Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2304404120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38109562

RESUMO

The dominant paradigm for assessing ecological responses to climate change assumes that future states of individuals and populations can be predicted by current, species-wide performance variation across spatial climatic gradients. However, if the fates of ecological systems are better predicted by past responses to in situ climatic variation through time, this current analytical paradigm may be severely misleading. Empirically testing whether spatial or temporal climate responses better predict how species respond to climate change has been elusive, largely due to restrictive data requirements. Here, we leverage a newly collected network of ponderosa pine tree-ring time series to test whether statistically inferred responses to spatial versus temporal climatic variation better predict how trees have responded to recent climate change. When compared to observed tree growth responses to climate change since 1980, predictions derived from spatial climatic variation were wrong in both magnitude and direction. This was not the case for predictions derived from climatic variation through time, which were able to replicate observed responses well. Future climate scenarios through the end of the 21st century exacerbated these disparities. These results suggest that the currently dominant paradigm of forecasting the ecological impacts of climate change based on spatial climatic variation may be severely misleading over decadal to centennial timescales.


Assuntos
Mudança Climática , Árvores , Humanos , Árvores/fisiologia , Ecossistema , Pinus ponderosa , Previsões
2.
Ecol Appl ; 34(2): e2940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212051

RESUMO

Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high-severity wildfires in forests with historically frequent, low-severity fire regimes are increasingly common, but long-term treatment effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied. We present 20-year responses to thinning and prescribed burning treatments commonly used in dry, low-elevation forests of the western United States from a long-term study site in the Northern Rockies that is part of the National Fire and Fire Surrogate Study. We provide a comprehensive synthesis of short-term (<4 years) and mid-term (<14 years) results from previous findings. We then place these results in the context of a mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak that impacted the site 5-10 years post-treatment and describe 20-year responses to assess the longevity of restoration and fuel reduction treatments in light of the MPB outbreak. Thinning treatments had persistently lower forest density and higher tree growth, but effects were more pronounced when thinning was combined with prescribed fire. The thinning+prescribed fire treatment had the additional benefit of maintaining the highest proportion of ponderosa pine (Pinus ponderosa) for overstory and regeneration. No differences in understory native plant cover and richness or exotic species cover remained after 20 years, but exotic species richness, while low relative to native species, was still higher in the thinning+prescribed fire treatment than the control. Aboveground live carbon stocks in thinning treatments recovered to near control and prescribed fire treatment levels by 20 years. The prescribed fire treatment and control had higher fuel loads than thinning treatments due to interactions with the MPB outbreak. The MPB-induced changes to forest structure and fuels increased the fire hazard 20 years post-treatment in the control and prescribed fire treatment. Should a wildfire occur now, the thinning+prescribed fire treatment would likely have the lowest intensity fire and highest tree survival and stable carbon stocks. Our findings show broad support that thinning and prescribed fire increase ponderosa pine forest resilience to both wildfire and bark beetles for up to 20 years, but efficacy is waning and additional fuel treatments are needed to maintain resilience.


Assuntos
Ecossistema , Incêndios Florestais , Animais , Florestas , Árvores , Carbono , Pinus ponderosa
3.
Environ Monit Assess ; 196(6): 530, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724828

RESUMO

Increasingly, dry conifer forest restoration has focused on reestablishing horizontal and vertical complexity and ecological functions associated with frequent, low-intensity fires that characterize these systems. However, most forest inventory approaches lack the resolution, extent, or spatial explicitness for describing tree-level spatial aggregation and openings that were characteristic of historical forests. Uncrewed aerial system (UAS) structure from motion (SfM) remote sensing has potential for creating spatially explicit forest inventory data. This study evaluates the accuracy of SfM-estimated tree, clump, and stand structural attributes across 11 ponderosa pine-dominated stands treated with four different silvicultural prescriptions. Specifically, UAS-estimated tree height and diameter-at-breast-height (DBH) and stand-level canopy cover, density, and metrics of individual trees, tree clumps, and canopy openings were compared to forest survey data. Overall, tree detection success was high in all stands (F-scores of 0.64 to 0.89), with average F-scores > 0.81 for all size classes except understory trees (< 5.0 m tall). We observed average height and DBH errors of 0.34 m and - 0.04 cm, respectively. The UAS stand density was overestimated by 53 trees ha-1 (27.9%) on average, with most errors associated with understory trees. Focusing on trees > 5.0 m tall, reduced error to an underestimation of 10 trees ha-1 (5.7%). Mean absolute errors of bole basal area, bole quadratic mean diameter, and canopy cover were 11.4%, 16.6%, and 13.8%, respectively. While no differences were found between stem-mapped and UAS-derived metrics of individual trees, clumps of trees, canopy openings, and inter-clump tree characteristics, the UAS method overestimated crown area in two of the five comparisons. Results indicate that in ponderosa pine forests, UAS can reliably describe large- and small-grained forest structures to effectively inform spatially explicit management objectives.


Assuntos
Monitoramento Ambiental , Florestas , Pinus ponderosa , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental/métodos , Árvores
4.
Ecol Appl ; 33(4): e2854, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37032063

RESUMO

As the climate changes, it is increasingly important to understand how forests will respond to drought and how forest management can influence those outcomes. In many forests that have become unnaturally dense, "restoration treatments," which decrease stand density using fire and/or mechanical thinning, are generally associated with reduced mortality during drought. However, the effects of such treatments on tree growth during drought are less clear. Previous studies have yielded apparently contradictory results, which may stem from differences in underlying aridity or drought intensity across studies. To address this uncertainty, we studied the growth of ponderosa pine (Pinus ponderosa) in paired treated and untreated areas before and during the extreme California drought of 2012-2016. Our study spanned gradients in climate and tree size and found that density reduction treatments could completely ameliorate drought-driven declines in growth under some contexts, specifically in more mesic areas and in medium-sized trees (i.e., normal annual precipitation > ca. 1100 mm and tree diameter at breast height < ca. 65 cm). Treatments were much less effective in ameliorating drought-associated growth declines in the most water-limited sites and largest trees, consistent with underlying ecophysiology. In medium-sized trees and wetter sites, growth of trees in untreated stands decreased by more than 15% during drought, while treatment-associated increases in growth of 25% or more persisted during the drought. Trees that ultimately died due to drought showed greater growth reductions during drought relative to trees that survived. Our results suggest that density reduction treatments can increase tree resistance to water stress, and they highlight an important pathway for treatments to influence carbon sequestration and other ecosystem services beyond mitigating tree mortality.


Assuntos
Resistência à Seca , Pinus ponderosa , Pinus ponderosa/fisiologia , Ecossistema , Florestas , Árvores/fisiologia , Secas
5.
Ecol Appl ; 33(1): e2725, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054332

RESUMO

Southwestern ponderosa pine forests are vulnerable to fire-driven conversion in a warming and drying climate, yet little is known about what kinds of ecological communities may replace them. To characterize postfire vegetation trajectories and their environmental determinants, plant assemblages (361 sample plots including 229 vascular plant species, surveyed in 2017) were sampled within eight burns that occurred between 2000 and 2003. I used nonmetric multidimensional scaling, k-means clustering, principal component analysis, and random forest models to assess relationships between vegetation pattern, topographic and landscape factors, and gridded climate data. I describe seven postfire community types, including regenerating forests of ponderosa pine, aspen, and mixed conifers, shrub-dominated communities of Gambel oak and mixed species, and herb-dominated communities of native bunchgrasses and mixtures of ruderal, native, and nonnative species. Forest recovery was generally associated with cooler, mesic sites in proximity to forested refugia; shifts toward scrub and grassland types were most common in warmer, dryer locations distant from forested refugia. Under future climate scenarios, models project decreases in postfire forest recovery and increases in nonforest vegetation. However, forest to nonforest conversion was partially offset under a scenario of reduced burn severity and increased retention of forested refugia, highlighting important management opportunities. Burning trends in the southwestern United States suggest that postfire vegetation will occupy a growing landscape fraction, compelling renewed management focus on these areas and paradigm shifts that accommodate ecological change. I illustrate how management decisions around resisting, accepting, or directing change could be informed by an understanding of processes and patterns of postfire community variation and likely future trajectories.


Assuntos
Incêndios , Traqueófitas , Plantas , Clima , Sudoeste dos Estados Unidos , Pinus ponderosa , Mudança Climática
6.
Ecol Appl ; 33(2): e2760, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36218008

RESUMO

A key uncertainty of empirical models of post-fire tree mortality is understanding the drivers of elevated post-fire mortality several years following fire, known as delayed mortality. Delayed mortality can represent a substantial fraction of mortality, particularly for large trees that are a conservation focus in western US coniferous forests. Current post-fire tree mortality models have undergone limited evaluation of how injury level and time since fire interact to influence model accuracy and predictor variable importance. Less severe injuries potentially serve as an indicator for vulnerability to additional stressors such as bark beetle attack or moisture stress. We used a collection of 164,293 individual tree records to examine post-fire tree mortality in eight western USA conifers: Abies concolor, Abies grandis, Calocedrus decurrens, Larix occidentalis, Pinus contorta, Pinus lambertiana, Pinus ponderosa, and Pseudotsuga menziesii. We evaluated the importance of fire injury predictors on discriminating between surviving trees versus immediate and delayed post-fire mortality. We fit balanced random forest models for each species using cumulative tree mortality from 1 to 5-years post-fire. We compared these results to multi-class random forest models using first-year mortality, 2-5-year mortality, and survival 5-years post-fire as a response variable. Crown volume scorched, diameter at breast height, and relative bark char height, were used as predictor variables. The cumulative mortality models all predicted trees that died within 1-year of fire with high accuracy but failed to predict 2-5-year mortality. The multi-class models were an improvement but had lower accuracy for predicting 2-5-year mortality. Multi-class model accuracies ranged from 85% to 95% across all species for predicting 1-year post-fire mortality, 42%-71% for predicting 2-5-year mortality, and 64%-85% for predicting trees that lived past 5-years. Our study highlights the differences in tree species tolerance to fire injury and suggests that including second-order predictors such as beetle attack or climatic water stress before and after fire will be critical to improve accuracy and better understand the mechanisms and patterns of fire-caused tree death. Random forest models have potential for management applications such as post-fire harvesting and simulating future stand dynamics.


Assuntos
Besouros , Incêndios , Pinus , Pseudotsuga , Animais , Pinus ponderosa/fisiologia , Besouros/fisiologia , Pseudotsuga/fisiologia
7.
Proc Natl Acad Sci U S A ; 117(47): 29730-29737, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168732

RESUMO

Researchers are increasingly examining patterns and drivers of postfire forest recovery amid growing concern that climate change and intensifying fires will trigger ecosystem transformations. Diminished seed availability and postfire drought have emerged as key constraints on conifer recruitment. However, the spatial and temporal extent to which recurring modes of climatic variability shape patterns of postfire recovery remain largely unexplored. Here, we identify a north-south dipole in annual climatic moisture deficit anomalies across the Interior West of the US and characterize its influence on forest recovery from fire. We use annually resolved establishment models from dendrochronological records to correlate this climatic dipole with short-term postfire juvenile recruitment. We also examine longer-term recovery trajectories using Forest Inventory and Analysis data from 989 burned plots. We show that annual postfire ponderosa pine recruitment probabilities in the northern Rocky Mountains (NR) and the southwestern US (SW) track the strength of the dipole, while declining overall due to increasing aridity. This indicates that divergent recovery trajectories may be triggered concurrently across large spatial scales: favorable conditions in the SW can correspond to drought in the NR that inhibits ponderosa pine establishment, and vice versa. The imprint of this climatic dipole is manifest for years postfire, as evidenced by dampened long-term likelihoods of juvenile ponderosa pine presence in areas that experienced postfire drought. These findings underscore the importance of climatic variability at multiple spatiotemporal scales in driving cross-regional patterns of forest recovery and have implications for understanding ecosystem transformations and species range dynamics under global change.


Assuntos
Mudança Climática , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Florestas , Incêndios Florestais , Secas , Temperatura Alta/efeitos adversos , Modelos Estatísticos , Pinus ponderosa , Dispersão Vegetal , Análise Espaço-Temporal , Estados Unidos
8.
Glob Chang Biol ; 28(2): 509-523, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34713535

RESUMO

Quantifying the responses of forest disturbances to climate warming is critical to our understanding of carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks is complex as multiple drivers of these events may respond differently to warming. Using a novel model of bark beetle biology and host tree interactions, we assessed how contemporary warming affected western pine beetle (Dendroctonus brevicomis) populations and mortality of its host, ponderosa pine (Pinus ponderosa), during an extreme drought in the Sierra Nevada, California, United States. When compared with the field data, our model captured the western pine beetle flight timing and rates of ponderosa pine mortality observed during the drought. In assessing the influence of temperature on western pine beetles, we found that contemporary warming increased the development rate of the western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI: 29.4%-30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a much lesser extent, reductions in overwintering mortality. These findings, along with other studies, suggest each degree (°C) increase in temperature may have increased the number of ponderosa pine killed by upwards of 35%-40% °C-1 if the effects of compromised tree defenses (15%-20%) and increased western pine beetle populations (20%) are additive. Due to the warming ability to considerably increase mortality through the mechanism of bark beetle populations, models need to consider climate's influence on both host tree stress and the bark beetle population dynamics when determining future levels of tree mortality.


Assuntos
Besouros , Pinus , Animais , Secas , Pinus ponderosa , Casca de Planta , Árvores
9.
Glob Chang Biol ; 28(3): 1119-1132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34735729

RESUMO

Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought-related mortality derived from measurements of tree-ring growth (ring width index; RWI) and carbon isotope discrimination (∆13 C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012-2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13 C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13 C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine-dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management-particularly in drier regions-may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.


Assuntos
Pinus , Árvores , California , Secas , Florestas , Pinus ponderosa
10.
Ecol Appl ; 32(8): e2717, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184740

RESUMO

We report on survival and growth of ponderosa pines (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) 2 decades after forest restoration treatments in the G. A. Pearson Natural Area, northern Arizona. Despite protection from harvest that conserved old trees, a dense forest susceptible to uncharacteristically severe disturbance had developed during more than a century of exclusion of the previous frequent surface-fire regime that ceased upon Euro-American settlement in approximately 1876. Trees were thinned in 1993 to emulate prefire-exclusion forest conditions, accumulated forest floor was removed, and surface fire was re-introduced at 4-years intervals (full restoration). There was also a partial restoration treatment consisting of thinning alone. Compared with untreated controls, mortality of old trees (mean age 243 years, maximum 462 years) differed by <1 tree ha-1 and old-tree survival was statistically indistinguishable between treatments (90.5% control, 92.3% full, 82.6% partial). Post-treatment growth as measured by basal area increment of both old (pre-1876) and young (post-1876) pines was significantly higher in both treatments than counterpart control trees for more than 2 decades following thinning. Drought meeting the definition of megadrought affected the region almost all the time since the onset of the experiment, including 3 years that were severely dry. Growth of all trees declined in the driest 3 years, but old and young treated trees had significantly less decline. Association of tree growth with temperature (negative correlation) and precipitation (positive correlation) was much weaker in treated trees, indicating that they may experience less growth decline from warmer, drier conditions predicted in future decades. Overall, tree responses after the first 2 decades following treatment suggest that forest restoration treatments have led to substantial, sustained improvement in the growth of old and young ponderosa pines without affecting old-tree survival, thereby improving resilience to a warming climate.


Assuntos
Secas , Pinus ponderosa , Pinus ponderosa/fisiologia , Arizona , Florestas , Árvores/fisiologia
11.
Ecol Appl ; 32(2): e2490, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34753222

RESUMO

Restoration goals in fire-prone conifer forests include mitigating fire hazard while restoring forest structural components linked to disturbance resilience and ecological function. Restoration of overstory spatial pattern in forests often falls short of management objectives due to complexities in implementation, regulation, and available data. When historical data is available, it is often collected at plots too small to inform coarse-scale metrics like gap size and structure of tree patches (e.g., 1 ha). Principles of ecological forestry typically emphasize overstory removal patterns that emulate those of natural disturbances. So, low- and moderate-severity portions of contemporary wildfires may serve as a guide to restoration treatments where mixed-severity fires occur. Here, we compare forest spatial pattern and configuration in 15 mechanical restoration treatments and low- and moderate-severity portions of three wildfires in ponderosa pine-dominated forests to determine how they differ in spatial pattern. We obtained satellite imagery of restoration treatments and wildfires and used supervised classification to differentiate canopy and openings. We assessed elements of landscape structure including canopy and gap cover, gap attributes, and landscape heterogeneity for each disturbance type. We found that both mechanical restoration treatments and low- and moderate-severity portions of wildfires reduced forest cover, increased gap cover, and altered pattern and arrangement of gaps relative to undisturbed areas, though the magnitude of changes were greatest in the burned sites. Low- and moderate-severity wildfire consistently increased landscape heterogeneity, but mechanical treatments did not. This suggests that a greater emphasis on increasing gap and patch spatial structure may make mechanical treatments more congruent with natural disturbances. Outcomes of low- and moderate-severity portions of wildfires may provide important information upon which to base management prescriptions where reference data on landscape patterns is unavailable.


Assuntos
Incêndios , Incêndios Florestais , Agricultura Florestal , Florestas , Pinus ponderosa
12.
Ecol Appl ; 32(4): e2555, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35112748

RESUMO

Human land use and climate change have increased forest density and wildfire risk in dry conifer forests of western North America, threatening various ecosystem services, including habitat for wildlife. Government policy supports active management to restore historical structure and ecological function. Information on potential contributions of restoration to wildlife habitat can allow assessment of tradeoffs with other ecological benefits when prioritizing treatments. We predicted avian responses to simulated treatments representing alternative scenarios to inform landscape-scale forest management planning along the Colorado Front Range. We used data from the Integrated Monitoring in Bird Conservation Regions program to inform a hierarchical multispecies occupancy model relating species occupancy and richness with canopy cover at two spatial scales. We then simulated changes in canopy cover (remotely sensed in 2018) under three alternative scenarios, (1) a "fuels reduction" scenario representing landscape-wide 30% reduction in canopy cover, (2) a "restoration" scenario representing more nuanced, spatially variable treatments targeting historical conditions, and (3) a reference, no-change scenario. Model predictions showed areas of potential gains and losses for species richness, richness of ponderosa pine forest habitat specialists, and the ratio of specialists to generalists at two (1 km2 and 250 m2 ) spatial scales. Under both fuels reduction and restoration scenarios, we projected greater gains than losses for species richness. Surprisingly, despite restoration more explicitly targeting ecologically relevant historical conditions, fuels reduction benefited bird species richness over a greater spatial extent than restoration, particularly in the lower montane life zone. These benefits reflected generally positive species associations with moderate canopy cover promoted more consistently under the fuels reduction scenario. In practice, contemporary forest management is likely to lie somewhere between the fuels reduction and restoration scenarios represented here. Therefore, our results inform where and how active forest management can best support avian diversity. Although our study raises questions regarding the value of including landscape-scale heterogeneity as a management objective, we do not question the value of targeting finer scale heterogeneity (i.e., stand and treatment level). Rather, our results combined with those from previous work clarify the scale at which targeting structural heterogeneity and historical reference conditions can promote particular ecosystem services.


Assuntos
Ecossistema , Traqueófitas , Animais , Animais Selvagens , Aves/fisiologia , Florestas , Humanos , Pinus ponderosa/fisiologia
13.
Oecologia ; 198(4): 933-946, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35434770

RESUMO

Spatial patterns of precipitation in the southwestern United States result in a complex gradient from winter-to-summer moisture dominance that influences tree growth. In response, tree growth exhibits seasonal-to-annual variability that is evident in the growth of whole tree rings, and in sub-annual sections such as earlywood and latewood. We evaluated the influence of precipitation and temperature on the growth of Pinus ponderosa trees in 11 sites in the southwestern US. Precipitation during the year of growth and the prior year accounted for about half of the climate influence on annual growth, with the other half reflecting conditions 2-4 years prior to growth, indicating that individual trees do indeed exhibit multi-year "memory" of climate. Trees in wetter sites exhibited weaker influence of past precipitation inputs, but longer memory of climatic variability. Conversely, trees in dry sites exhibited shorter memory of long-term climatic variability, but greater sensitivity to past precipitation effects. These results are consistent with the existence of complex interactions between endogenous (phenotype) effects and exogenous (climate) effects in controlling climate memory in trees. After accounting for climate, residual variability in latewood growth was negatively correlated with earlywood growth, indicating a potential tradeoff between latewood versus earlywood growth. This study provides new insights that will assist the accurate prediction of woody biomass growth and forest carbon sequestration across a southwestern US precipitation gradient.


Assuntos
Florestas , Pinus ponderosa , Mudança Climática , Estações do Ano , Temperatura
14.
Proc Natl Acad Sci U S A ; 116(30): 15282-15287, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31209057

RESUMO

Consistent with a ubiquitous life history trade-off, trees exhibit a negative relationship between growth and longevity both among and within species. However, the mechanistic basis of this life history trade-off is not well understood. In addition to resource allocation conflicts among multiple traits, functional conflicts arising from individual morphological traits may also contribute to life history trade-offs. We hypothesized that conflicting functional effects of xylem structural traits contribute to the growth-longevity trade-off in trees. We tested this hypothesis by examining the extent to which xylem morphological traits (i.e., wood density, tracheid diameters, and pit structure) relate to growth rates and longevity in two natural populations of the conifer species Pinus ponderosa Hydraulic constraints arise as trees grow larger and xylem anatomical traits adjust to compensate. We disentangled the effects of size through ontogeny in individual trees and growth rates among trees on xylem traits by sampling each tree at multiple trunk diameters. We found that the oldest trees had slower lifetime growth rates compared with younger trees in the studied populations, indicating a growth-longevity trade-off. We further provide evidence that a single xylem trait, pit structure, with conflicting effects on xylem function (hydraulic safety and efficiency) relates to the growth-longevity trade-off in a conifer species. This study highlights that, in addition to trade-offs among multiple traits, functional constraints based on individual morphological traits like that of pit structure provide mechanistic insight into how and when life history trade-offs arise.


Assuntos
Pinus ponderosa/crescimento & desenvolvimento , Característica Quantitativa Herdável , Xilema/crescimento & desenvolvimento , Fatores Etários , Fenômenos Biomecânicos , Características de História de Vida , Pinus ponderosa/anatomia & histologia , Xilema/anatomia & histologia
15.
Proc Natl Acad Sci U S A ; 116(13): 6193-6198, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858310

RESUMO

Climate change is increasing fire activity in the western United States, which has the potential to accelerate climate-induced shifts in vegetation communities. Wildfire can catalyze vegetation change by killing adult trees that could otherwise persist in climate conditions no longer suitable for seedling establishment and survival. Recently documented declines in postfire conifer recruitment in the western United States may be an example of this phenomenon. However, the role of annual climate variation and its interaction with long-term climate trends in driving these changes is poorly resolved. Here we examine the relationship between annual climate and postfire tree regeneration of two dominant, low-elevation conifers (ponderosa pine and Douglas-fir) using annually resolved establishment dates from 2,935 destructively sampled trees from 33 wildfires across four regions in the western United States. We show that regeneration had a nonlinear response to annual climate conditions, with distinct thresholds for recruitment based on vapor pressure deficit, soil moisture, and maximum surface temperature. At dry sites across our study region, seasonal to annual climate conditions over the past 20 years have crossed these thresholds, such that conditions have become increasingly unsuitable for regeneration. High fire severity and low seed availability further reduced the probability of postfire regeneration. Together, our results demonstrate that climate change combined with high severity fire is leading to increasingly fewer opportunities for seedlings to establish after wildfires and may lead to ecosystem transitions in low-elevation ponderosa pine and Douglas-fir forests across the western United States.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Incêndios Florestais , Altitude , Pinus ponderosa/crescimento & desenvolvimento , Pseudotsuga/crescimento & desenvolvimento
16.
Plant Cell Environ ; 44(3): 692-695, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410515

RESUMO

This article comments on: Short- and long-term effects of fire on stem hydraulics in Pinus ponderosa saplings.


Assuntos
Incêndios , Pinus ponderosa , Árvores
17.
Plant Cell Environ ; 44(10): 3322-3335, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34251033

RESUMO

Predicted increases in forest drought mortality highlight the need for predictors of incipient drought-induced mortality (DIM) risk that enable proactive large-scale management. Such predictors should be consistent across plants with varying morphology and physiology. Because of their integrative nature, indicators of water status are promising candidates for real-time monitoring of DIM, particularly if they standardize morphological differences among plants. We assessed the extent to which differences in morphology and physiology between Pinus ponderosa populations influence time to mortality and the predictive power of key indicators of DIM risk. Time to incipient mortality differed between populations but occurred at the same relative water content (RWC) and water potential (WP). RWC and WP were accurate predictors of drought mortality risk. These results highlight that variables related to water status capture critical thresholds during DIM and the associated dehydration processes. Both WP and RWC are promising candidates for large-scale assessments of DIM risk. RWC is of special interest because it allows comparisons across different morphologies and can be remotely sensed. Our results offer promise for real-time landscape-level monitoring of DIM and its global impacts in the near term.


Assuntos
Secas , Pinus ponderosa/fisiologia , Plântula/crescimento & desenvolvimento , Água/metabolismo , Pinus ponderosa/crescimento & desenvolvimento , Plântula/fisiologia
18.
Plant Cell Environ ; 44(12): 3636-3651, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34612515

RESUMO

How carbohydrate reserves in conifers respond to drought and bark beetle attacks are poorly understood. We investigated changes in carbohydrate reserves and carbon-dependent diterpene defences in ponderosa pine trees that were experimentally subjected to two levels of drought stress (via root trenching) and two types of biotic challenge treatments (pheromone-induced bark beetle attacks or inoculations with crushed beetles that include beetle-associated fungi) for two consecutive years. Our results showed that trenching did not influence carbohydrates, whereas both biotic challenges reduced amounts of starch and sugars of trees. However, only the combined trenched-bark beetle attacked trees depleted carbohydrates and died during the first year of attacks. While live trees contained higher carbohydrates than dying trees, amounts of constitutive and induced diterpenes produced did not vary between live and beetle-attacked dying trees, respectively. Based on these results we propose that reallocation of carbohydrates to diterpenes during the early stages of beetle attacks is limited in drought-stricken trees, and that the combination of biotic and abiotic stress leads to tree death. The process of tree death is subsequently aggravated by beetle girdling of phloem, occlusion of vascular tissue by bark beetle-vectored fungi, and potential exploitation of host carbohydrates by bark beetle symbionts as nutrients.


Assuntos
Metabolismo dos Carboidratos , Secas , Cadeia Alimentar , Longevidade , Pinus ponderosa/fisiologia , Gorgulhos/fisiologia , Animais
19.
Plant Cell Environ ; 44(3): 696-705, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32890427

RESUMO

Understanding tree physiological responses to fire is needed to accurately model post-fire carbon processes and inform management decisions. Given trees can die immediately or at extended time periods after fire, we combined two experiments to assess the short- (one-day) and long-term (21-months) fire effects on Pinus ponderosa sapling water transport. Native percentage loss of conductivity (nPLC), vulnerability to cavitation and xylem anatomy were assessed in unburned and burned saplings at lethal and non-lethal fire intensities. Fire did not cause any impact on nPLC and xylem cell wall structure in either experiment. However, surviving saplings evaluated 21-months post-fire were more vulnerable to cavitation. Our anatomical analysis in the long-term experiment showed that new xylem growth adjacent to fire scars had irregular-shaped tracheids and many parenchyma cells. Given conduit cell wall deformation was not observed in the long-term experiment, we suggest that the irregularity of newly grown xylem cells nearby fire wounds may be responsible for decreasing resistance to embolism in burned plants. Our findings suggest that hydraulic failure is not the main short-term physiological driver of mortality for Pinus ponderosa saplings. However, the decrease in embolism resistance in fire-wounded saplings could contribute to sapling mortality in the years following fire.


Assuntos
Incêndios , Pinus ponderosa/fisiologia , Caules de Planta/fisiologia , Pinus ponderosa/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/fisiologia , Água/metabolismo , Xilema/metabolismo , Xilema/fisiologia , Xilema/ultraestrutura
20.
Plant Cell Environ ; 44(1): 143-155, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058213

RESUMO

The Craig-Gordon type (C-G) leaf water isotope enrichment models assume a homogeneous distribution of enriched water across the leaf surface, despite observations that Δ18 O can become increasingly enriched from leaf base to tip. Datasets of this 'progressive isotope enrichment' are limited, precluding a comprehensive understanding of (a) the magnitude and variability of progressive isotope enrichment, and (b) how progressive enrichment impacts the accuracy of C-G leaf water model predictions. Here, we present observations of progressive enrichment in two conifer species that capture seasonal and diurnal variability in environmental conditions. We further examine which leaf water isotope models best capture the influence of progressive enrichment on bulk needle water Δ18 O. Observed progressive enrichment was large and equal in magnitude across both species. The magnitude of this effect fluctuated seasonally in concert with vapour pressure deficit, but was static in the face of diurnal cycles in meteorological conditions. Despite large progressive enrichment, three variants of the C-G model reasonably successfully predicted bulk needle Δ18 O. Our results thus suggest that the presence of progressive enrichment does not impact the predictive success of C-G models, and instead yields new insight regarding the physiological and anatomical mechanisms that cause progressive isotope enrichment.


Assuntos
Ritmo Circadiano , Isótopos de Oxigênio/metabolismo , Pinus ponderosa/metabolismo , Pinus/metabolismo , Folhas de Planta/metabolismo , Estações do Ano , Atmosfera , Modelos Biológicos , Transpiração Vegetal , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA