Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 130: 104498, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181281

RESUMO

Prion diseases typically involve brain deposition of abnormally folded prion protein, which is associated with activated glia and increased cytokine production. Cyclophilin A (CypA) is a ubiquitous protein with peptidyl prolyl cis-trans isomerase activity, which regulates protein folding, and can be secreted by cells in response to inflammatory stimuli. On the basis of in vitro studies, CypA was proposed to mediate glial activation during prion infection. To investigate the role of CypA in vivo, we inoculated CypA+/+, CypA+/- and CypA-/- mice with the RML prion strain, and recorded the time to onset of neurological signs and to terminal disease, and the astrocyte and microglia response at presymptomatic and symptomatic stages. Time to onset of disease and survival were significantly shorter in CypA-deficient mice than CypA-expressing controls. CypA-deficient mice had significantly greater microglial activation in the presymptomatic stage, and analysis of anti- and pro-inflammatory microglial markers indicated a shift towards a pro-inflammatory phenotype. There was no difference in astrocyte activation. This suggests that CypA contributes to dampening the pro-inflammatory microglial response during the early stage of RML-induced prion disease.


Assuntos
Encéfalo/patologia , Microglia/metabolismo , Peptidilprolil Isomerase/deficiência , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Animais , Encéfalo/metabolismo , Camundongos , Camundongos Knockout
2.
Biochem Biophys Res Commun ; 499(4): 967-972, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29626483

RESUMO

Binding of native bacterial protein SlyD to metal affinity matrices remains a major problem in affinity purification of His-tagged recombinant proteins from Escherichia coli cells. In this study, four novel E. coli strains that lack the expression of SlyD/SlyX, were engineered using λ-red mediated chromosomal deletion. The resultant mutant E. coli strains allow us to obtain SlyD-free proteins immediately after metal affinity chromatography, and eliminate additional purification processes. As a model protein, bispecific antibodies composed of anti-F4/80 VHH module and anti-TNF VHH module (MYSTI-2) were used. Using this protein we have shown that the SlyD/SlyX-deficient E. coli strains allow us to obtain a fully functional protein.


Assuntos
Escherichia coli/metabolismo , Peptidilprolil Isomerase/deficiência , Proteínas Recombinantes/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Citometria de Fluxo , Humanos , Peptidilprolil Isomerase/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
3.
Circ Res ; 112(9): 1244-52, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23487407

RESUMO

RATIONALE: Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based on the phosphorylation status of involved signaling molecules. Although numerous critical regulatory kinases and phosphatases have been identified in the myocardium, the intracellular mechanism for temporal regulation of signaling duration and intensity remains obscure. In the nonmyocyte context, control of folding, activity, and stability of proteins is mediated by the prolyl isomerase Pin1, but the role of Pin1 in the heart is unknown. OBJECTIVE: To establish the role of Pin1 in the heart. METHODS AND RESULTS: Here, we show that either genetic deletion or cardiac overexpression of Pin1 blunts hypertrophic responses induced by transaortic constriction and consequent cardiac failure in vivo. Mechanistically, we find that Pin1 directly binds to Akt, mitogen activated protein kinase (MEK), and Raf-1 in cultured cardiomyocytes after hypertrophic stimulation. Furthermore, loss of Pin1 leads to diminished hypertrophic signaling of Akt and MEK, whereas overexpression of Pin1 increases Raf-1 phosphorylation on the autoinhibitory site Ser259, leading to reduced MEK activation. CONCLUSIONS: Collectively, these data support a role for Pin1 as a central modulator of the intensity and duration of 2 major hypertrophic signaling pathways, thereby providing a novel target for regulation and control of cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Miócitos Cardíacos/enzimologia , Peptidilprolil Isomerase/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Dependovirus/genética , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Ratos , Fatores de Tempo , Transdução Genética , Transfecção , Ultrassonografia , Quinases raf/metabolismo
4.
Biochem Biophys Res Commun ; 452(3): 468-72, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25159840

RESUMO

Peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (PIN1) modulates phospho-signaling by catalyzing rotation of the bond between a phosphorylated serine or threonine before proline in proteins. As depletion of PIN1 increased inflammatory protein expression in cultured endothelial cells treated with bacterial endotoxin (lipopolysaccharide, LPS) and interferon-γ, we hypothesized that PIN1 knockout would increase sensitivity to LPS-induced lung inflammation in mice. Mortality due to a high dose of LPS (30mg/kg) was greater in knockout than wildtype mice. Lung myeloperoxidase activity, reflecting neutrophils, was increased to a 35% higher level in PIN1 knockout mouse lung, as compared with wildtype, after treatment with a sublethal dose of 3mgLPS/kg, ip. Unexpectedly, plasma tumor necrosis factor-α (TNF) was approximately 50% less than in wildtype mice. Knockout mice, however, were more sensitive than wildtype to TNF-induced neutrophil accumulation. The neutrophil adhesion molecule, E-selectin, was also elevated in lungs of knockout mice treated with TNF, suggesting that PIN1 depletion increases endothelial sensitivity to TNF. Indeed, TNF induced more reactive oxygen species in cultured endothelial cells depleted of PIN1 with short hairpin RNA than in control cells. Collectively, the results indicate that while PIN1 normally facilitates TNF production in LPS-treated mice, it suppresses pulmonary and endothelial reactions to the cytokine. Tissue or cell-specific effects of PIN1 may affect the overall inflammatory response to LPS and other stimuli.


Assuntos
Pulmão/enzimologia , Peptidilprolil Isomerase/genética , Pneumonia/enzimologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Selectina E/genética , Selectina E/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Peptidilprolil Isomerase/deficiência , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
J Cell Mol Med ; 17(8): 989-1005, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23750710

RESUMO

Type 2 diabetes (T2D) is associated with accelerated restenosis rates after angioplasty. We have previously proved that Pin1 played an important role in vascular smooth muscle cell (VSMC) cycle and apoptosis. But neither the role of Pin1 in restenosis by T2D, nor the molecular mechanism of Pin1 in these processes has been elucidated. A mouse model of T2D was generated by the combination of high-fat diet (HFD) and streptozotocin (STZ) injections. Both Immunohistochemistry and Western blot revealed that Pin1 expression was up-regulated in the arterial wall in T2D mice and in VSMCs in culture conditions mimicking T2D. Next, increased activity of Pin1 was observed in neointimal hyperplasia after arterial injury in T2D mice. Further analysis confirmed that 10% serum of T2D mice and Pin1-forced expression stimulated proliferation, inhibited apoptosis, enhanced cell cycle progression and migration of VSMCs, whereas Pin1 knockdown resulted in the converse effects. We demonstrated that STAT3 signalling and mitochondria-dependent pathways played critical roles in the involvement of Pin1 in cell cycle regulation and apoptosis of VSMCs in T2D. In addition, VEGF expression was stimulated by Pin1, which unveiled part of the mechanism of Pin1 in regulating VSMC migration in T2D. Finally, the administration of juglone via pluronic gel onto injured common femoral artery resulted in a significant inhibition of the neointima/media ratio. Our findings demonstrated the vital effect of Pin1 on the VSMC proliferation, cell cycle progression, apoptosis and migration that underlie neointima formation in T2D and implicated Pin1 as a potential therapeutic target to prevent restenosis in T2D.


Assuntos
Reestenose Coronária/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias/metabolismo , Peptidilprolil Isomerase/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Apoptose , Caspases/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Reestenose Coronária/sangue , Reestenose Coronária/complicações , Citocromos c/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Ativação Enzimática , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Técnicas de Silenciamento de Genes , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Peptidilprolil Isomerase de Interação com NIMA , Neointima/metabolismo , Neointima/patologia , Peptidilprolil Isomerase/deficiência , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
J Biol Chem ; 285(3): 1754-64, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19920136

RESUMO

Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.


Assuntos
Movimento Celular/efeitos dos fármacos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Peptidilprolil Isomerase/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Biocatálise , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Fosforilação , Proteína Smad2/metabolismo , Proteína Smad3/química , Proteína Smad3/metabolismo , Especificidade por Substrato , Treonina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
7.
J Biol Chem ; 284(25): 16840-16847, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19401603

RESUMO

Neurodegenerative tauopathies, including Alzheimer disease, are characterized by abnormal hyperphosphorylation of the microtubule-associated protein Tau. One group of tauopathies, known as frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), is directly associated with mutations of the gene tau. However, it is unknown why mutant Tau is highly phosphorylated in the patient brain. In contrast to in vivo high phosphorylation, FTDP-17 Tau is phosphorylated less than wild-type Tau in vitro. Because phosphorylation is a balance between kinase and phosphatase activities, we investigated dephosphorylation of mutant Tau proteins, P301L and R406W. Tau phosphorylated by Cdk5-p25 was dephosphorylated by protein phosphatases in rat brain extracts. Compared with wild-type Tau, R406W was dephosphorylated faster and P301L slower. The two-dimensional phosphopeptide map analysis suggested that faster dephosphorylation of R406W was due to a lack of phosphorylation at Ser-404, which is relatively resistant to dephosphorylation. We studied the effect of the peptidyl-prolyl isomerase Pin1 or microtubule binding on dephosphorylation of wild-type Tau, P301L, and R406W in vitro. Pin1 catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro sequences in a subset of proteins. Dephosphorylation of wild-type Tau was reduced in brain extracts of Pin1-knockout mice, and this reduction was not observed with P301L and R406W. On the other hand, binding to microtubules almost abolished dephosphorylation of wild-type and mutant Tau proteins. These results demonstrate that mutation of Tau and its association with microtubules may change the conformation of Tau, thereby suppressing dephosphorylation and potentially contributing to the etiology of tauopathies.


Assuntos
Microtúbulos/metabolismo , Mutação , Peptidilprolil Isomerase/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Substituição de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Primers do DNA/genética , Humanos , Técnicas In Vitro , Cinética , Camundongos , Camundongos Knockout , Modelos Neurológicos , Peptidilprolil Isomerase de Interação com NIMA , Mapeamento de Peptídeos , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Fosforilação , Conformação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tauopatias/etiologia , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/química
8.
J Hepatol ; 51(2): 296-306, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19515451

RESUMO

BACKGROUND/AIMS: Our previous work suggested an important role for the peptidyl-prolyl isomerase, Pin1, in hepatic NF-kappaB activation and liver injury during ischemia/reperfusion (I/R). In this study, we sought to determine the function of Pin1 in the injury response to hepatic I/R. METHODS: Wild-type and Pin1(-/-) mice were subjected to partial hepatic I/R. In addition, hepatocytes and Kupffer cells were isolated from these mice. RESULTS: Pin1(-/-) mice had reduced hepatic NF-kappaB activation and more liver injury after I/R than wild-type mice. The increased injury was not a result of enhanced inflammation as Pin1(-/-) mice had the same level of proinflammatory cytokine production and less neutrophil accumulation in the liver. The reduced NF-kappaB activation was not a result of a defect in nuclear translocation of NF-kappaB. In fact, hepatic nuclear p65 protein expression was higher in Pin1(-/-) mice than wild-type mice. This suggests that Pin1 is important for NF-kappaB-DNA binding. This effect was specific to hepatocytes as isolated Kupffer cells from wild-type and Pin1(-/-) mice were identical in their activation of NF-kappaB and production of cytokines after stimulation. In contrast, hepatocytes stimulated with TNFalpha had greatly reduced NF-kappaB activation, reduced production of the CXC chemokine, MIP-2, and increased cell death. CONCLUSIONS: These data suggest that Pin1 is a critical regulator of NF-kappaB activation in hepatocytes and its role in these cells appears to confer direct protective effects.


Assuntos
Hepatócitos/metabolismo , Fígado/enzimologia , Fígado/lesões , NF-kappa B/metabolismo , Peptidilprolil Isomerase/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Morte Celular/efeitos dos fármacos , Quimiocina CXCL2/biossíntese , Citocinas/biossíntese , DNA/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Proteínas I-kappa B/metabolismo , Técnicas In Vitro , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Inibidor de NF-kappaB alfa , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/farmacologia
9.
Mol Cell Biol ; 26(4): 1463-79, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16449657

RESUMO

Phosphorylation on Ser/Thr-Pro motifs is a major mechanism regulating many events involved in cell proliferation and transformation, including centrosome duplication, whose defects have been implicated in oncogenesis. Certain phosphorylated Ser/Thr-Pro motifs can exist in two distinct conformations whose conversion in certain proteins is catalyzed specifically by the prolyl isomerase Pin1. Pin1 is prevalently overexpressed in human cancers and is important for the activation of multiple oncogenic pathways, and its deletion suppresses the ability of certain oncogenes to induce cancer in mice. However, little is known about the role of Pin1 in centrosome duplication and the significance of Pin1 overexpression in cancer development in vivo. Here we show that Pin1 overexpression correlates with centrosome amplification in human breast cancer tissues. Furthermore, Pin1 localizes to and copurifies with centrosomes in interphase but not mitotic cells. Moreover, Pin1 ablation in mouse embryonic fibroblasts drastically delays centrosome duplication without affecting DNA synthesis and Pin1 inhibition also suppresses centrosome amplification in S-arrested CHO cells. In contrast, overexpression of Pin1 drives centrosome duplication and accumulation, resulting in chromosome missegregation, aneuploidy, and transformation in nontransformed NIH 3T3 cells. More importantly, transgenic overexpression of Pin1 in mouse mammary glands also potently induces centrosome amplification, eventually leading to mammary hyperplasia and malignant mammary tumors with overamplified centrosomes. These results demonstrate for the first time that the phosphorylation-specific isomerase Pin1 regulates centrosome duplication and its deregulation can induce centrosome amplification, chromosome instability, and oncogenesis.


Assuntos
Centrossomo/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Motivos de Aminoácidos , Aneuploidia , Animais , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células CHO , Transformação Celular Neoplásica , Instabilidade Cromossômica , Cricetinae , Feminino , Expressão Gênica , Humanos , Interfase , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitose , Células NIH 3T3 , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/deficiência , Fosforilação
10.
Oncogene ; 26(26): 3835-45, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17160015

RESUMO

Tumor suppressor p53 is essential for checkpoint control in response to a variety of genotoxic stresses. DNA damage leads to phosphorylation on the Ser/Thr-Pro motifs of p53, which facilitates interaction with Pin1, a pSer/pThr-Pro-specific peptidyl prolyl isomerase. Pin1 is required for the timely activation of p53, resulting in apoptosis or cell cycle arrest. To investigate the physiological relationship between Pin1 and p53, we created Pin1-/-p53-/- mice. These p53-deficient mice spontaneously developed lymphomas, mainly of thymic origin, as well as generalized lymphoma infiltration into other organs, including the liver, kidneys and lungs. Ablation of Pin1, in addition to p53, accelerated the thymic hyperplasia, but the thymocytes in these Pin1-/-p53-/- mice did not infiltrate other organs. The thymocytes in 12-week-old Pin1-/-p53-/- mice were CD4(-)CD8(-) (double negative) and had significantly higher levels of the intracellular form of Notch1 (NIC) than the thymocytes of p53-/- or wild-type mice. Presenilin-1, a cleavage enzyme for NIC generation from full-length Notch1 was increased in the thymocytes of Pin1-/-p53-/- mice. Pin1 depletion also inhibited the degradation of NIC by proteasomes. These results suggest that both Pin1 and p53 control the normal proliferation and differentiation of thymocytes by regulating the NIC level.


Assuntos
Peptidilprolil Isomerase/deficiência , Receptor Notch1/metabolismo , Linfócitos T/metabolismo , Hiperplasia do Timo/metabolismo , Proteína Supressora de Tumor p53/deficiência , Animais , Western Blotting , Feminino , Citometria de Fluxo , Líquido Intracelular/química , Masculino , Camundongos , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA , Presenilina-1/metabolismo , Linfócitos T/imunologia , Hiperplasia do Timo/genética , Hiperplasia do Timo/patologia , Proteína Supressora de Tumor p53/genética
11.
J Neurosci ; 27(31): 8395-404, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17670986

RESUMO

Although oligodendrocytes undergo apoptosis after spinal cord injury, molecular mechanisms responsible for their death have been unknown. We report that oligodendrocyte apoptosis is regulated oppositely by c-Jun N-terminal kinase 3 (JNK3) and protein interacting with the mitotic kinase, never in mitosis A I (Pin1), the actions of which converge on myeloid cell leukemia sequence-1 (Mcl-1). Activated after injury, JNK3 induces cytochrome c release by facilitating the degradation of Mcl-1, the stability of which is maintained in part by Pin1. Pin1 binds Mcl-1 at its constitutively phosphorylated site, Thr163Pro, and stabilizes it by inhibiting ubiquitination. After injury JNK3 phosphorylates Mcl-1 at Ser121Pro, facilitating the dissociation of Pin1 from Mcl-1. JNK3 thus induces Mcl-1 degradation by counteracting the protective binding of Pin1. These results are confirmed by the opposing phenotypes observed between JNK3-/- and Pin1-/- mice: oligodendrocyte apoptosis and cytochrome c release are reduced in JNK3-/- but elevated in Pin1-/- mice. This report thus unveils a mechanism by which cytochrome c release is under the opposite control of JNK3 and Pin1, regulators for which the activities are intricately coupled.


Assuntos
Apoptose/fisiologia , Proteína Quinase 10 Ativada por Mitógeno/fisiologia , Oligodendroglia/enzimologia , Peptidilprolil Isomerase/fisiologia , Traumatismos da Medula Espinal/enzimologia , Animais , Apoptose/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Quinase 10 Ativada por Mitógeno/deficiência , Proteína Quinase 10 Ativada por Mitógeno/genética , Peptidilprolil Isomerase de Interação com NIMA , Oligodendroglia/citologia , Oligodendroglia/patologia , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Ubiquitina/antagonistas & inibidores , Ubiquitina/metabolismo
12.
Mol Cancer ; 7: 91, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19077306

RESUMO

UNLABELLED: Overexpression of HER-2/Neu occurs in about 25-30% of breast cancer patients and is indicative of poor prognosis. While Her2/Neu overexpression is primarily a result of erbB2 amplification, it has recently been recognized that erbB2 levels are also regulated on the protein level. However, factors that regulate Her2/Neu protein stability are less well understood. The prolyl isomerase Pin1 catalyzes the isomerization of specific pSer/Thr-Pro motifs that have been phosphorylated in response to mitogenic signaling. We have previously reported that Pin1-catalyzed post-phosphorylational modification of signal transduction modulates the oncogenic pathways downstream from c-neu. The goal of this study was to examine the expression of prolyl isomerase Pin1 in human Her2+ breast cancer, and to study if Pin1 affects the expression of Her2/Neu itself. METHODS: Immunohistochemistry for Her2 and Pin1 were performed on two hundred twenty-three human breast cancers, with 59% of the specimen from primary cancers and 41% from metastatic sites. Pin1 inhibition was achieved using siRNA in Her2+ breast cancer cell lines, and its effects were studied using cell viability assays, immunoblotting and immunofluorescence. RESULTS: Sixty-four samples (28.7%) stained positive for Her2 (IHC 3+), and 54% (122/223) of all breast cancers stained positive for Pin1. Of the Her2-positive cancers 40 (62.5%) were also Pin1-positive, based on strong nuclear or nuclear and cytoplasmic staining. Inhibition of Pin1 via RNAi resulted in significant suppression of Her2-positive tumor cell growth in BT474, SKBR3 and AU565 cells. Pin1 inhibition greatly increased the sensitivity of Her2-positive breast cancer cells to the mTOR inhibitor Rapamycin, while it did not increase their sensitivity to Trastuzumab, suggesting that Pin1 might act on Her2 signaling. We found that Pin1 interacted with the protein complex that contains ubiquitinated erbB2 and that Pin1 inhibition accelerated erbB2 degradation, which could be prevented by treatments with the proteasome inhibitor ALLnL. CONCLUSION: Pin1 is a novel regulator of erbB2 that modulates the ubiquitin-mediated degradation of erbB2. The overexpression of Pin1 in a majority of Her2-overexpressing breast cancer may contribute to maintain erbB2 levels. Pin1 inhibition alone and in conjunction with mTOR inhibition suppresses the growth of Her2+ breast cancer cells.


Assuntos
Neoplasias da Mama/enzimologia , Peptidilprolil Isomerase/metabolismo , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/antagonistas & inibidores , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Inibidores de Proteassoma , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Sirolimo/farmacologia , Transcrição Gênica/efeitos dos fármacos , Trastuzumab
13.
Mol Cell Biol ; 25(15): 6660-72, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16024801

RESUMO

SIL is an immediate-early gene that is essential for embryonic development and is implicated in T-cell leukemia-associated translocations. We now show that the Sil protein is hyperphosphorylated during mitosis or in cells blocked at prometaphase by microtubule inhibitors. Cell cycle-dependent phosphorylation of Sil is required for its interaction with Pin1, a regulator of mitosis. Point mutation of the seven (S/T)P sites between amino acids 567 and 760 reduces mitotic phosphorylation of Sil, Pin1 binding, and spindle checkpoint duration. When a phosphorylation site mutant Sil is stably expressed, the duration of the spindle checkpoint is shortened in cells challenged with taxol or nocodazole, and the cells revert to a G2-like state. This event is associated with the downregulation of the kinase activity of the Cdc2/cyclin B1 complex and the dephosphorylation of the threonine 161 on the Cdc2 subunit. Sil downregulation by plasmid-mediated RNA interference limited the ability of cells to activate the spindle checkpoint and correlated with a reduction of Cdc2/cyclin B1 activity and phosphorylation on T161 on the Cdc2 subunit. These data suggest that a critical region of Sil is required to mediate the presentation of Cdc2 activity during spindle checkpoint arrest.


Assuntos
Ciclo Celular/fisiologia , Proteínas de Fusão Oncogênica/metabolismo , Peptidilprolil Isomerase/metabolismo , Fuso Acromático/metabolismo , Sítios de Ligação , DNA/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mitose/fisiologia , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/fisiologia , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Fatores de Tempo
14.
Cell Death Dis ; 5: e1237, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24853415

RESUMO

The presence of tangles composed of phosphorylated tau is one of the neuropathological hallmarks of Alzheimer's disease (AD). Tau, a microtubule (MT)-associated protein, accumulates in AD potentially as a result of posttranslational modifications, such as hyperphosphorylation and conformational changes. However, it has not been fully understood how tau accumulation and phosphorylation are deregulated. In the present study, we identified a novel role of death-associated protein kinase 1 (DAPK1) in the regulation of the tau protein. We found that hippocampal DAPK1 expression is markedly increased in the brains of AD patients compared with age-matched normal subjects. DAPK1 overexpression increased tau protein stability and phosphorylation at multiple AD-related sites. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant or by genetic knockout significantly decreased tau protein stability and abolished its phosphorylation in cell cultures and in mice. Mechanistically, DAPK1-enhanced tau protein stability was mediated by Ser71 phosphorylation of Pin1, a prolyl isomerase known to regulate tau protein stability, phosphorylation, and tau-related pathologies. In addition, inhibition of DAPK1 kinase activity significantly increased the assembly of MTs and accelerated nerve growth factor-mediated neurite outgrowth. Given that DAPK1 has been genetically linked to late onset AD, these results suggest that DAPK1 is a novel regulator of tau protein abundance, and that DAPK1 upregulation might contribute to tau-related pathologies in AD. Therefore, we offer that DAPK1 might be a novel therapeutic target for treating human AD and other tau-related pathologies.


Assuntos
Doença de Alzheimer/enzimologia , Encéfalo/enzimologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Neurônios/enzimologia , Proteínas tau/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Estudos de Casos e Controles , Proteínas Quinases Associadas com Morte Celular/deficiência , Proteínas Quinases Associadas com Morte Celular/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Mutação , Células NIH 3T3 , Peptidilprolil Isomerase de Interação com NIMA , Neuritos/enzimologia , Neuritos/patologia , Neurônios/patologia , Células PC12 , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Fosforilação , Estabilidade Proteica , Interferência de RNA , Ratos , Fatores de Tempo , Transfecção , Proteínas tau/genética
15.
PLoS One ; 7(3): e31823, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412843

RESUMO

BACKGROUND: A peptidyl prolyl cis/trans isomerase, Pin1, regulates insulin signal transduction. Pin1 reduces responses to insulin stimulation by binding CRTC2 (CREB-regulated transcriptional co-activator 2) and PPARγ (peroxisome prolifereator- activated receptor γ), but conversely enhances insulin signaling by binding IRS-1 (insulin receptor substrate-1), Akt kinase, and Smad3. Therefore, it is still unclear whether Pin1 inhibits or enhances adipose cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Pin1(-/-) and wild-type mice were fed with high fat diets and adipose tissue weight was measured. Compared to wild-type mice, Pin1(-/-) mice had lower adipose tissue weight, while the weight of other tissues was similar. Mouse embryo fibroblasts (MEFs), prepared from both groups of mice, were induced to differentiate into adipose cells by stimulation with insulin. However, the rate of differentiation of MEFs from Pin1(-/-) mice was less than that of MEFs from wild-type mice. The rate of insulin-induced MEF cell differentiation in Pin1(-/-) mice was restored by increasing expression of Pin1. We found that Pin1 binds to phosphoThr172- and phosphoSer271-Pro sites in CREB suppress the activity in COS-7 cells. CONCLUSION AND SIGNIFICANCE: Pin1 enhanced the uptake of triglycerides and the differentiation of MEF cells into adipose cells in response to insulin stimulation. Results of this study suggest that Pin1 down-regulation could be a potential approach in obesity-related dysfunctions, such as high blood pressure, diabetes, non-alcoholic steatohepatitis.


Assuntos
Adipócitos/citologia , Adipócitos/enzimologia , Diferenciação Celular , Fibroblastos/citologia , Fibroblastos/enzimologia , Peptidilprolil Isomerase/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Tamanho Celular , Chlorocebus aethiops , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta Hiperlipídica , Embrião de Mamíferos/citologia , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Ligação Proteica , Tomografia Computadorizada por Raios X , Ativação Transcricional
16.
Hypertension ; 58(3): 431-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21810655

RESUMO

Pin1 is a peptidyl prolyl cis-trans isomerase that only binds to and isomerizes phosphorylated serine/threonine-proline motifs, inducing conformational changes that alter target protein function and phosphorylation. We have shown previously that deficiency of another peptidyl prolyl isomerase, FK506 binding protein 12/12.6, alters endothelial NO synthase phosphorylation and causes endothelial dysfunction and hypertension. Endothelial NO synthase contains the Pin1 binding sequence at (p)serine 116-proline 117 and phosphorylation of endothelial NO synthase serine 116 inhibits NO production; however, whether Pin1 deficiency alters vascular function and blood pressure is unknown. We hypothesized that Pin1 isomerizes p-endothelial NO synthase serine 116, which enables dephosphorylation and stimulates NO production. Immunoprecipitation of endothelial NO synthase and probing for Pin1 in rat aortic endothelial cells confirmed the interaction between the two. Pin1 knockdown via small interfering RNA or inhibition by juglone increased endothelial NO synthase serine 116 phosphorylation and prevented vascular endothelial growth factor-induced serine 116 dephosphorylation in endothelial cells. Acute treatment of isolated mouse aortas with juglone increased endothelial NO synthase serine 116 phosphorylation and decreased NO production and relaxation responses. Mice treated with juglone for 2 weeks, as well as Pin1 knockout mice, exhibited increased aortic endothelial NO synthase serine 116 phosphorylation, endothelial dysfunction, and hypertension. These data demonstrate that Pin1 binds endothelial NO synthase and enables dephosphorylation of serine 116, which increases NO production and endothelium-dependent dilation, leading to blood pressure maintenance.


Assuntos
Endotélio Vascular/metabolismo , Hipertensão/genética , Óxido Nítrico Sintase Tipo III/genética , Peptidilprolil Isomerase/genética , Substituição de Aminoácidos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiopatologia , Sítios de Ligação/genética , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/farmacologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Immunoblotting , Imunoprecipitação , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Peptidilprolil Isomerase de Interação com NIMA , Naftoquinonas/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Peptidilprolil Isomerase/antagonistas & inibidores , Peptidilprolil Isomerase/deficiência , Fosforilação , Ligação Proteica , Interferência de RNA , Ratos , Serina/genética , Serina/metabolismo , Vasodilatação/efeitos dos fármacos
17.
Oncogene ; 28(42): 3735-45, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19668231

RESUMO

The brain tumor glioblastoma (GBM) remains one of the most aggressive and devastating tumors despite decades of effort to find more effective treatments. A hallmark of GBM is the constitutive activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) signaling pathway, which regulates cell proliferation, inflammation, migration and apoptosis. The prolyl isomerase, Pin1, has been found to bind directly to the NF-kappaB protein, p65, and cause increases in NF-kappaB promoter activity in a breast cancer model. We now present evidence that this interaction occurs in GBM and that it has important consequences on NF-kappaB signaling. We demonstrate that Pin1 levels are enhanced in primary GBM tissues compared with controls, and that this difference in Pin1 expression affects the migratory capacity of GBM-derived cells. Pin1 knockdown decreases the amount of activated, phosphorylated p65 in the nucleus, resulting in inhibition of the transcriptional program of the IL-8 gene. Through the use of microarray, we also observed changes in the expression levels of other NF-kappaB regulated genes due to Pin1 knockdown. Taken together, these data suggest that Pin1 is an important regulator of NF-kappaB in GBM, and support the notion of using Pin1 as a therapeutic target in the future.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Interleucina-8/genética , NF-kappa B/metabolismo , Peptidilprolil Isomerase/metabolismo , Transdução de Sinais , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Sequências Repetidas Invertidas , Camundongos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Fosforilação , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tetraciclina/farmacologia , Fator de Transcrição RelA/metabolismo
18.
J Biol Chem ; 282(17): 12813-21, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17339317

RESUMO

The FK506-binding proteins (FKBs) represent ubiquitous enzymes that catalyze the rate-limiting peptidyl prolyl cis-trans isomerization step in protein folding. The nematode Caenorhabditis elegans has eight FKBs, three of which (FKB-3, -4, and -5) have dual peptidyl prolyl cis-trans isomerase (PPIase) domains, signal peptides and ER retention signals. PPIase activity has been detected for recombinant FKB-3. Both FKB-3 and -5 are expressed in the exoskeleton-synthesizing hypodermis with transcript peaks that correspond to the molting and collagen synthesis cycles. FKB-4 is expressed at a low level throughout development. No phenotypes were observed in deletion mutants in each of the secretory pathway FKBs. Combined triple and fkb-4, -5 double deletion mutants were however found to arrest at 12 degrees C, but developed normally at 15-25 degrees C. This cold-sensitive larval lethal effect was not maternally derived, occurred during embryogenesis, and could be rescued following the transgenic introduction of a wild type copy of either fkb-4 or fkb-5. The temperature-sensitive defects also affected molting, cuticle collagen expression, hypodermal seam cell morphology, and the structural integrity of the cuticular extracellular matrix. This study establishes that the secretory pathway FK506-binding PPIase enzymes are essential for normal nematode development, collagen biogenesis, and the formation of an intact exoskeleton under adverse physiological conditions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Peptidilprolil Isomerase/deficiência , Proteínas de Ligação a Tacrolimo/deficiência , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Temperatura Baixa , Matriz Extracelular/patologia , Deleção de Genes , Muda/genética
19.
EMBO J ; 26(7): 1761-71, 2007 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-17347650

RESUMO

The microtubule binding protein gephyrin plays a prominent role in establishing and maintaining a high concentration of inhibitory glycine receptors juxtaposed to presynaptic releasing sites. Here, we show that endogenous gephyrin undergoes proline-directed phosphorylation, which is followed by the recruitment of the peptidyl-prolyl isomerase Pin1. The interaction between gephyrin and Pin1 is strictly dependent on gephyrin phosphorylation and requires serine-proline consensus sites encompassing the gephyrin proline-rich domain. Upon binding, Pin1 triggers conformational changes in the gephyrin molecule, thus enhancing its ability to bind the beta subunit of GlyRs. Consistently, a downregulation of GlyR clusters was detected in hippocampal neurons derived from Pin1 knockout mice, which was paralleled by a reduction in the amplitude of glycine-evoked currents. Our results suggest that phosphorylation-dependent prolyl isomerisation of gephyrin represents a mechanism for regulating GlyRs function.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Peptidilprolil Isomerase/metabolismo , Receptores de Glicina/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Transporte/química , Estruturas Citoplasmáticas/metabolismo , Epitopos , Potenciais Evocados , Hipocampo/citologia , Hipocampo/enzimologia , Humanos , Proteínas de Membrana/química , Camundongos , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA , Neurônios/citologia , Neurônios/enzimologia , Peptidilprolil Isomerase/deficiência , Fosforilação , Prolina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/metabolismo , Serina/metabolismo
20.
PLoS One ; 2(2): e226, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17311089

RESUMO

UNLABELLED: BACKGROUND/ABSTRACT: Immune responses initiated by T cell receptor (TCR) and costimulatory molecule mediated signaling culminate in maximal cytokine mRNA production and stability. The transcriptional responses to co-stimulatory T cell signalling involve calcineurin and NF-AT, which can be antagonized by interference with the cis-trans peptidyl-prolyl isomerases (PPIase), cyclophilin A and FKBP. Signalling molecules downstream of CD28 which are essential for the stabilization of cytokine mRNAs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We now show that Pin1, a third member of the PPIase family mediates the post-transcriptional regulation of Th1 cytokines by activated T cells. Blockade of Pin1 by pharmacologic or genetic means greatly attenuated IFN-gamma, IL-2 and CXCL-10 mRNA stability, accumulation and protein expression after cell activation. In vivo, Pin1 blockade prevented both the acute and chronic rejection of MHC mismatched, orthotopic rat lung transplants by reducing the expression of IFN-gamma and CXCL-10. Combined transcriptional and post-transcriptional blockade with cyclosporine A and the Pin1 inhibitor, juglone, was synergistic. CONCLUSIONS/SIGNIFICANCE: These data suggest Pin1 inhibitors should be explored for use as immunosuppressants and employed with available calcineurin inhibitors to reduce toxicity and enhance effectiveness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Peptidilprolil Isomerase/fisiologia , Células Th1/imunologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Quimiocina CXCL10/biossíntese , Quimiocina CXCL10/genética , Ciclosporina/farmacologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Interferon gama/biossíntese , Interleucina-2/biossíntese , Interleucina-2/genética , Transplante de Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA , Naftoquinonas/farmacologia , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Estabilidade de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos WKY , Transcrição Gênica/efeitos dos fármacos , Transplante Homólogo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA