Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(5): e0011824, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526048

RESUMO

Quorum sensing is a type of cell-cell communication that modulates various biological activities of bacteria. Previous studies indicate that quorum sensing contributes to the evolution of bacterial resistance to antibiotics, but the underlying mechanisms are not fully understood. In this study, we grew Pseudomonas aeruginosa in the presence of sub-lethal concentrations of ciprofloxacin, resulting in a large increase in ciprofloxacin minimal inhibitory concentration. We discovered that quorum sensing-mediated phenazine biosynthesis was significantly enhanced in the resistant isolates, where the quinolone circuit was the predominant contributor to this phenomenon. We found that production of pyocyanin changed carbon flux and showed that the effect can be partially inhibited by the addition of pyruvate to cultures. This study illustrates the role of quorum sensing-mediated phenotypic resistance and suggests a strategy for its prevention.


Assuntos
Antibacterianos , Ciprofloxacina , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Fenazinas , Pseudomonas aeruginosa , Piocianina , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Ciprofloxacina/farmacologia , Percepção de Quorum/efeitos dos fármacos , Fenazinas/farmacologia , Fenazinas/metabolismo , Antibacterianos/farmacologia , Piocianina/biossíntese , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Quinolonas/farmacologia
2.
Int Microbiol ; 27(5): 1457-1471, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38342794

RESUMO

Quorum sensing (QS) is pivotal in coordinating virulence factors and biofilm formation in various pathogenic bacteria, making it a prime target for disrupting bacterial communication. Pseudomonas aeruginosa is a member of the "ESKAPE" group of bacterial pathogens known for their association with antimicrobial resistance and biofilm formation. The current antibiotic arsenal falls short of addressing biofilm-related infections effectively, highlighting the urgent need for novel therapeutic agents. In this study, we explored the anti-QS and anti-biofilm properties of theophylline against two significant pathogens, Chromobacterium violaceum and P. aeruginosa. The production of violacein, pyocyanin, rhamnolipid, and protease was carried out, along with the evaluation of biofilm formation through methods including crystal violet staining, triphenyl tetrazolium chloride assay, and fluorescence microscopy. Furthermore, computational analyses were conducted to predict the targets of theophylline in the QS pathways of P. aeruginosa and C. violaceum. Our study demonstrated that theophylline effectively inhibits QS activity and biofilm formation in C. violaceum and P. aeruginosa. In P. aeruginosa, theophylline inhibited the production of key virulence factors, including pyocyanin, rhamnolipid, protease, and biofilm formation. The computational analyses suggest that theophylline exhibits robust binding affinity to CviR in C. violaceum and RhlR in P. aeruginosa, key participants in the QS-mediated biofilm pathways. Furthermore, theophylline also displays promising interactions with LasR and QscR in P. aeruginosa. Our study highlights theophylline as a versatile anti-QS agent and offers a promising avenue for future research to develop novel therapeutic strategies against biofilm-associated infections.


Assuntos
Antibacterianos , Biofilmes , Chromobacterium , Pseudomonas aeruginosa , Piocianina , Percepção de Quorum , Teofilina , Fatores de Virulência , Percepção de Quorum/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/metabolismo , Chromobacterium/efeitos dos fármacos , Chromobacterium/fisiologia , Chromobacterium/metabolismo , Antibacterianos/farmacologia , Teofilina/farmacologia , Teofilina/metabolismo , Fatores de Virulência/metabolismo , Piocianina/metabolismo , Piocianina/biossíntese , Testes de Sensibilidade Microbiana , Indóis/farmacologia , Indóis/metabolismo , Glicolipídeos/farmacologia , Glicolipídeos/metabolismo , Proteínas de Bactérias/metabolismo
3.
Bioprocess Biosyst Eng ; 47(6): 903-917, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630261

RESUMO

In the present study, the potential of Pseudomonas citronellolis 620C strain was evaluated, for the first time, to generate electricity in a standard, double chamber microbial fuel cell (MFC), with oily wastewater (OW) being the fuel at 43.625 mg/L initial chemical oxygen demand (COD). Both electrochemical and physicochemical results suggested that this P. citronellolis strain utilized efficiently the OW substrate and generated electricity in the MFC setup reaching 0.05 mW/m2 maximum power. COD removal was remarkable reaching 83.6 ± 0.1%, while qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis of the OW total petroleum and polycyclic aromatic hydrocarbons, and fatty acids revealed high degradation capacity. It was also determined that P. citronellolis 620C produced pyocyanin as electron shuttle in the anodic MFC chamber. To the authors' best knowledge, this is the first study showing (phenazine-based) pyocyanin production from a species other than P. aeruginosa and, also, the first time that P. citronellolis 620C has been shown to produce electricity in a MFC. The production of pyocyanin, in combination with the formation of biofilm in the MFC anode, as observed with scanning electron microscopy (SEM) analysis, makes this P. citronellolis strain an attractive and promising candidate for wider MFC applications.


Assuntos
Fontes de Energia Bioelétrica , Pseudomonas , Piocianina , Águas Residuárias , Fontes de Energia Bioelétrica/microbiologia , Piocianina/biossíntese , Piocianina/metabolismo , Águas Residuárias/microbiologia , Pseudomonas/metabolismo , Eletricidade
4.
Mol Microbiol ; 116(4): 1113-1123, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418194

RESUMO

Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an opportunistic pathogen that represents an important health hazard. The quorum-sensing response regulates the expression of several virulence factors and involves three regulons: Las, Rhl, and Pqs. The P. aeruginosa ATCC 9027 strain, which belongs to the genetically diverse PA7 clade, contains a frame-shift mutation in the pqsR gene that encodes a transcriptional activator necessary for pyocyanin (PYO) synthesis in type strains PAO1 and PA14. Here we characterize the PqsE-dependent production of PYO in strain ATCC 9027. We show that this strain expresses pqsE independently of PqsR and in the absence of quinolone production, and that PqsE promotes the RhlR-dependent production of PYO, yet this production is not strictly dependent on PqsE. In addition, we show that in both strains ATCC 9027 and PAO1, PqsE overexpression causes an increased concentration of RhlR and enhances PYO production but does not affect rhamnolipids (RL) production in the same way. These results suggest that PqsE interaction with RhlR preferentially modifies its ability to activate transcription of genes involved in PYO production and provide new evidence about PqsE-dependent RhlR activation, highlighting the variability of the QS response among different P. aeruginosa clades and strains. HIGHLIGHTS: Pseudomonas aeruginosa ATCC 9027 is able to produce pyocyanin in phosphate limiting conditions, even in the absence of a functional PqsR. This strain does not produce alkyl quinolones like PQS and HHQ, but expresses pqsE. Synthesis of pyocyanin by ATCC 9027 is only partially dependent on pqsE. The overexpression of pqsE in the ATCC 9027 and PAO1 strains causes pyocyanin overproduction. The overexpression of pqsE in these strains causes an increased RhlR concentration without affecting rhlR transcription or translation. Rhamnolipids production is not affected to the same extent as pyocyanin by overexpression of pqsE in these strains.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Percepção de Quorum , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Proteínas de Bactérias/genética , Mutação da Fase de Leitura , Regulação Bacteriana da Expressão Gênica , Glicolipídeos/metabolismo , Humanos , Mutação , Óperon , Infecções por Pseudomonas/microbiologia , Quinolonas/metabolismo , Regulon , Transativadores , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Mol Microbiol ; 116(2): 516-537, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33892520

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that uses malonate among its many carbon sources. We recently reported that, when grown in blood from trauma patients, P. aeruginosa expression of malonate utilization genes was upregulated. In this study, we explored the role of malonate utilization and its contribution to P. aeruginosa virulence. We grew P. aeruginosa strain PA14 in M9 minimal medium containing malonate (MM9) or glycerol (GM9) as a sole carbon source and assessed the effect of the growth on quorum sensing, virulence factors, and antibiotic resistance. Growth of PA14 in MM9, compared to GM9, reduced the production of elastases, rhamnolipids, and pyoverdine; enhanced the production of pyocyanin and catalase; and increased its sensitivity to norfloxacin. Growth in MM9 decreased extracellular levels of N-acylhomoserine lactone autoinducers, an effect likely associated with increased pH of the culture medium; but had little effect on extracellular levels of PQS. At 18 hr of growth in MM9, PA14 formed biofilm-like structures or aggregates that were associated with biomineralization, which was related to increased pH of the culture medium. These results suggest that malonate significantly impacts P. aeruginosa pathogenesis by influencing the quorum sensing systems, the production of virulence factors, biofilm formation, and antibiotic resistance.


Assuntos
Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/fisiologia , Malonatos/metabolismo , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/fisiologia , Antibacterianos/farmacologia , Biomineralização/fisiologia , Catalase/biossíntese , Decanoatos , Dissacarídeos/biossíntese , Glicerol/metabolismo , Norfloxacino/farmacologia , Oligopeptídeos/biossíntese , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Serina Endopeptidases/biossíntese , Virulência , Fatores de Virulência/metabolismo
6.
Mar Drugs ; 20(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35621934

RESUMO

α-Amylase inhibitors (aAIs) have been applied for the efficient management of type 2 diabetes. The aim of this study was to search for potential aAIs produced by microbial fermentation. Among various bacterial strains, Pseudomonas aeruginosa TUN03 was found to be a potential aAI-producing strain, and shrimp heads powder (SHP) was screened as the most suitable C/N source for fermentation. P. aeruginosa TUN03 exhibited the highest aAIs productivity (3100 U/mL) in the medium containing 1.5% SHP with an initial pH of 7-7.5, and fermentation was performed at 27.5 °C for two days. Further, aAI compounds were investigated for scaled-up production in a 14 L-bioreactor system. The results revealed a high yield (4200 U/mL) in a much shorter fermentation time (12 h) compared to fermentation in flasks. Bioactivity-guided purification resulted in the isolation of one major target compound, identified as hemi-pyocyanin (HPC) via gas chromatography-mass spectrometry and nuclear magnetic resonance. Its purity was analyzed by high-performance liquid chromatography. HPC demonstrated potent α-amylase inhibitory activity comparable to that of acarbose, a commercial antidiabetic drug. Notably, HPC was determined as a new aAI. The docking study indicated that HPC inhibits α-amylase by binding to amino acid Arg421 at the biding site on enzyme α-amylase with good binding energy (-9.3 kcal/mol) and creating two linkages of H-acceptors.


Assuntos
Quitina , Piocianina/biossíntese , Quitina/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacologia , alfa-Amilases/antagonistas & inibidores
7.
J Bacteriol ; 203(5)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33288622

RESUMO

Pseudomonas aeruginosa is a major nosocomial pathogen that presents high-level resistance to antibiotics. Its ability to cause infections relies on the production of multiple virulence factors. Quorum sensing (QS) regulates the expression of many of these virulence factors through three QS systems: Las, Rhl, and PQS. The Las system positively regulates the other two systems, so it is at the top of a hierarchized regulation. Nevertheless, clinical and environmental strains that lack a functional Las system have been isolated, and, surprisingly, some of them still have the ability to produce virulence factors and infect animal models, so it has been suggested that the hierarchy is flexible under some conditions or with atypical strains. Here, we analyze the PAO1 type strain and its ΔlasR-derived mutant and report, for the first time, a growth condition (phosphate limitation) where LasR absence has no effect either on virulence factor production or on the gene expression profile, in contrast to a condition of phosphate repletion where the LasR hierarchy is maintained. This work provides evidence on how the QS hierarchy can change from being a strictly LasR-dependent to a LasR-independent RhlR-based hierarchy under phosphate limitation even in the PAO1 type strain.IMPORTANCEPseudomonas aeruginosa is an important pathogen, considered a priority for the development of new therapeutic strategies. An important approach to fight its infections relies on blocking quorum sensing. The Las system is the main regulator of the quorum-sensing response, so many research efforts aim to block this system to suppress the entire response. In this work, we show that LasR is dispensable in a phosphate-limited environment in the PAO1 type strain, which has been used to define the quorum-sensing response hierarchy, and that under this condition RhlR is at the top of the regulation hierarchy. These results are highly significant, since phosphate limitation represents a similar environment to the one that P. aeruginosa faces when establishing infections.


Assuntos
Fosfatos/deficiência , Pseudomonas aeruginosa/fisiologia , Piocianina/biossíntese , Percepção de Quorum/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Elastase Pancreática/biossíntese , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/genética , Transativadores/biossíntese , Transativadores/genética , Transcrição Gênica
8.
Arch Microbiol ; 203(6): 2863-2874, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33751172

RESUMO

This research aimed to study siderophores secreted from Pseudomonas sp. PDMZnCd2003, a Zn/Cd tolerant bacterium. The effects of Zn and/or Cd stress were examined in nutrient broth to achieve the actual environmental conditions. Acid and alkali supernatants and liquid-liquid extraction with ethyl acetate and butanol were carried out to obtain crude extracts containing different amounts of the metals. The bacterial growth, UV-visible spectra of the supernatants and siderophore production indicated that the production of siderophores tended to be linked to primary metabolites. Pyocyanin was produced in all treatments, while pyoverdine was induced by stress from the metals, especially Cd. FT-IR spectra showed C=O groups and sulfur functional groups that were involved in binding with the metals. LC-MS revealed that pyocyanin, 1-hydroxy phenazine, pyoverdine, and pyochelin were present in the crude extracts. S K-edge XANES spectra showed that the main sulfur species in the extracts were the reduced forms of sulfide, thiol, and disulfide, and their oxidation states were affected by coordination with Zn and/or Cd. In addition, Zn K-edge EXAFS spectra and Cd K-edge EXAFS spectra presented Zn-O and Cd-O as coordination in the first shell, in case the extracts contained less metal. Although the mix O/S ligands had chelation bonding with Zn and Cd in the other extracts. For the role of S groups in pyochelin binding with the metals, this was the first report. The results of these experiments could be extended to Pseudomonas that respond to metal contaminated environments.


Assuntos
Cádmio/farmacologia , Pseudomonas/metabolismo , Sideróforos/isolamento & purificação , Zinco/farmacologia , Nutrientes , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Piocianina/biossíntese
9.
Microb Cell Fact ; 20(1): 215, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819093

RESUMO

BACKGROUND: Microbial co-cultures and consortia are of interest in cell-based molecular production and even as "smart" therapeutics in that one can take advantage of division of labor and specialization to expand both the range of available functions and mechanisms for control. The development of tools that enable coordination and modulation of consortia will be crucial for future application of multi-population cultures. In particular, these systems would benefit from an expanded toolset that enables orthogonal inter-strain communication. RESULTS: We created a co-culture for the synthesis of a redox-active phenazine signaling molecule, pyocyanin (PYO), by dividing its synthesis into the generation of its intermediate, phenazine carboxylic acid (PCA) from the first strain, followed by consumption of PCA and generation of PYO in a second strain. Interestingly, both PCA and PYO can be used to actuate gene expression in cells engineered with the soxRS oxidative stress regulon, although importantly this signaling activity was found to depend on growth media. That is, like other signaling motifs in bacterial systems, the signaling activity is context dependent. We then used this co-culture's phenazine signals in a tri-culture to modulate gene expression and production of three model products: quorum sensing molecule autoinducer-1 and two fluorescent marker proteins, eGFP and DsRed. We also showed how these redox-based signals could be intermingled with other quorum-sensing (QS) signals which are more commonly used in synthetic biology, to control complex behaviors. To provide control over product synthesis in the tri-cultures, we also showed how a QS-induced growth control module could guide metabolic flux in one population and at the same time guide overall tri-culture function. Specifically, we showed that phenazine signal recognition, enabled through the oxidative stress response regulon soxRS, was dependent on media composition such that signal propagation within our parsed synthetic system could guide different desired outcomes based on the prevailing environment. In doing so, we expanded the range of signaling molecules available for coordination and the modes by which they can be utilized to influence overall function of a multi-population culture. CONCLUSIONS: Our results show that redox-based signaling can be intermingled with other quorum sensing signaling in ways that enable user-defined control of microbial consortia yielding various outcomes defined by culture medium. Further, we demonstrated the utility of our previously designed growth control module in influencing signal propagation and metabolic activity is unimpeded by orthogonal redox-based signaling. By exploring novel multi-modal strategies for guiding communication and consortia outcome, the concepts introduced here may prove to be useful for coordination of multiple populations within complex microbial systems.


Assuntos
Engenharia Metabólica/métodos , Consórcios Microbianos/fisiologia , Fenazinas/metabolismo , Piocianina/biossíntese , Biologia Sintética/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Consórcios Microbianos/genética , Oxirredução , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais
10.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830033

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that synthesizes and secretes a wide range of virulence factors. P. aeruginosa poses a potential threat to human health worldwide due to its omnipresent nature, robust host accumulation, high virulence, and significant resistance to multiple antibiotics. The pathogenicity of P. aeruginosa, which is associated with acute and chronic infections, is linked with multiple virulence factors and associated secretion systems, such as the ability to form and utilize a biofilm, pili, flagella, alginate, pyocyanin, proteases, and toxins. Two-component systems (TCSs) of P. aeruginosa perform an essential role in controlling virulence factors in response to internal and external stimuli. Therefore, understanding the mechanism of TCSs to perceive and respond to signals from the environment and control the production of virulence factors during infection is essential to understanding the diseases caused by P. aeruginosa infection and further develop new antibiotics to treat this pathogen. This review discusses the important virulence factors of P. aeruginosa and the understanding of their regulation through TCSs by focusing on biofilm, motility, pyocyanin, and cytotoxins.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Infecção Persistente , Infecções por Pseudomonas , Pseudomonas aeruginosa , Piocianina , Fatores de Virulência , Infecção Persistente/genética , Infecção Persistente/metabolismo , Infecção Persistente/microbiologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Piocianina/biossíntese , Piocianina/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
11.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066609

RESUMO

Pseudomonas aeruginosa (P. aeruginosa), one of the dangerous multidrug resistance pathogens, orchestrates virulence factors production through quorum sensing (QS). Since the exploration of QS inhibitors, targeting virulence to circumvent bacterial pathogenesis without causing significant growth inhibition is a promising approach to treat P. aeruginosa infections. The present study has evaluated the anti-QS and anti-infective activity of epigallocatechin-3-gallate (EGCG), a bioactive ingredient of the traditional green tea, against P. aeruginosa. EGCG showed significant inhibitory effects on the development of biofilm, protease, elastase activity, swimming, and swarming motility, which was positively related to the production of C4-AHL. The expression of QS-related and QS-regulated virulence factors genes was also evaluated. Quantitative PCR analysis showed that EGCG significantly reduced the expression of las, rhl, and PQS genes and was highly correlated with the alterations of C4-AHL production. In-vivo experiments demonstrated that EGCG treatment reduced P. aeruginosa pathogenicity in Caenorhabditis elegans (C. elegans). EGCG increased the survival of C. elegans by 23.25%, 30.04%, and 36.35% in a dose-dependent manner. The findings of this study strongly suggest that EGCG could be a potential candidate for QS inhibition as an anti-virulence compound against bacterial infection.


Assuntos
Biofilmes/crescimento & desenvolvimento , Catequina/análogos & derivados , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Catequina/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glicolipídeos/biossíntese , Testes de Sensibilidade Microbiana , Movimento , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/biossíntese , Percepção de Quorum/genética
12.
Molecules ; 26(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066034

RESUMO

The chemical composition of three Citrus limon oils: lemon essential oil (LEO), lemon terpenes (LT) and lemon essence (LE), and their influence in the virulence factors production and motility (swarming and swimming) of two Pseudomonas aeruginosa strains (ATCC 27853 and a multidrug-resistant HT5) were investigated. The main compound, limonene, was also tested in biological assays. Eighty-four compounds, accounting for a relative peak area of 99.23%, 98.58% and 99.64%, were identified by GC/MS. Limonene (59-60%), γ-terpinene (10-11%) and ß-pinene (7-15%) were the main compounds. All lemon oils inhibited specific biofilm production and bacterial metabolic activities into biofilm in a dose-dependent manner (20-65%, in the range of 0.1-4 mg mL-1) of both strains. Besides, all samples inhibited about 50% of the elastase activity at 0.1 mg mL-1. Pyocyanin biosynthesis decreases until 64% (0.1-4 mg mL-1) for both strains. Swarming motility of P. aeruginosa ATCC 27853 was completely inhibited by 2 mg mL-1 of lemon oils. Furthermore, a decrease (29-55%, 0.1-4 mg mL-1) in the synthesis of Quorum sensing (QS) signals was observed. The oils showed higher biological activities than limonene. Hence, their ability to control the biofilm of P. aeruginosa and reduce the production of virulence factors regulated by QS makes lemon oils good candidates to be applied as preservatives in the food processing industry.


Assuntos
Antibacterianos/farmacologia , Citrus/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Monoterpenos Bicíclicos/química , Monoterpenos Bicíclicos/farmacologia , Biofilmes/efeitos dos fármacos , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Limoneno/química , Limoneno/farmacologia , Óleos Voláteis/química , Elastase Pancreática/metabolismo , Óleos de Plantas/química , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Transdução de Sinais/efeitos dos fármacos , Virulência , Fatores de Virulência , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
13.
World J Microbiol Biotechnol ; 37(4): 66, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740144

RESUMO

Pseudomonas aeruginosa is one of the vulnerable opportunistic pathogens associated with nosocomial infections, cystic fibrosis, burn wounds and surgical site infections. Several studies have reported that quorum sensing (QS) systems are controlled the P. aeruginosa pathogenicity. Hence, the targeting of QS considered as an alternative approach to control P. aeruginosa infections. This study aimed to evaluate the anti-quorum sensing and antibiofilm inhibitory potential of Musa paradisiaca against Chromobacterium violaceum (ATCC 12472) and Pseudomonas aeruginosa. The methanol extract of M. paradisiacsa exhibits that better antibiofilm potential against P. aeruginosa. Then, the crude methanol extract was subjected to purify by column chromatography and collected the fractions. The mass-spectrometric analysis of a methanol extract of M. paradisiaca revealed that 1,8-cineole is the major compounds. 1, 8-cineole significantly inhibited the QS regulated violacein production in C. violaceum. Moreover, 1,8-cineole significantly inhibited the QS mediated virulence production and biofilm formation of P. aeruginosa without affecting their growth. The real-time PCR analysis showed the downregulation of autoinducer synthase and transcriptional regulator genes upon 1,8-cineole treatment. The findings of the present study strongly suggested that metabolite of M. paradisiaca impedes P. aeruginosa QS system and associated virulence productions.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Eucaliptol/química , Eucaliptol/farmacologia , Musa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Alginatos/metabolismo , Biofilmes/crescimento & desenvolvimento , Chromobacterium/efeitos dos fármacos , Eucaliptol/isolamento & purificação , Expressão Gênica/efeitos dos fármacos , Glicolipídeos/biossíntese , Índia , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Polissacarídeos Bacterianos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/biossíntese , Virulência/efeitos dos fármacos , Fatores de Virulência
14.
Int J Med Microbiol ; 310(1): 151379, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31759864

RESUMO

The presence of bacterial species other than the pathogen at infection site can affect the progression of a bacterial infection. Based on the fact that Citrobacter freundii can coexist during Pseudomonas aeruginosa infection, this study aims to investigate the impact of the co-existing C. freundii on the pathogenesis of P. aeruginosa infection. A murine peritonitis model was used to compare the mortality rates and histopathology of P. aeruginosaPAO1 infection in the presence and absence of a C. freundii clinical isolate C9. We also investigated the intercellular interaction between PAO1 and C9 by examining pyocyanin production and comparing gene expression levels. The results demonstrate that co-infection with C9 significantly increased the mortality rate and tissue damages in PAO1 infected mice. At an inoculum of 106 CFU, no mortality was observed in the C9 infected group at three days post-infection, whereas the mortality rate in the PAO1-C9 co-infection group was 64%, compared with 24% in the PAO1 infected group. Pyocyanin production in P. aeruginosa PAO1 increased 8 folds approximately in the presence of C. freundii C9, and operons associated with phenazine synthesis, phzA1 and phzA2, were also upregulated. Disruption of the phzA1 and phzA2 eliminated the exacerbated pathogenicity in the co-infection group, indicating that the elevated pyocyanin production was the main contributing factor. The results suggest that co-existing C. freundii during P. aeruginosa infection can exacerbate the pathogenicity, which may have significant implications in patients infected with these bacteria.


Assuntos
Coinfecção/microbiologia , Infecções por Enterobacteriaceae/microbiologia , Peritonite/microbiologia , Infecções por Pseudomonas/microbiologia , Animais , Proteínas de Bactérias/genética , Citrobacter freundii , Modelos Animais de Doenças , Masculino , Camundongos , Peritonite/mortalidade , Fenazinas/metabolismo , Pseudomonas aeruginosa , Piocianina/biossíntese , Virulência
15.
Microb Pathog ; 144: 104142, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32173496

RESUMO

Although bacterial resistance is a worldwide growing concern, the development of bacteriostatic and bactericidal drugs has been decreasing in the last decade. Compounds that modulate the microorganism virulence, without killing it, have been considered promising alternatives to combat bacterial infections. However, most signaling pathways that regulate virulence are complex and not completely understood. The rich chemical diversity of natural products offers a good starting point to identify key compounds that shed some light on this matter. Therefore, we investigated the role of Marcetia latifolia ethanolic extract, as well as its major constituent, calycopterin (5,4'-dihydroxy-3,6,7,8-tetramethoxylflavone), in the regulation of virulence-related phenotypes of Pseudomonas aeruginosa. Our results show that calycopterin inhibits pyocyanin production (EC50 = 32 µM), reduces motility and increases biofilm formation in a dose-dependent manner. Such biological profile suggests that calycopterin modulates targets that may act upstream the quorum sensing regulators and points to its utility as a chemical probe to further investigate P. aeruginosa transition from planktonic to sessile lifestyle.


Assuntos
Antibacterianos/farmacologia , Flavonas/farmacologia , Locomoção/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Biofilmes/efeitos dos fármacos , Melastomataceae/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Piocianina/biossíntese , Percepção de Quorum/efeitos dos fármacos , Virulência/efeitos dos fármacos
16.
Microb Pathog ; 144: 104172, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32224208

RESUMO

Antimicrobial resistance among pathogenic bacteria has become a global threat to human health. Due to poor progress in development of new antimicrobial drugs, there is a need for the development of novel alternative strategies to combat the problem of multidrug resistance. Moreover, there is focus on ecofriendly approach for the synthesis nanoparticles having efficient medicinal properties including antivirulence properties to tackle the emergence of multi-drug resistance. Targeting quorum sensing controlled virulence factors and biofilms has come out to be a novel anti-infective drug target. The silver nanoparticles (Ag@CC-NPs) were synthesized from aqueous extract of Carum copticum and characterized using UV-vis absorption spectroscopy, fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Ag@CC-NPs were checked for its ability to inhibit quorum sensing-mediated virulence factors and biofilms against three test pathogens at sub-MIC values. There was ~75% inhibition of violacein production by Ag@CC-NPs against C. violaceum. The P. aeruginosa virulence factors such as pyocyanin production, pyoverdin production, exoprotease activity, elastase activity, swimming motility and rhamnolipid production were inhibited by 76.9, 49.0, 71.1, 53.3, 89.5, and 60.0% at sub-MIC. Moreover, virulence factors of S. marcescens viz. prodigiosin production, exoprotease activity, and swarming motility was reduced by 78.4, 67.8, and 90.7%. Ag@CC-NPs also exhibited broad-spectrum antibiofilm activity with 77.6, 86.3, and 75.1% inhibition of biofilms of P. aeruginosa, S. marcescens, and C. violaceum respectively. The biofilm formation on glass coverslip was reduced remarkably as evident from SEM and CLSM analysis. The findings revealed the in vitro efficacy of Ag@CC-NPs against bacterial pathogens and can be exploited in the development of alternative therapeutic agent in management of bacterial infections for topical application, mainly wound infection, or coating of surfaces to prevent bacterial adherence on medical devices.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/química , Percepção de Quorum/efeitos dos fármacos , Prata/farmacologia , Fatores de Virulência/antagonistas & inibidores , Carum/metabolismo , Chromobacterium/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/fisiologia , Indóis/metabolismo , Locomoção/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prodigiosina/biossíntese , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/biossíntese , Serratia marcescens/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
17.
Arch Microbiol ; 202(6): 1507-1515, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222778

RESUMO

Pyocyanin produced by Pseudomonas aeruginosa is a key virulence factor that often causes heavy damages to airway and lung in patients. Conversion of phenazine-1-carboxylic acid to pyocyanin involves an extrametabolic pathway that contains two enzymes encoded, respectively, by phzM and phzS. In this study, with construction of the rpoS-deficient mutant, we first found that although phenazine production increased, pyocyanin produced in the mutant YTΔrpoS was fourfold much higher than that in the wild-type strain YT. To investigate this issue, we constructed phzM-lacZ fusion on a vector and on the chromosome. By quantifying ß-galactosidase activities, we confirmed that expression of the phzM was up-regulated when the rpoS gene was inactivated. However, no changes occurred in the expression of phzS and phzH when the rpoS was knocked out. Taken together, overproduction of the SAM-dependent methyltransferase (PhzM) might contribute to the increased pyocyanin in the absence of RpoS in P. aeruginosa.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Metiltransferases/biossíntese , Oxigenases de Função Mista/biossíntese , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Fator sigma/genética , Humanos , Metiltransferases/genética , Oxigenases de Função Mista/genética , Fenazinas/metabolismo , Pseudomonas aeruginosa/genética , Fatores de Virulência/metabolismo
18.
Arch Microbiol ; 202(3): 617-622, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31773196

RESUMO

The repurposing of gallium nitrate as an antibacterial, a drug used previously for the treatment of hypercalcemia, is a plausible alternative to combat infections by Pseudomonas aeruginosa, since it has antipseudomonal properties in vitro and in vivo in animal models and in human lung infections. Furthermore, gallium nitrate tolerance in clinical isolates is very rare. Nevertheless, studies on the reference strains PA14 and PAO1 show that resistance against gallium nitrate is achieved by decreasing gallium intracellular levels by increasing the production of pyocyanin. In this work, we induced resistance in a cystic fibrosis P. aeruginosa isolate and explored its resistance mechanisms. This isolated strain, INP-58M, was not a pyocyanin producer, and its pyoverdine levels remained unchanged upon gallium addition. However, it showed higher activities of NADPH-producing enzymes and the antioxidant enzyme SOD when gallium was added, which suggests a better antioxidant response. Remarkably, gallium intracellular levels in the resistant isolate were higher than those of the parental strain at 20 h but lower after 24 h of culture, suggesting that this strain is capable of gallium efflux.


Assuntos
Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Gálio/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana , Humanos , Oligopeptídeos/biossíntese , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese
19.
Bioorg Chem ; 105: 104376, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33099165

RESUMO

Quorum sensing, a common cell-to-cell communication system, is considered to have promising application in antibacterial therapy since they are expected to induce lower bacterial resistance than conventional antibiotics. However, most of present quorum sensing inhibitors have potent cell toxicity, which limits their application. In this study we evaluated the diverse quorum sensing inhibition activities of different biaromatic furanones and brominated pyrrolones. On this basis, we further designed and synthesized a new series of aryl-substituted pyrrolones 12a-12f. In the quorum sensing inhibition assay, compound 12a showed improved characteristics and low toxicity against human hepatocellular carcinoma cell. In particular, it can inhibit the pyocyanin production and protease activity of Pseudomonas aeruginosa by 80.6 and 78.5%, respectively. Besides, in this series, some compounds exerted moderate biofilm inhibition activity. To sum up, all the findings indicate that aryl-substituted pyrrolidone derivatives are worth further investigation as quorum sensing inhibitors.


Assuntos
Desenho de Fármacos , Pirrolidinonas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Estrutura Molecular , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/antagonistas & inibidores , Piocianina/biossíntese , Pirrolidinonas/síntese química , Pirrolidinonas/química , Relação Estrutura-Atividade
20.
Lett Appl Microbiol ; 70(5): 372-379, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048742

RESUMO

Pseudomonas aeruginosa is a prominent member of emerging waterborne pathogens. The environmental reservoirs of multi-resistant phenotypes and other virulence factors in this bacterium are poorly understood. Our study aimed to determine the virulence properties of P. aeruginosa isolated from Roraima Sur Cave (RSC) waters at Guayana Highlands. Based on the best identification at species level by biochemical tests, 16S rRNA sequencing and phylogenetic inferences, one RSC isolate named LG11 was characterized for virulence properties in comparison with P. aeruginosa reference strains. PCR amplification of alginate, elastase, exoenzyme S, exotoxin A, neuraminidase and Quorum-Sensing genes showed a high virulence potential in LG11. This isolate demonstrated multi-resistance to ceftriaxone, tigecycline and imipenem. Pyocyanin production was greater in LG11 (0·478 µg ml-1 ) than the strain ATCC 10145 (0·316 µg ml-1 ), but the highest pigment concentration (2·140 µg ml-1 ) was displayed by the clinical strain CVCM 937 (P = 0·000175). Pronounced biomass production on granite and glass (P < 0·05) and well-developed biofilms indicated the ability of P. aeruginosa from RSC to colonize surfaces found in human and healthcare environments. These data suggest that waters from pristine ecosystems such as RSC could be reservoirs of this opportunistic bacterium carrying important virulence properties with potential epidemiological implications. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows for the first time the occurrence of virulence genes and multi-resistance to antimicrobials in Pseudomonas aeruginosa isolated from cave waters at Guayana Highlands. These findings, together with the biofilm formation on surfaces found in human and healthcare settings, suggest public health risks and the potential of these virulence properties to be transferred from or to native populations in waters. Our results provide important insights to the current knowledge of P. aeruginosa in the environment, setting the basis for future studies driven to assess reservoirs of multi-resistant bacteria and virulence features unknown in pristine ecosystems.


Assuntos
Cavernas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/genética , Microbiologia da Água , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/efeitos dos fármacos , Ecossistema , Testes de Sensibilidade Microbiana , Filogenia , Pseudomonas aeruginosa/isolamento & purificação , Piocianina/biossíntese , Percepção de Quorum , RNA Ribossômico 16S/genética , Venezuela , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA