Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2312611121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38517977

RESUMO

Many cells face search problems, such as finding food, mates, or shelter, where their success depends on their search strategy. In contrast to other unicellular organisms, the slime mold Physarum polycephalum forms a giant network-shaped plasmodium while foraging for food. What is the advantage of the giant cell on the verge of multicellularity? We experimentally study and quantify the migration behavior of P. polycephalum plasmodia on the time scale of days in the absence and presence of food. We develop a model which successfully describes its migration in terms of ten data-derived parameters. Using the mechanistic insights provided by our data-driven model, we find that regardless of the absence or presence of food, P. polycephalum achieves superdiffusive migration by performing a self-avoiding run-and-tumble movement. In the presence of food, the run duration statistics change, only controlling the short-term migration dynamics. However, varying organism size, we find that the long-term superdiffusion arises from self-avoidance determined by cell size, highlighting the potential evolutionary advantage that this macroscopically large cell may have.


Assuntos
Physarum polycephalum , Plasmodium , Movimento
2.
Nucleic Acids Res ; 50(5): 2536-2548, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137186

RESUMO

DNA replication occurring in S-phase is critical for the maintenance of the cell fate from one generation to the next, and requires the duplication of epigenetic information. The integrity of the epigenome is, in part, insured by the recycling of parental histones and de novo deposition of newly synthesized histones. While the histone variants have revealed important functions in epigenetic regulations, the deposition in chromatin during S-phase of newly synthesized histone variants remains unclear. The identification of histone variants of H3 and unique features of Physarum polycephalum provides a powerful system for investigating de novo deposition of newly synthesized histones by tracking the incorporation of exogenous histones within cells. The analyses revealed that the rate of deposition of H3.1 and H3.3 is anticorrelated as S-phase progresses, H3.3 is predominately produced and utilized in early S and dropped throughout S-phase, while H3.1 behaved in the opposite way. Disturbing the expression of H3 variants by siRNAs revealed mutual compensation of histone transcripts. Interestingly, the incorporation of pre-formed constrained histone complexes showed that tetramers of H3/H4 are more efficiently utilized by the cell than dimers. These results support the model whereby the histone variant distribution is established upon replication and new histone deposition.


Assuntos
Histonas , Physarum polycephalum , Ciclo Celular/genética , Cromatina/genética , Replicação do DNA/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos , Physarum polycephalum/genética , Physarum polycephalum/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33619174

RESUMO

The concept of memory is traditionally associated with organisms possessing a nervous system. However, even very simple organisms store information about past experiences to thrive in a complex environment-successfully exploiting nutrient sources, avoiding danger, and warding off predators. How can simple organisms encode information about their environment? We here follow how the giant unicellular slime mold Physarum polycephalum responds to a nutrient source. We find that the network-like body plan of the organism itself serves to encode the location of a nutrient source. The organism entirely consists of interlaced tubes of varying diameters. Now, we observe that these tubes grow and shrink in diameter in response to a nutrient source, thereby imprinting the nutrient's location in the tube diameter hierarchy. Combining theoretical model and experimental data, we reveal how memory is encoded: a nutrient source locally releases a softening agent that gets transported by the cytoplasmic flows within the tubular network. Tubes receiving a lot of softening agent grow in diameter at the expense of other tubes shrinking. Thereby, the tubes' capacities for flow-based transport get permanently upgraded toward the nutrient location, redirecting future decisions and migration. This demonstrates that nutrient location is stored in and retrieved from the networks' tube diameter hierarchy. Our findings explain how network-forming organisms like slime molds and fungi thrive in complex environments. We here identify a flow networks' version of associative memory-very likely of relevance for the plethora of living flow networks as well as for bioinspired design.


Assuntos
Citoplasma/metabolismo , Modelos Biológicos , Physarum polycephalum/metabolismo
4.
Phys Biol ; 20(4)2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37190961

RESUMO

The network-shaped body plan distinguishes the unicellular slime mouldPhysarum polycephalumin body architecture from other unicellular organisms. Yet, network-shaped body plans dominate branches of multi-cellular life such as in fungi. What survival advantage does a network structure provide when facing a dynamic environment with adverse conditions? Here, we probe how network topology impactsP. polycephalum's avoidance response to an adverse blue light. We stimulate either an elongated, I-shaped amoeboid or a Y-shaped networked specimen and subsequently quantify the evacuation process of the light-exposed body part. The result shows that Y-shaped specimen complete the avoidance retraction in a comparable time frame, even slightly faster than I-shaped organisms, yet, at a lower almost negligible increase in migration velocity. Contraction amplitude driving mass motion is further only locally increased in Y-shaped specimen compared to I-shaped-providing further evidence that Y-shaped's avoidance reaction is energetically more efficient than in I-shaped amoeboid organisms. The difference in the retraction behaviour suggests that the complexity of network topology provides a key advantage when encountering adverse environments. Our findings could lead to a better understanding of the transition from unicellular to multicellularity.


Assuntos
Physarum polycephalum , Physarum polycephalum/fisiologia , Modelos Biológicos
5.
Phys Biol ; 21(1)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975194

RESUMO

The tubular network-forming slime moldPhysarum polycephalumis able to maintain long-scale contraction patterns driven by an actomyosin cortex. The resulting shuttle streaming in the network is crucial for the organism to respond to external stimuli and reorganize its body mass giving rise to complex behaviors. However, the chemical basis of the self-organized flow pattern is not fully understood. Here, we present ratiometric measurements of free intracellular calcium in simple morphologies ofPhysarumnetworks. The spatiotemporal patterns of the free calcium concentration reveal a nearly anti-correlated relation to the tube radius, suggesting that calcium is indeed a key regulator of the actomyosin activity. We compare the experimentally observed phase relation between the radius and the calcium concentration to the predictions of a theoretical model including calcium as an inhibitor. Numerical simulations of the model suggest that calcium indeed inhibits the contractions inPhysarum, although a quantitative difference to the experimentally measured phase relation remains. Unraveling the mechanism underlying the contraction patterns is a key step in gaining further insight into the principles ofPhysarum's complex behavior.


Assuntos
Cálcio , Physarum polycephalum , Actomiosina , Modelos Teóricos , Citoesqueleto de Actina , Physarum polycephalum/fisiologia
6.
Anim Cogn ; 26(6): 1783-1797, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37166523

RESUMO

Sensing, communication, navigation, decision-making, memory and learning are key components in a standard cognitive tool-kit that enhance an animal's ability to successfully survive and reproduce. However, these tools are not only useful for, or accessible to, animals-they evolved long ago in simpler organisms using mechanisms which may be either unique or widely conserved across diverse taxa. In this article, I review the recent research that demonstrates these key cognitive abilities in the plasmodial slime mould Physarum polycephalum, which has emerged as a model for non-animal cognition. I discuss the benefits and limitations of comparisons drawn between neural and non-neural systems, and the implications of common mechanisms across wide taxonomic divisions. I conclude by discussing future avenues of research that will draw the most benefit from a closer integration of Physarum and animal cognition research.


Assuntos
Physarum polycephalum , Animais , Cognição , Aprendizagem
7.
Biol Lett ; 19(2): 20220494, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36789533

RESUMO

In metazoans, the expression of key phenotypic traits is sensitive to two- and three-way interactions between variation in mitochondrial DNA, nuclear DNA and the external environment. Whether gene-by-environment interactions affect phenotypes in single-celled eukaryotes is poorly studied, except in a few species of yeast and fungi. We developed a genetic panel of the unicellular slime mould, Physarum polycephalum containing strains differing in mitochondrial and nuclear DNA haplotypes. The panel also included two strains harbouring a selfishly replicating mitochondrial-fusion (mF) plasmid that could affect phenotype expression. We assayed movement and growth rate differences among the strains across two temperature regimes: 24° and 28°C. We found that the slime mould's growth rate, but not movement, is affected by G × G × E interactions. Predictably, mtDNA × nDNA interactions significantly affected both traits. The inter-trait correlation across the strains in each temperature regime was positive. Surprisingly, the mF plasmid had no negative effects on our chosen traits. Our study is the first to demonstrate genetic regulation of phenotype expression in a unicellular slime mould. The genetic effect on phenotypes manifests via epistatic interactions with the thermal environment, thus shedding new light on the role of G × G × E interactions in trait evolution in protists.


Assuntos
Physarum polycephalum , Physarum polycephalum/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Plasmídeos , Fenótipo
8.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674565

RESUMO

The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.


Assuntos
Histonas , Physarum polycephalum , Animais , Histonas/metabolismo , Physarum polycephalum/genética , Physarum polycephalum/metabolismo , Chaperonas de Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
9.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047260

RESUMO

Propofol belongs to a class of molecules that are known to block learning and memory in mammals, including rodents and humans. Interestingly, learning and memory are not tied to the presence of a nervous system. There are several lines of evidence indicating that single-celled organisms also have the capacity for learning and memory which may be considered as basal intelligence. Here, we introduce a new experimental model for testing the learning ability of Physarum polycephalum, a model organism frequently used to study single-celled "intelligence". In this study, the impact of propofol on Physarum's "intelligence" was tested. The model consists of a labyrinth of subsequent bifurcations in which food (oat flakes soaked with coconut oil-derived medium chain triglycerides [MCT] and soybean oil-derived long chain triglycerides [LCT]) or propofol in MCT/LCT) is placed in one of each Y-branch. In this setting, it was tested whether Physarum memorized the rewarding branch. We saw that Physarum was a quick learner when capturing the first bifurcations of the maze; thereafter, the effect decreased, perhaps due to reaching a state of satiety. In contrast, when oat flakes were soaked with propofol, Physarum's preference for oat flakes declined significantly. Several possible actions, including the blocking of gamma-aminobutyric acid (GABA) receptor signaling, are suggested to account for this behavior, many of which can be tested in our new model.


Assuntos
Physarum polycephalum , Propofol , Humanos , Propofol/farmacologia , Anestésicos Intravenosos/farmacologia , Dor , Triglicerídeos/farmacologia
10.
Artif Life ; 28(1): 22-57, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34905603

RESUMO

We present Monte Carlo Physarum Machine (MCPM): a computational model suitable for reconstructing continuous transport networks from sparse 2D and 3D data. MCPM is a probabilistic generalization of Jones's (2010) agent-based model for simulating the growth of Physarum polycephalum (slime mold). We compare MCPM to Jones's work on theoretical grounds, and describe a task-specific variant designed for reconstructing the large-scale distribution of gas and dark matter in the Universe known as the cosmic web. To analyze the new model, we first explore MCPM's self-patterning behavior, showing a wide range of continuous network-like morphologies-called polyphorms-that the model produces from geometrically intuitive parameters. Applying MCPM to both simulated and observational cosmological data sets, we then evaluate its ability to produce consistent 3D density maps of the cosmic web. Finally, we examine other possible tasks where MCPM could be useful, along with several examples of fitting to domain-specific data as proofs of concept.


Assuntos
Physarum polycephalum , Physarum
11.
Biochem Biophys Res Commun ; 550: 171-176, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33743354

RESUMO

Recent results show that the chemotactic response of uni-cellular decentralized systems such as amoeboid and mammalian cells, is excitable. The same observation has not yet been reported for multi-nucleated decentralized biological systems. Here we present experimental results that shows the Physarum polycephalum plasmodial nodes spatio-temporal chemotactic dynamics as an excitable response. We found a highly optimized signal synthesis method wherein the Physarum nodes employ two intensity thresholds to properly navigate the chemoattractant field and generate corresponding spike dynamics in the node count. The node spike dynamics was found to correspond to the polarized-depolarized transition in the Physarum polycephalum morphology. Validation of our experimental observations via Brownian lattice simulations yields the same quantitative results with our experiments.


Assuntos
Quimiotaxia , Physarum polycephalum/citologia , Potenciais de Ação , Reprodutibilidade dos Testes
12.
BMC Biotechnol ; 21(1): 28, 2021 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-33773573

RESUMO

BACKGROUND: Microbial polysaccharides have been reported to possess remarkable bioactivities. Physarum polycephalum is a species of slime mold for which the microplasmodia are capable of rapid growth and can produce a significant amount of cell wall-less biomass. There has been a limited understanding of the polysaccharides produced by microplasmodia of slime molds, including P. polycephalum. Thus, the primary objectives of this research were first to chemically characterize the exopolysaccharides (EPS) and intracellular polysaccharides (IPS) of P. polycephalum microplasmodia and then to evaluate their cytotoxicity against several cancer cell lines. RESULTS: The yields of the crude EPS (4.43 ± 0.44 g/l) and partially purified (deproteinated) EPS (2.95 ± 0.85 g/l) were comparable (p > 0.05) with the respective crude IPS (3.46 ± 0.36 g/l) and partially purified IPS (2.45 ± 0.36 g/l). The average molecular weight of the EPS and IPS were 14,762 kDa and 1788 kDa. The major monomer of the EPS was galactose (80.22%), while that of the IPS was glucose (84.46%). Both crude and purified IPS samples showed significantly higher cytotoxicity toward Hela cells, especially the purified sample and none of the IPSs inhibited normal cells. Only 38.42 ± 2.84% Hela cells remained viable when treated with the partially purified IPS (1 mg/ml). However, although only 34.76 ± 6.58% MCF-7 cells were viable when exposed to the crude IPS, but the partially purified IPS displayed non-toxicity to MCF-7 cells. This suggested that the cytotoxicity toward MCF-7 would come from some component associated with the crude IPS sample (e.g. proteins, peptides or ion metals) and the purification process would have either completely removed or reduced amount of that component. Cell cycle analysis by flow cytometry suggested that the mechanism of the toxicity of the crude IPS toward MCF-7 and the partially purified IPS toward Hela cells was due to apoptosis. CONCLUSIONS: The EPS and IPS of P. polycephalum microplasmodia had different chemical properties including carbohydrate, protein and total sulfate group contents, monosaccharide composition and molecular weights, which led to different cytotoxicity activities. The crude and partially purified IPSs would be potential materials for further study relating to cancer treatment.


Assuntos
Physarum polycephalum/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Células HeLa , Humanos , Células MCF-7 , Peso Molecular , Physarum polycephalum/metabolismo , Polissacarídeos/metabolismo
13.
Exp Appl Acarol ; 84(2): 445-458, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33970406

RESUMO

Tyrophagus putrescentiae (Schrank), commonly known as the cereal mite, cheese mite, or ham mite, is a cosmopolitan species reported from various environments in the wild, including soil, plant material and vertebrate nests. It has also been recognized as a common pest of food storages, mycological collections as well as plant and invertebrate laboratory cultures. Laboratory observations indicate that T. putrescentiae feeds on a large range of dermatophytes, yeasts and molds. We have observed the interspecific relation between this mite and several species of true slime molds (Mycetozoa) under laboratory conditions, which confirms the very broad spectrum of feeding habits of T. putrescentiae. Mycetozoans were grown in semi-sterile in vitro cultures and fed with oat flour or oat flakes. Tyrophagus putrescentiae displayed affinity to all macroscopically identifiable stages of the life cycle of Fuligo septica (L.) F.H. Wigg, Physarum polycephalum Schwein and the Didymium sp. complex [Didymium iridis (Ditmar) Fr., Didymium nigripes (Link) Fr. and Didymium bahiense Gottsb.]: live, decaying or dead plasmodia, sporangia, aethalia, spores and sclerotia. The relation carrying symptoms of various types of interspecific interaction, is hypothesized to form an evolutionarily young phenomenon, which not only identifies a new aspect of mycetozoal biology, but also presents the cereal mite as a species of high adaptive potential.


Assuntos
Acaridae , Physarum polycephalum , Acidentes , Animais , Estágios do Ciclo de Vida , Leveduras
14.
Phys Rev Lett ; 124(9): 098102, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202882

RESUMO

Wavelike patterns driving transport are ubiquitous in life. Peristaltic pumps are a paradigm of efficient mass transport by contraction driven flows-often limited by energetic constraints. We show that a cost-efficient increase in pumping performance can be achieved by modulating the phase difference between harmonics to increase occlusion. In experiments we find a phase difference shift in the living peristalsis model P. polycephalum as dynamic response to forced mass transport. Our findings provide a novel metric for wavelike patterns and demonstrate the crucial role of nonlinearities in life.


Assuntos
Modelos Biológicos , Peristaltismo/fisiologia , Physarum polycephalum/fisiologia , Animais , Relógios Biológicos , Modelos Animais
15.
Proc Natl Acad Sci U S A ; 114(20): 5136-5141, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28465441

RESUMO

Complex behaviors are typically associated with animals, but the capacity to integrate information and function as a coordinated individual is also a ubiquitous but poorly understood feature of organisms such as slime molds and fungi. Plasmodial slime molds grow as networks and use flexible, undifferentiated body plans to forage for food. How an individual communicates across its network remains a puzzle, but Physarum polycephalum has emerged as a novel model used to explore emergent dynamics. Within P. polycephalum, cytoplasm is shuttled in a peristaltic wave driven by cross-sectional contractions of tubes. We first track P. polycephalum's response to a localized nutrient stimulus and observe a front of increased contraction. The front propagates with a velocity comparable to the flow-driven dispersion of particles. We build a mathematical model based on these data and in the aggregate experiments and model identify the mechanism of signal propagation across a body: The nutrient stimulus triggers the release of a signaling molecule. The molecule is advected by fluid flows but simultaneously hijacks flow generation by causing local increases in contraction amplitude as it travels. The molecule is initiating a feedback loop to enable its own movement. This mechanism explains previously puzzling phenomena, including the adaptation of the peristaltic wave to organism size and P. polycephalum's ability to find the shortest route between food sources. A simple feedback seems to give rise to P. polycephalum's complex behaviors, and the same mechanism is likely to function in the thousands of additional species with similar behaviors.


Assuntos
Modelos Biológicos , Physarum polycephalum/fisiologia , Transdução de Sinais/fisiologia
16.
Proc Biol Sci ; 286(1896): 20182825, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963918

RESUMO

When deciding between different options, animals including humans face the dilemma that fast decisions tend to be erroneous, whereas accurate decisions tend to be relatively slow. Recently, it has been suggested that differences in the efficacy with which animals make a decision relate closely to individual behavioural differences. In this paper, we tested this hypothesis in a unique unicellular organism, the slime mould Physarum polycephalum. We first confirmed that slime moulds differed consistently in their exploratory behaviour from 'fast' to 'slow' explorers. Second, we showed that slow explorers made more accurate decisions than fast explorers. Third, we demonstrated that slime moulds integrated food cues in time and achieved higher accuracy when sampling time was longer. Lastly, we showed that in a competition context, fast explorers excelled when a single food source was offered, while slow explorers excelled when two food sources varying in quality were offered. Our results revealed that individual differences in accuracy were partly driven by differences in exploratory behaviour. These findings support the hypothesis that decision-making abilities are associated with behavioural types, even in unicellular organisms.


Assuntos
Variação Biológica da População , Physarum polycephalum/fisiologia , Tomada de Decisões , Comportamento Exploratório
17.
Phys Rev Lett ; 123(24): 248101, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922876

RESUMO

Complex distribution networks are pervasive in biology. Examples include nutrient transport in the slime mold Physarum polycephalum as well as mammalian and plant venation. Adaptive rules are believed to guide development of these networks and lead to a reticulate, hierarchically nested topology that is both efficient and resilient against perturbations. However, as of yet, no mechanism is known that can generate such networks on all scales. We show how hierarchically organized reticulation can be constructed and maintained through spatially correlated load fluctuations on a particular length scale. We demonstrate that the network topologies generated represent a trade-off between optimizing transport efficiency, construction cost, and damage robustness and identify the Pareto-efficient front that evolution is expected to favor and select for. We show that the typical fluctuation length scale controls the position of the networks on the Pareto front and thus on the spectrum of venation phenotypes.


Assuntos
Artérias/fisiologia , Modelos Biológicos , Floema/fisiologia , Veias/fisiologia , Xilema/fisiologia , Animais , Hidrodinâmica , Modelos Anatômicos , Fenótipo , Physarum polycephalum , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia
19.
Biol Lett ; 14(12): 20180504, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30958252

RESUMO

Cells are dynamic systems capable of switching from isotropic growth to polarized growth even in the absence of any pre-existing external asymmetry. Here, we study this process of symmetry breaking in the acellular slime mould Physarum polycephalum. In these experiments, slime moulds could grow on two identical opposed sources of calcium. We highlighted a positive correlation between growth dynamic, level of symmetry breaking and calcium concentration. We identified three populations of slime moulds within our clonal lineage with similar symmetry breaking behaviours but different motility characteristics. These behavioural differences between slime moulds emerged in the absence of any environmental differences. Such behavioural plasticity could generate cellular diversity, which can be critical for survival.


Assuntos
Cálcio , Physarum polycephalum/crescimento & desenvolvimento , Movimento , Fenótipo
20.
Lett Appl Microbiol ; 67(4): 370-376, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29989191

RESUMO

In this study, a glutathione S-transferase gene (gst) from sensitive Physarum polycephalum was selected for its ability to detect nanosized TiO2 (nTiO2 ) exposure under dark conditions. The concentration of nTiO2 (25, 40 and 60 nm) for subsequent assays was first determined (5-18 mg ml-1 ) and total GST enzyme activity of P. polycephalum was confirmed to be increased 6-44 fold in groups treated with nTiO2 . Second, an RNA-seq study was performed to identify candidate gst genes before isolation of an optimum gst gene of P. polycephalum (Ppgst), which encoded 223 amino acids. Third, the transcriptional level of the Ppgst gene was further confirmed to be positively correlated with nTiO2 exposure within the concentration range of (5-15 mg ml-1 ) by qPCR. In conclusion, these results indicated that the transcriptional level of Ppgst can reflect nTiO2 exposure, suggesting that it may be employed as a new biomarker for nTiO2 pollution under dark conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study identifies a new gst gene for indicating nanosized TiO2 under dark conditions and provides a new option for detection of nanosized TiO2 pollution under dark conditions.


Assuntos
Poluentes Ambientais/análise , Glutationa Transferase/metabolismo , Nanopartículas Metálicas/análise , Physarum polycephalum/metabolismo , Titânio/análise , Sequência de Aminoácidos/genética , Biomarcadores , Glutationa Transferase/genética , Physarum polycephalum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA