransduction pathways, such as muscle LIM protein (MLP) or myosin tension. Finally, the CR9 element showed a more robust and cell-specific response to mechanical loads than the -520-bp BNP promoter. We concluded that the CR9 element is a novel enhancer that responds to mechanical loads by upregulating natriuretic peptides expression in cardiomyocytes.


Assuntos
Expressão Gênica/fisiologia , Mecanotransdução Celular/fisiologia , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Animais , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas com Domínio LIM , Camundongos Transgênicos , Proteínas Musculares , Peptídeo Natriurético Encefálico/genética , Peptídeos Natriuréticos/genética , Peptídeos Natriuréticos/metabolismo , Ratos , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
12.
Development ; 145(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752386

RESUMO

Atrial natriuretic peptide (nppa/anf) and brain natriuretic peptide (nppb/bnp) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy; however, their genomic location in cis has impeded formal analysis. Using genome editing, we have generated mutants for nppa and nppb, and found that single mutants were indistinguishable from wild type, whereas nppa/nppb double mutants displayed heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4, tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirmed cardiac jelly expansion in nppa/nppb double mutants. Finally, bmp4 knockdown rescued the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber.


Assuntos
Fator Natriurético Atrial/genética , Coração/embriologia , Peptídeo Natriurético Encefálico/genética , Receptores do Fator Natriurético Atrial/genética , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Edição de Genes , Cardiopatias Congênitas/genética , Hialuronan Sintases/metabolismo , Proteínas com Domínio T/metabolismo , Versicanas/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Circ Res ; 125(11): 957-968, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31588864

RESUMO

RATIONALE: Lower NP (natriuretic peptide) levels may contribute to the development of cardiometabolic diseases. Blacks have lower NP levels than middle-aged and older white adults. A high-carbohydrate challenge causes an upregulation of a negative ANP regulator microRNA-425 (miR-425), which reduces ANP (atrial-NP) levels in whites. OBJECTIVES: We designed a prospective trial to study racial differences in (1) NP levels among young adults, (2) NP response to a high-carbohydrate challenge, and (3) explore underlying mechanisms for race-based differences. METHODS AND RESULTS: Healthy self-identified blacks and whites received 3 days of study diet followed by a high-carbohydrate challenge. Gene expression from whole blood RNA was assessed in the trial participants. Additionally, atrial and ventricular tissue samples from the Myocardial Applied Genomics Network repository were examined for NP system gene expression. Among 72 healthy participants, we found that B-type-NP, NT-proBNP (N-terminal-pro-B-type NP), and MRproANP (midregional-pro-ANP) levels were 30%, 47%, and 18% lower in blacks compared with whites (P≤0.01), respectively. The decrease in MRproANP levels in response to a high-carbohydrate challenge differed by race (blacks 23% [95% CI, 19%-27%] versus whites 34% [95% CI, 31%-38]; Pinteraction<0.001), with no change in NT-proBNP levels. We did not observe any racial differences in expression of genes encoding for NPs (NPPA/NPPB) or NP signaling (NPR1) in atrial and ventricular tissues. NP processing (corin), clearance (NPR3), and regulation (miR-425) genes were ≈3.5-, ≈2.5-, and ≈2-fold higher in blacks than whites in atrial tissues, respectively. We also found a 2-and 8-fold higher whole blood RNA expression of gene encoding for Neprilysin (MME) and miR-425 among blacks than whites. CONCLUSIONS: Racial differences in NP levels are evident in young, healthy adults suggesting a state of NP deficiency exists in blacks. Impaired NP processing and clearance may contribute to race-based NP differences. Higher miR-425 levels in blacks motivate additional studies to understand differences in NP downregulation after physiological perturbations. CLINICAL TRIAL REGISTRATION: URL: https://clinicaltrials.gov/ct2/show/NCT03072602. Unique identifier: NCT03072602.


Assuntos
Fator Natriurético Atrial/sangue , Negro ou Afro-Americano , Carboidratos da Dieta/administração & dosagem , Disparidades nos Níveis de Saúde , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , População Branca , Adulto , Alabama , Fator Natriurético Atrial/genética , Biomarcadores/sangue , Linhagem Celular , Carboidratos da Dieta/metabolismo , Regulação para Baixo , Feminino , Voluntários Saudáveis , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/genética , Fragmentos de Peptídeos/genética , Estudos Prospectivos , Fatores Raciais , Fatores de Tempo
14.
J Cardiovasc Pharmacol ; 78(6): 792-801, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34882111

RESUMO

ABSTRACT: Left-ventricular hypertrophy, characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and immune cell infiltration, is a high risk factor for heart failure and death. Chemokines interacting with G protein-coupled chemokine receptors probably play a role in left-ventricular hypertrophy development by promoting recruitment of activated leukocytes and modulating left-ventricular remodeling. Using the minimally invasive model of transverse aortic constriction in mice, we demonstrated that a variety of chemokine and chemokine receptor messenger Ribonucleic Acid are overexpressed in the early and late phase of hypertrophy progression. Among the chemokine receptors, Cx3cr1 and Ccr2 were most strongly overexpressed and were significantly upregulated at 3, 7, and 14 days after transverse aortic constriction. Ligands of CX3CR1 (Cx3cl1) and CCR2 (Ccl2, Ccl7, Ccl12) were significantly overexpressed in the left ventricle at the early stages after mechanical pressure overload. Pharmacological inhibition of CX3CR1 signaling using the antagonist AZD8797 led to a significant reduction of hypertrophy, whereas inhibition of CCR2 with the RS504393 antagonist did not show any effect. Furthermore, AZD8797 treatment reduced the expression of the hypertrophic marker genes Nppa and Nppb as well as the profibrotic genes Tgfb1 and Col1a1 at 14 days after transverse aortic constriction. These findings strongly suggest the involvement of the CX3CR1/CX3CL1 pathway in the pathogenesis of left-ventricular hypertrophy.


Assuntos
Receptor 1 de Quimiocina CX3C/antagonistas & inibidores , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Pirimidinas/farmacologia , Tiazóis/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Constrição , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
15.
Europace ; 23(5): 674-681, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33458771

RESUMO

AIMS: Classical cardiovascular risk factors (CVRFs), biomarkers, and common genetic variation have been suggested for risk assessment of atrial fibrillation (AF). To evaluate their clinical potential, we analysed their individual and combined ability of AF prediction. METHODS AND RESULTS: In N = 6945 individuals of the FINRISK 1997 cohort, we assessed the predictive value of CVRF, N-terminal pro B-type natriuretic peptide (NT-proBNP), and 145 recently identified single-nucleotide polymorphisms (SNPs) combined in a developed polygenic risk score (PRS) for incident AF. Over a median follow-up of 17.8 years, n = 551 participants (7.9%) developed AF. In multivariable-adjusted Cox proportional hazard models, NT-proBNP [hazard ratio (HR) of log transformed values 4.77; 95% confidence interval (CI) 3.66-6.22; P < 0.001] and the PRS (HR 2.18; 95% CI 1.88-2.53; P < 0.001) were significantly related to incident AF. The discriminatory ability improved asymptotically with increasing numbers of SNPs. Compared with a clinical model, AF risk prediction was significantly improved by addition of NT-proBNP and the PRS. The C-statistic for the combination of CVRF, NT-proBNP, and the PRS reached 0.83 compared with 0.79 for CVRF only (P < 0.001). A replication in the Dutch Prevention of REnal and Vascular ENd-stage Disease (PREVEND) cohort revealed similar results. Comparing the highest vs. lowest quartile, NT-proBNP and the PRS both showed a more than three-fold increased AF risk. Age remained the strongest risk factor with a 16.7-fold increased risk of AF in the highest quartile. CONCLUSION: The PRS and the established biomarker NT-proBNP showed comparable predictive ability. Both provided incremental predictive value over standard clinical variables. Further improvements for the PRS are likely with the discovery of additional SNPs.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Biomarcadores , Humanos , Peptídeo Natriurético Encefálico/genética , Fragmentos de Peptídeos , Modelos de Riscos Proporcionais , Medição de Risco , Fatores de Risco
16.
Exp Cell Res ; 386(2): 111742, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31759056

RESUMO

Protein kinase D (PKD) plays an important role in the development of cardiac hypertrophy induced by pressure overload. However, the mechanism involved is unclear. This study, using primary cardiomyocyte culture, PKD knockdown and overexpression, and other molecular techniques, tested our hypothesis that PKD pathway mediates cardiac hypertrophy by negatively regulating autophagy in cardiomyocyte. Neonatal cardiomyocytes were isolated from Wistar rats and cell hypertrophy was induced by norepinephrine treatment (PE, 10-4 mol/L), and divided into the following groups: (1) Vehicle; (2) PE; (3) PE + control siRNA; (4) PE + Rapamycin (100 nM); (5) PE + PKD-siRNA (2 × 108 U/0.1 ml); (6) PE + PKD siRNA + 3 MA (10 mM). The results showed that PE treatment induced cardiomyocyte hypertrophy, which were confirmed by cell size and biomarkers of cardiomyocyte hypertrophy including increased ANP and BNP mRNA. PKD knockdown or Rapamycin significantly inhibited PE-induced cardiomyocyte hypertrophy. In addition, PKD siRNA increased autophagy activity determined by electron microscopy, increased biomarkers of autophagy by Western blot, accompanied by down-regulated AKT/mTOR/S6K pathway. All the effects of PKD knockout were inhibited by co-treatment with 3-MA, an autophagy inhibitor. Oppositely, the autophagy in cardiomyocytes was inhibited by PKD overexpression. These results suggest that PKD participates in the development of cardiac hypertrophy by regulating autophagy via AKT/mTOR/S6K pathway.


Assuntos
Autofagia/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Quinases S6 Ribossômicas/genética , Serina-Treonina Quinases TOR/genética , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Animais Recém-Nascidos , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Autofagia/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Tamanho Celular , Regulação da Expressão Gênica , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Norepinefrina/farmacologia , Cultura Primária de Células , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
17.
Int Heart J ; 62(6): 1379-1386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853228

RESUMO

Clinical studies have indicated that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, can potentially inhibit chronic heart failure. In the Stat-LVDF study, a difference was noted in terms of the effect of lipophilic pitavastatin (PTV) and hydrophilic rosuvastatin (RSV) on plasma BNP, suggesting that statin lipophilicity and pharmacokinetics change the pleiotropic effect on heart failure in humans. Therefore, we assessed the beneficial effects of PTV on hypertrophy in cardiac myocytes compared with RSV at clinically used doses. Cultured cardiomyocytes were stimulated with 30 µM phenylephrine (PE) in the presence of PTV (250 nM) or RSV (50 nM). These doses were calculated based on the maximum blood concentration of statins used in clinical situations in Japan. The results showed that PTV, but not RSV, significantly inhibits the PE-induced increase in cell size and leucine incorporation without causing cell toxicity. In addition, PTV significantly suppressed PE-induced mRNA expression of hypertrophic response genes. PE-induced ERK phosphorylation was inhibited by PTV, but not by RSV. Furthermore, PTV significantly suppressed the angiotensin-II-induced proline incorporation in primary cultured cardiac fibroblasts. In conclusion, a clinical dose of PTV was noted to directly inhibit cardiomyocyte hypertrophy and cardiac fibrosis, suggesting that lipophilic PTV can be a potential drug candidate against chronic heart failure.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Quinolinas/administração & dosagem , Rosuvastatina Cálcica/administração & dosagem , Actinas/genética , Actinas/metabolismo , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Hipertrofia , Leucina/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
18.
Am J Hum Genet ; 100(2): 205-215, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28089252

RESUMO

Whole-genome sequencing (WGS) allows for a comprehensive view of the sequence of the human genome. We present and apply integrated methodologic steps for interrogating WGS data to characterize the genetic architecture of 10 heart- and blood-related traits in a sample of 1,860 African Americans. In order to evaluate the contribution of regulatory and non-protein coding regions of the genome, we conducted aggregate tests of rare variation across the entire genomic landscape using a sliding window, complemented by an annotation-based assessment of the genome using predefined regulatory elements and within the first intron of all genes. These tests were performed treating all variants equally as well as with individual variants weighted by a measure of predicted functional consequence. Significant findings were assessed in 1,705 individuals of European ancestry. After these steps, we identified and replicated components of the genomic landscape significantly associated with heart- and blood-related traits. For two traits, lipoprotein(a) levels and neutrophil count, aggregate tests of low-frequency and rare variation were significantly associated across multiple motifs. For a third trait, cardiac troponin T, investigation of regulatory domains identified a locus on chromosome 9. These practical approaches for WGS analysis led to the identification of informative genomic regions and also showed that defined non-coding regions, such as first introns of genes and regulatory domains, are associated with important risk factor phenotypes. This study illustrates the tractable nature of WGS data and outlines an approach for characterizing the genetic architecture of complex traits.


Assuntos
Negro ou Afro-Americano/genética , Estudo de Associação Genômica Ampla , Lipoproteína(a)/genética , Troponina T/genética , Proteína C-Reativa/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Cromossomos Humanos Par 9/genética , Frequência do Gene , Genoma Humano , Genômica , Hemoglobinas/metabolismo , Humanos , Íntrons , Contagem de Leucócitos , Lipoproteína(a)/sangue , Magnésio/sangue , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Neutrófilos/citologia , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/genética , Fósforo/sangue , Contagem de Plaquetas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Troponina T/sangue , População Branca/genética
19.
J Pharmacol Exp Ther ; 372(1): 73-82, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31771994

RESUMO

Itch stimuli are detected by specialized primary afferents that convey the signal to the spinal cord, but how itch transmission is regulated is still not completely known. Here, we investigated the roles of the neuropeptide Y (NPY)/Y2 receptor system on scratch behavior. The inhibitory Y2 receptor is expressed on mouse primary afferents, and intrathecal administration of the Y2 agonist peptide YY (PYY)3-36 reduced scratch episode frequency and duration induced by compound 48/80, an effect that could be reversed by intrathecal preadministration of the Y2 antagonist BIIE0246. Also, scratch episode duration induced by histamine could be reduced by PYY3-36 In contrast, scratch behavior induced by α-methyl-5HT, protease-activated receptor-2-activating peptide SLIGRL, chloroquine, topical dust mite extract, or mechanical itch induced by von Frey filaments was unaffected by stimulation of Y2 Primary afferent neurons expressing the Npy2r gene were found to coexpress itch-associated markers such as natriuretic peptide precursor b, oncostatin M receptor, and interleukin (IL) 31 receptor A. Accordingly, intrathecal PYY3-36 reduced the scratch behavior induced by IL-31. Our findings imply that the NPY/Y2 system reduces histaminergic and IL-31-associated itch through presynaptic inhibition of a subpopulation of itch-associated primary afferents. SIGNIFICANCE STATEMENT: The spinal neuropeptide Y system dampens scratching behavior induced by histaminergic compounds and interleukin 31, a cytokine involved in atopic dermatitis, through interactions with the Y2 receptor. The Y2 receptor is expressed by primary afferent neurons that are rich in itch-associated neurotransmitters and receptors such as somatostatin, natriuretic peptide precursor b, and interleukin 31 receptors.


Assuntos
Antipruriginosos/farmacologia , Dermatite Atópica/metabolismo , Neurônios Aferentes/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeo YY/farmacologia , Prurido/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Antipruriginosos/administração & dosagem , Antipruriginosos/uso terapêutico , Arginina/análogos & derivados , Arginina/toxicidade , Benzazepinas/toxicidade , Células Cultivadas , Cloroquina/farmacologia , Dermatite Atópica/tratamento farmacológico , Gânglios Espinais/citologia , Histamina/farmacologia , Histamina/toxicidade , Interleucinas/farmacologia , Interleucinas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/uso terapêutico , Peptídeo YY/administração & dosagem , Peptídeo YY/uso terapêutico , Prurido/tratamento farmacológico , Prurido/etiologia , Receptores de Neuropeptídeo Y/genética , Receptores de Oncostatina M/genética , Receptores de Oncostatina M/metabolismo , Serotonina/farmacologia
20.
J Cardiovasc Pharmacol ; 76(2): 246-254, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32433360

RESUMO

Cardiac hypertrophy causes heart failure and is associated with hyperglycemia in patients with diabetes mellitus. Mibefradil, which acts as a T-type calcium channel blocker, exerts beneficial effects in patients with heart failure. In this study, we explored the effects and mechanism of mibefradil on high-glucose-induced cardiac hypertrophy in H9c2 cells. H9c2 cells were incubated in a high-glucose medium and then treated with different concentrations of mibefradil in the presence or absence of the Akt inhibitor MK2206 or mTOR inhibitor rapamycin. Cell size was evaluated through immunofluorescence, and mRNA expression of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and ß-myosin heavy chain) was assessed by using quantitative real-time polymerase chain reaction. Changes in the expression of p-PI3K, p-Akt, and p-mTOR were evaluated using Western blotting, and autophagosome formation was detected using transmission electron microscopy. Our results indicate that mibefradil reduced the size of H9c2 cells, decreased mRNA expression of atrial natriuretic peptide, brain natriuretic peptide, and ß-myosin heavy chain, and decreased the level of autophagic flux. However, MK2206 and rapamycin induced autophagy and reversed the effects of mibefradil on high-glucose-induced H9c2 cells. In conclusion, mibefradil ameliorated high-glucose-induced cardiac hypertrophy by activating the PI3K/Akt/mTOR pathway and inhibiting excessive autophagy. Our study shows that mibefradil can be used therapeutically to ameliorate cardiac hypertrophy in patients with diabetes mellitus.


Assuntos
Autofagia/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Cardiomegalia/prevenção & controle , Glucose/toxicidade , Mibefradil/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Fosforilação , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA