Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34433668

RESUMO

Pigment organelles of vertebrates belong to the lysosome-related organelle (LRO) family, of which melanin-producing melanosomes are the prototypes. While their anabolism has been extensively unraveled through the study of melanosomes in skin melanocytes, their catabolism remains poorly known. Here, we tap into the unique ability of crab spiders to reversibly change body coloration to examine the catabolism of their pigment organelles. By combining ultrastructural and metal analyses on high-pressure frozen integuments, we first assess whether pigment organelles of crab spiders belong to the LRO family and second, how their catabolism is intracellularly processed. Using scanning transmission electron microscopy, electron tomography, and nanoscale Synchrotron-based scanning X-ray fluorescence, we show that pigment organelles possess ultrastructural and chemical hallmarks of LROs, including intraluminal vesicles and metal deposits, similar to melanosomes. Monitoring ultrastructural changes during bleaching suggests that the catabolism of pigment organelles involves the degradation and removal of their intraluminal content, possibly through lysosomal mechanisms. In contrast to skin melanosomes, anabolism and catabolism of pigments proceed within the same cell without requiring either cell death or secretion/phagocytosis. Our work hence provides support for the hypothesis that the endolysosomal system is fully functionalized for within-cell turnover of pigments, leading to functional maintenance under adverse conditions and phenotypic plasticity. First formulated for eye melanosomes in the context of human vision, the hypothesis of intracellular turnover of pigments gets unprecedented strong support from pigment organelles of spiders.


Assuntos
Cor , Lisossomos/metabolismo , Melanossomas/fisiologia , Organelas/fisiologia , Pigmentos Biológicos/fisiologia , Pele/metabolismo , Aranhas/fisiologia , Animais , Endossomos/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(15): 8524-8531, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32205436

RESUMO

Visual signals rapidly relay information, facilitating behaviors and ecological interactions that shape ecosystems. However, most known signaling systems can be restricted by low light levels-a pervasive condition in the deep ocean, the largest inhabitable space on the planet. Resident visually cued animals have therefore been hypothesized to have simple signals with limited information-carrying capacity. We used cameras mounted on remotely operated vehicles to study the behavior of the Humboldt squid, Dosidicus gigas, in its natural deep-sea habitat. We show that specific pigmentation patterns from its diverse repertoire are selectively displayed during foraging and in social scenarios, and we investigate how these behaviors may be used syntactically for communication. We additionally identify the probable mechanism by which D. gigas, and related squids, illuminate these patterns to create visual signals that can be readily perceived in the deep, dark ocean. Numerous small subcutaneous (s.c.) photophores (bioluminescent organs) embedded throughout the muscle tissue make the entire body glow, thereby backlighting the pigmentation patterns. Equipped with a mechanism by which complex information can be rapidly relayed through a visual pathway under low-light conditions, our data suggest that the visual signals displayed by D. gigas could share design features with advanced forms of animal communication. Visual signaling by deep-living cephalopods will likely be critical in understanding how, and how much, information can be shared in one of the planet's most challenging environments for visual communication.


Assuntos
Comunicação Animal , Comportamento Animal , Cromatóforos/fisiologia , Decapodiformes/fisiologia , Luminescência , Pigmentos Biológicos/fisiologia , Visão Ocular , Migração Animal , Animais , Ecossistema , Oceanos e Mares
3.
Plant Physiol ; 187(3): 1310-1324, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618067

RESUMO

Coleus (Coleus scutellarioides) is a popular ornamental plant that exhibits a diverse array of foliar color patterns. New cultivars are currently hand selected by both amateur and experienced plant breeders. In this study, we reimagine breeding for color patterning using a quantitative color analysis framework. Despite impressive advances in high-throughput data collection and processing, complex color patterns remain challenging to extract from image datasets. Using a phenotyping approach called "ColourQuant," we extract and analyze pigmentation patterns from one of the largest coleus breeding populations in the world. Working with this massive dataset, we can analyze quantitative relationships between maternal plants and their progeny, identify features that underlie breeder-selections, and collect and compare public input on trait preferences. This study is one of the most comprehensive explorations into complex color patterning in plant biology and provides insights and tools for exploring the color pallet of the plant kingdom.


Assuntos
Coleus/fisiologia , Pigmentos Biológicos/fisiologia , Folhas de Planta/fisiologia , Cor , Pigmentação , Melhoramento Vegetal
4.
Photochem Photobiol Sci ; 20(4): 475-488, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33738747

RESUMO

The well-known photosensitizers hypericin, harmane, and emodin are typical pigments of certain mushroom species-is this a coincidence or an indication towards a photoactivated defense mechanism in the phylum Basidiomycota? This perspective article explores this hypothesis by cross-linking the chemistry of fungal pigments with structural requirements from known photosensitizers and insights from photoactivated strategies in the kingdom Plantae. Thereby, light is shed on a yet unexplored playground dealing with ecological questions, photopharmaceutical opportunities, and biotechnological potentials.


Assuntos
Basidiomycota/fisiologia , Basidiomycota/efeitos da radiação , Luz , Pigmentos Biológicos/fisiologia
5.
Am Nat ; 195(5): E132-E149, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32364784

RESUMO

In animals, bright colors often evolve to mimic other species when a resemblance is selectively favored. Understanding the proximate mechanisms underlying such color mimicry can give insights into how mimicry evolves-for example, whether color convergence evolves from a shared set of mechanisms or through the evolution of novel color production mechanisms. We studied color production mechanisms in poison frogs (Dendrobatidae), focusing on the mimicry complex of Ranitomeya imitator. Using reflectance spectrometry, skin pigment analysis, electron microscopy, and color modeling, we found that the bright colors of these frogs, both within and outside the mimicry complex, are largely structural and produced by iridophores but that color production depends crucially on interactions with pigments. Color variation and mimicry are regulated predominantly by iridophore platelet thickness and, to a lesser extent, concentration of the red pteridine pigment drosopterin. Compared with each of the four morphs of model species that it resembles, R. imitator displays greater variation in both structural and pigmentary mechanisms, which may have facilitated phenotypic divergence in this species. Analyses of nonmimetic dendrobatids in other genera demonstrate that these mechanisms are widespread within the family and that poison frogs share a complex physiological "color palette" that can produce diverse and highly reflective colors.


Assuntos
Anuros/fisiologia , Evolução Biológica , Pigmentação , Pigmentos Biológicos/fisiologia , Animais , Cor , Microscopia Eletrônica de Transmissão/veterinária , Pele/ultraestrutura , Pigmentação da Pele/fisiologia
6.
J Evol Biol ; 32(9): 913-920, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31127961

RESUMO

Indirect sexual selection arises when reproductive individuals choose their mates based on heritable ornaments that are genetically correlated to fitness. Evidence for genetic associations between ornamental colouration and fitness remains scarce. In this study, we investigate the quantitative genetic relationship between different aspects of tail structural colouration (brightness, hue and UV chroma) and performance (cell-mediated immunity, body mass and wing length) in blue tit (Cyanistes caeruleus) nestlings. In line with previous studies, we find low heritability for structural colouration and moderate heritability for performance measures. Multivariate animal models show positive genetic correlations between the three measures of performance, indicating quantitative genetic variation for overall performance, and tail brightness and UV chroma, two genetically independent colour measures, are genetically correlated with performance (positively and negatively, respectively). Our results suggest that mate choice based on independent aspects of tail colouration can have fitness payoffs in blue tits and provide support for the indirect benefits hypothesis. However, low heritability of tail structural colouration implies that indirect sexual selection on mate choice for this ornament will be a weak evolutionary force.


Assuntos
Passeriformes/crescimento & desenvolvimento , Passeriformes/genética , Pigmentos Biológicos/genética , Pigmentos Biológicos/fisiologia , Cauda/fisiologia , Animais , Passeriformes/anatomia & histologia , Cauda/anatomia & histologia
7.
Arch Insect Biochem Physiol ; 100(2): e21527, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30588650

RESUMO

Insect eye coloration arises from the accumulation of various pigments. A number of genes that function in the biosynthesis (vermilion, cinnabar, and cardinal) and importation (karmoisin, white, scarlet, and brown) of these pigments, and their precursors, have been identified in diverse species and used as markers for transgenesis and gene editing. To examine their suitability as visible markers in Lygus hesperus Knight (western tarnished plant bug), transcriptomic data were screened for sequences exhibiting homology with the Drosophila melanogaster proteins. Complete open reading frames encoding putative homologs for all seven genes were identified. Bioinformatic-based sequence and phylogenetic analyses supported initial annotations as eye coloration genes. Consistent with their proposed role, each of the genes was expressed in adult heads as well as throughout nymphal and adult development. Adult eyes of those injected with double-stranded RNAs (dsRNAs) for karmoisin, vermilion, cinnabar, cardinal, and scarlet were characterized by a red band along the medial margin extending from the rostral terminus to the antenna. In contrast, eyes of insects injected with dsRNAs for both white and brown were a uniform light brown. White knockdown also produced cuticular and behavioral defects. Based on its expression profile and robust visible phenotype, cardinal would likely prove to be the most suitable marker for developing gene editing methods in Lygus species.


Assuntos
Olho/metabolismo , Heterópteros/genética , Heterópteros/fisiologia , Pigmentação/genética , Pigmentos Biológicos/genética , Pigmentos Biológicos/fisiologia , Animais , Proteínas de Insetos/metabolismo , Interferência de RNA , RNA de Cadeia Dupla
8.
Proc Biol Sci ; 285(1893): 20182014, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30963907

RESUMO

Metabolism links organisms to their environment through its effects on thermoregulation, feeding behaviour and energetics. Genes involved in metabolic processes have known pleiotropic effects on some melanic colour traits. Understanding links between physiology and melanic colour is critical for understanding the role of, and potential constraints on, colour production. Despite considerable variation in metabolic rates and presumed ancestral melanic coloration in vertebrates, few studies have looked at a potential relationship between these two systems in a comparative framework. Here, we test the hypothesis that changes in melanosome shape in integumentary structures track metabolic rate variation across amniotes. Using multivariate comparative analyses and incorporating both extant and fossil taxa, we find significantly faster rates of melanosome shape evolution in taxa with high metabolic rates, as well as both colour- and clade-specific differences in the relationship between metabolic rate and melanosome shape. Phylogenetic tests recover an expansion in melanosome morphospace in maniraptoran dinosaurs, as well as rate shifts within birds (in songbirds) and mammals. These findings indicate another core phenotype influenced by metabolic changes in vertebrates. They also provide a framework for testing clade-specific gene expression patterns in the melanocortin system and may improve colour reconstructions in extinct taxa.


Assuntos
Evolução Biológica , Aves/fisiologia , Metabolismo Energético/fisiologia , Mamíferos/fisiologia , Melanossomas/fisiologia , Répteis/fisiologia , Animais , Cor , Pigmentos Biológicos/fisiologia
9.
Physiol Plant ; 164(4): 429-441, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30144090

RESUMO

Grapevine is one of the earliest domesticated fruit crops that has been widely prized and cultivated for its fruit and wine. Grapes exhibit a wide range of colors, ranging from the green/yellow to the dark blue tones according to the amount and composition of anthocyanin. During the last decades, many studies regarding the genetic control of the grape color in European, American and Asian cultivars have been well documented. DNA binding genes for several transcription factors, such as MYBA1 and MYBA2 haplotype compositions at the color locus are the key determinant of anthocyanin diversity and grape skin color development. Retrotransposon in the MYBA1 promoter region and mutation in MYBA2 coding sequence resulted in a white-skinned grape. The MYB haplotypes affect the ratio of tri/di-hydroxylated anthocyanins and methylated/non-methylated anthocyanins through the regulation of several structural genes involved in the anthocyanin biosynthesis, resulting in diverse colored tones. The present review provides an overview of the current state of the molecular mechanisms underlying the genetic regulations of the anthocyanin accumulation and diversification in grapes. The hypothesized models described in this review is a step forward to potentially predict the color diversification in different grape cultivars, which translate the advances in fundamental plant biology toward the application of grape molecular breeding.


Assuntos
Frutas/metabolismo , Agricultura Molecular/métodos , Pigmentos Biológicos/fisiologia , Vitis/fisiologia , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Pigmentos Biológicos/genética , Vitis/genética
10.
Microb Ecol ; 73(2): 255-258, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27623964

RESUMO

Cyanobacteria are photosynthetic oxygen-evolving prokaryotes that are distributed in diverse habitats. They synthesize the ultraviolet (UV)-screening pigments, scytonemin (SCY) and mycosporine-like amino acids (MAAs), located in the exopolysaccharide (EPS) matrix. Multiple roles for both pigments have gradually been recognized, such as sunscreen ability, antioxidant activity, and heat dissipation from absorbed UV radiation. In this study, a filamentous terrestrial cyanobacterium Nostoc flagelliforme was used to evaluate the potential stabilizing role of SCY on the EPS matrix. SCY (∼3.7 %) was partially removed from N. flagelliforme filaments by rinsing with 100 % acetone for 5 s. The physiological damage to cells resulting from this treatment, in terms of photosystem II activity parameter Fv/Fm, was repaired after culturing the sample for 40 h. The physiologically recovered sample was further desiccated by natural or rapid drying and then allowed to recovery for 24 h. Compared with the normal sample, a relatively slower Fv/Fm recovery was observed in the SCY-partially removed sample, suggesting that the decreased SCY concentration in the EPS matrix caused cells to suffer further damage upon desiccation. In addition, the SCY-partially removed sample could allow the release of MAAs (∼25 %) from the EPS matrix, while the normal sample did not. Therefore, damage caused by drying of the former resulted from at least the reduction of structural stability of the EPS matrix as well as the loss of partial antioxidant compounds. Considering that an approximately 4 % loss of SCY led to this significant effect, the structurally stabilizing potential of SCY on the EPS matrix is crucial for terrestrial cyanobacteria survival in complex environments.


Assuntos
Cianobactérias/metabolismo , Indóis/farmacologia , Fenóis/farmacologia , Pigmentos Biológicos/fisiologia , Polissacarídeos Bacterianos/metabolismo , Antioxidantes/farmacologia , Cianobactérias/efeitos da radiação , Dessecação , Nostoc/metabolismo , Nostoc/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Pigmentos Biológicos/farmacologia , Polissacarídeos Bacterianos/efeitos da radiação , Protetores Solares/farmacologia , Raios Ultravioleta/efeitos adversos , Microbiologia da Água
11.
Adv Mar Biol ; 76: 41-104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28065296

RESUMO

Egg pigmentation is proposed to serve numerous ecological, physiological, and adaptive functions in egg-laying animals. Despite the predominance and taxonomic diversity of egg layers, syntheses reviewing the putative functions and drivers of egg pigmentation have been relatively narrow in scope, centring almost exclusively on birds. Nonvertebrate and aquatic species are essentially overlooked, yet many of them produce maternally provisioned eggs in strikingly varied colours, from pale yellow to bright red or green. We explore the ways in which these colour patterns correlate with behavioural, morphological, geographic and phylogenetic variables in extant classes of Echinodermata, a phylum that has close phylogenetic ties with chordates and representatives in nearly all marine environments. Results of multivariate analyses show that intensely pigmented eggs are characteristic of pelagic or external development whereas pale eggs are commonly brooded internally. Of the five egg colours catalogued, orange and yellow are the most common. Yellow eggs are a primitive character, associated with all types of development (predominant in internal brooders), whereas green eggs are always pelagic, occur in the most derived orders of each class and are restricted to the Indo-Pacific Ocean. Orange eggs are geographically ubiquitous and may represent a 'universal' egg pigment that functions well under a diversity of environmental conditions. Finally, green occurs chiefly in the classes Holothuroidea and Ophiuroidea, orange in Asteroidea, yellow in Echinoidea, and brown in Holothuroidea. By examining an unprecedented combination of egg colours/intensities and reproductive strategies, this phylum-wide study sheds new light on the role and drivers of egg pigmentation, drawing parallels with theories developed from the study of more derived vertebrate taxa. The primary use of pigments (of any colour) to protect externally developing eggs from oxidative damage and predation is supported by the comparatively pale colour of equally large, internally brooded eggs. Secondarily, geographic location drives the evolution of egg colour diversity, presumably through the selection of better-adapted, more costly pigments in response to ecological pressure.


Assuntos
Equinodermos/fisiologia , Óvulo/fisiologia , Pigmentos Biológicos/fisiologia , Animais , Biodiversidade , Oceanos e Mares , Especificidade da Espécie
12.
Photosynth Res ; 123(1): 23-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25150556

RESUMO

The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.


Assuntos
Gammaproteobacteria/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Dicroísmo Circular , Modelos Biológicos , Método de Monte Carlo , Pigmentos Biológicos/fisiologia , Conformação Proteica , Espectrofotometria Atômica
13.
J Evol Biol ; 28(2): 395-402, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25510628

RESUMO

The evolution and maintenance of colour polymorphisms remains a topic of considerable research interest. One key mechanism thought to contribute to the coexistence of different colour morphs is a bias in how conspicuous they are to visual predators. Although individuals of many species camouflage themselves against their background to avoid predation, differently coloured individuals within a species may vary in their capacity to do so. However, to date, very few studies have explicitly investigated the ability of different colour morphs to plastically adjust their colouration to match their background. The red devil (Amphilophus labiatus) is a Neotropical cichlid fish with a stable colour polymorphism, with the gold morph being genetically dominant and having a myriad of documented advantages over the dark morph. However, gold individuals are much rarer, which may be related to their heightened conspicuousness to would-be predators. Here, we tested the ability of differently coloured individuals to phenotypically adjust the shade of their body colour and patterns to match their background. In particular, we filmed dark, gold and mottled (a transitioning phase from dark to gold) individuals under an identical set-up on light vs. dark-coloured substrates. We found that, in contrast to individuals of the dark morph, gold and mottled individuals were less capable of matching their body colouration to their background. As a result, gold individuals appeared to be more conspicuous. These results suggest that a difference in background matching ability could play an important role in the maintenance of colour polymorphisms.


Assuntos
Ciclídeos/fisiologia , Pigmentos Biológicos/fisiologia , Polimorfismo Genético , Animais , Ciclídeos/genética , Ecossistema , Pigmentos Biológicos/genética
14.
J Evol Biol ; 28(6): 1257-69, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25940369

RESUMO

Homoploid hybrid speciation (HHS) requires reproductive barriers between hybrid and parent species, despite incomplete reproductive isolation (RI) between the parents. Novel secondary sexual trait values in hybrids may cause prezygotic isolation from both parents, whereas signals inherited by the hybrid from one parent species may cause prezygotic isolation with the other. Here we investigate whether differences in male plumage function as a premating barrier between the hybrid Italian sparrow and one of its parent species, the house sparrow, in a narrow Alpine hybrid zone. Italian sparrow male plumage is a composite mosaic of the parental traits, with its head plumage most similar to its other parent, the Spanish sparrow. We use geographical cline analysis to examine selection on three plumage traits, 75 nuclear single nucleotide polymorphisms (SNPs) and hybrid indices based on these SNPs. Several SNPs showed evidence of restricted introgression in the Alps, supporting earlier findings. Crown colour exhibited the narrowest plumage cline, representing a 37% (range 4-65%) drop in fitness. The cline was too narrow to be due to neutral introgression. Only crown colour was significantly bimodal in the hybrid zone. Bimodality may be due to RI or a major QTL, although fitness estimates suggest that selection contributes to the pattern. We discuss the implications with respect to HHS and the species status of the Italian sparrow.


Assuntos
Plumas/fisiologia , Hibridização Genética , Seleção Genética , Pardais/genética , Pardais/fisiologia , Animais , Animais Selvagens , Feminino , Masculino , Pigmentos Biológicos/genética , Pigmentos Biológicos/fisiologia
15.
Zoolog Sci ; 32(3): 233-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26003977

RESUMO

The nymphalid groundplan has been proposed to explain diverse butterfly wing color patterns. In this model, each symmetry system is composed of a core element and a pair of paracore elements. The development of this elemental configuration has been explained by the induction model for positional information. However, the diversity of color patterns in other butterfly families in relation to the nymphalid groundplan has not been thoroughly examined. Here, we examined aberrant color pattern phenotypes of a lycaenid butterfly, Zizeeria maha, from mutagenesis and plasticity studies as well as from field surveys. In several mutants, the third and fourth spot arrays were coordinately positioned much closer to the discal spot in comparison to the normal phenotype. In temperature-shock types, the third and fourth array spots were elongated inwardly or outwardly from their normal positions. In field-caught spontaneous mutants, small black spots were located adjacent to normal black spots. Analysis of these aberrant phenotypes indicated that the spots belonging to the third and fourth arrays are synchronously changeable in position and shape around the discal spot. Thus, these arrays constitute paracore elements of the central symmetry system of the lycaenid butterflies, and the discal spot comprises the core element. These aberrant phenotypes can be explained by the black-inducing signals that propagate from the prospective discal spot, as predicted by the induction model. These results suggest the existence of long-range developmental signals that cover a large area of a wing not only in nymphalid butterflies, but also in lycaenid butterflies.


Assuntos
Padronização Corporal , Borboletas/fisiologia , Pigmentos Biológicos/fisiologia , Asas de Animais/fisiologia , Animais
16.
Zoolog Sci ; 32(1): 38-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25660695

RESUMO

Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.


Assuntos
Borboletas/fisiologia , Pigmentos Biológicos/fisiologia , Asas de Animais/fisiologia , Animais , Especificidade da Espécie
17.
Mar Drugs ; 13(9): 5847-81, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26389924

RESUMO

Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes ß-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.


Assuntos
Diatomáceas/fisiologia , Fotossíntese/fisiologia , Pigmentos Biológicos/fisiologia , Diatomáceas/química , Estrutura Molecular , Pigmentos Biológicos/química
18.
Ecology ; 95(6): 1464-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25039211

RESUMO

Pendulous lichens dominate canopies of boreal forests, with dark Bryoria species in the upper canopy vs. light Alectoria and Usnea species in lower canopy. These genera offer important ecosystem services such as winter forage for reindeer and caribou. The mechanism behind this niche separation is poorly understood. We tested the hypothesis that species-specific sunscreening fungal pigments protect underlying symbiotic algae differently against high light, and thus shape the vertical canopy gradient of epiphytes. Three pale species with the reflecting pigment usnic acid (Alectoria sarmentosa, Usnea dasypoga, U. longissima) and three with dark, absorbing melanins (Bryoria capillaris, B. fremontii, B. fuscescens) were compared. We subjected the lichens to desiccation stress with and without light, and assessed their performance with chlorophyll fluorescence. Desiccation alone only affected U. longissima. By contrast, light in combination with desiccation caused photoinhibitory damage in all species. Usnic lichens were significantly more susceptible to light during desiccation than melanic ones. Thus, melanin is a more efficient light-screening pigment than usnic acid. Thereby, the vertical gradient of pendulous lichens in forest canopies is consistent with a shift in type and functioning of sunscreening pigments, from high-light-tolerant Bryoria in the upper to susceptible Alectoria and Usnea in the lower canopy.


Assuntos
Ecossistema , Fungos/fisiologia , Líquens/fisiologia , Pigmentos Biológicos/fisiologia , Árvores/fisiologia , Noruega , Luz Solar , Suécia , Água
19.
Biochim Biophys Acta ; 1817(8): 1285-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22402227

RESUMO

Acaryochloris marina, a chlorophyll (Chl) d-dominated cyanobacterium, is a model organism for studying photosynthesis driven by far-red light using Chl d. Furthermore, studies on A. marina may provide insights into understanding how the oxygenic photosynthetic organisms adapt after the acquisition of new Chl. To solve the reaction mechanism of its unique photosynthesis, photosystem (PS) II complexes were isolated from A. marina and analyzed. However, the lack of a molecular genetic method for A. marina prevented us from conducting further studies. We recently developed a transformation system for A. marina and we introduced a chlorophyllide a oxygenase gene into A. marina. The resultant transformant accumulated [7-formyl]-Chl d, which has never been found in nature. In the current study, we isolated PS II complexes that contained [7-formyl]-Chl d. The pigment composition of the [7-formyl]-Chl d-containing PS II complexes was 1.96±0.04 Chl a, 53.21±1.00 Chl d, and 5.48±0.33 [7-formyl]-Chl d per two pheophytin a molecules. In contrast, the composition of the control PS II complexes was 2.01±0.06 Chl a and 62.96±2.49 Chl d. The steady-state fluorescence and excitation spectra of the PS II complexes revealed that energy transfer occurred from [7-formyl]-Chl d to the major Chl d species; however, the electron transfer was not affected by the presence of [7-formyl]-Chl d. These findings demonstrate that artificially produced [7-formyl]-Chl d molecules that are incorporated into PS II replace part of the Chl d molecules and function as the antenna. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Clorofila/fisiologia , Cianobactérias/metabolismo , Oxigenases/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Pigmentos Biológicos/fisiologia , Clorofila/análise , Clorofila A , Complexo de Proteína do Fotossistema II/análise , Temperatura
20.
J Anim Ecol ; 82(2): 418-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23194384

RESUMO

Within-population colour variation is widespread in animals, yet the determinants of variable coloration have been relatively neglected by ecologists. Age-dependent expression of conspicuous coloration is prevalent, particularly in birds. Such patterns can be generated by multiple combinations of demographic heterogeneity or within-individual change; longitudinal analyses are necessary to establish the importance of these processes. Further, although pigment-based colours are composite traits, produced by multiple component mechanisms (e.g. feather microstructure and carotenoid pigmentation), the contributions of these mechanisms to components of age dependence are rarely considered, even though doing so may yield information about the ecological causes for age-dependent coloration. We used a large-scale, longitudinal study of carotenoid-based plumage coloration in great tits (Parus major) to show age dependence of plumage coloration is driven almost exclusively by within-individual effects in the first 2 years of life. Using wavelength-specific analyses, we show that feather microstructure, while sensitive to annual variation, is independent of age, with increased carotenoid deposition driving changes in coloration. However, estimates of local carotenoid availability did not explain the change in coloration within individuals, suggesting that pigment availability may not be limiting. We thus show that it is individual-level changes in the pigment component of carotenoid-based coloration that determines age-dependent colour expression in great tits. More generally, our study highlights the utility of wavelength-specific analyses in determining the mechanisms underlying changes in expression of composite colour traits.


Assuntos
Envelhecimento/fisiologia , Carotenoides/fisiologia , Pigmentos Biológicos/fisiologia , Aves Canoras/fisiologia , Animais , Feminino , Masculino , Venenos de Víboras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA