Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Clin Infect Dis ; 76(3): 497-505, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35731948

RESUMO

BACKGROUND: Rifampin-resistant and/or multidrug-resistant tuberculosis (RR/MDR-TB) treatment requires multiple drugs, and outcomes remain suboptimal. Some drugs are associated with improved outcome. It is unknown whether particular pharmacokinetic-pharmacodynamic relationships predict outcome. METHODS: Adults with pulmonary RR/MDR-TB in Tanzania, Bangladesh, and the Russian Federation receiving local regimens were enrolled from June 2016 to July 2018. Serum was collected after 2, 4, and 8 weeks for each drug's area under the concentration-time curve over 24 hours (AUC0-24). Quantitative susceptibility of the M. tuberculosis isolate was measured by minimum inhibitory concentrations (MICs). Individual drug AUC0-24/MIC targets were assessed by adjusted odds ratios (ORs) for favorable treatment outcome, and hazard ratios (HRs) for time to sputum culture conversion. K-means clustering algorithm separated the cohort of the most common multidrug regimen into 4 clusters by AUC0-24/MIC exposures. RESULTS: Among 290 patients, 62 (21%) experienced treatment failure, including 30 deaths. Moxifloxacin AUC0-24/MIC target of 58 was associated with favorable treatment outcome (OR, 3.75; 95% confidence interval, 1.21-11.56; P = .022); levofloxacin AUC0-24/MIC of 118.3, clofazimine AUC0-24/MIC of 50.5, and pyrazinamide AUC0-24 of 379 mg × h/L were associated with faster culture conversion (HR >1.0, P < .05). Other individual drug exposures were not predictive. Clustering by AUC0-24/MIC revealed that those with the lowest multidrug exposures had the slowest culture conversion. CONCLUSIONS: Amidst multidrug regimens for RR/MDR-TB, serum pharmacokinetics and M. tuberculosis MICs were variable, yet defined parameters to certain drugs-fluoroquinolones, pyrazinamide, clofazimine-were predictive and should be optimized to improve clinical outcome. CLINICAL TRIALS REGISTRATION: NCT03559582.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Adulto , Humanos , Antituberculosos/uso terapêutico , Antituberculosos/farmacocinética , Rifampina/farmacologia , Rifampina/uso terapêutico , Pirazinamida/uso terapêutico , Pirazinamida/farmacocinética , Estudos Prospectivos , Clofazimina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
Clin Infect Dis ; 76(9): 1658-1670fc, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36609692

RESUMO

BACKGROUND: Optimal doses of first-line drugs for treatment of drug-susceptible tuberculosis in children and young adolescents remain uncertain. We aimed to determine whether children treated using World Health Organization-recommended or higher doses of first-line drugs achieve successful outcomes and sufficient pharmacokinetic (PK) exposures. METHODS: Titles, abstracts, and full-text articles were screened. We searched PubMed, EMBASE, CENTRAL, and trial registries from 2010 to 2021. We included studies in children aged <18 years being treated for drug-susceptible tuberculosis with rifampicin (RIF), pyrazinamide, isoniazid, and ethambutol. Outcomes were treatment success rates and drug exposures. The protocol for the systematic review was preregistered in PROSPERO (no. CRD42021274222). RESULTS: Of 304 studies identified, 46 were eligible for full-text review, and 12 and 18 articles were included for the efficacy and PK analyses, respectively. Of 1830 children included in the efficacy analysis, 82% had favorable outcomes (range, 25%-95%). At World Health Organization-recommended doses, exposures to RIF, pyrazinamide, and ethambutol were lower in children than in adults. Children ≤6 years old have 35% lower areas under the concentration-time curve (AUCs) than older children (mean of 14.4 [95% CI 9.9-18.8] vs 22.0 [13.8-30.1] µg·h/mL) and children with human immunodeficiency virus (HIV) had 35% lower RIF AUCs than HIV-negative children (17.3 [11.4-23.2] vs 26.5 [21.3-31.7] µg·h/mL). Heterogeneity and small sample sizes were major limitations. CONCLUSIONS: There is large variability in outcomes, with an average of 82% favorable outcomes. Drug exposures are lower in children than in adults. Younger children and/or those with HIV are underexposed to RIF. Standardization of PK pediatric studies and individual patient data analysis with safety assessment are needed to inform optimal dosing.


Assuntos
Infecções por HIV , Tuberculose , Adulto , Adolescente , Criança , Humanos , Antituberculosos , Pirazinamida/farmacocinética , Etambutol/uso terapêutico , Tuberculose/tratamento farmacológico , Rifampina , Isoniazida/uso terapêutico , HIV , Infecções por HIV/tratamento farmacológico
3.
PLoS Med ; 20(11): e1004303, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37988391

RESUMO

BACKGROUND: The current World Health Organization (WHO) pediatric tuberculosis dosing guidelines lead to suboptimal drug exposures. Identifying factors altering the exposure of these drugs in children is essential for dose optimization. Pediatric pharmacokinetic studies are usually small, leading to high variability and uncertainty in pharmacokinetic results between studies. We pooled data from large pharmacokinetic studies to identify key covariates influencing drug exposure to optimize tuberculosis dosing in children. METHODS AND FINDINGS: We used nonlinear mixed-effects modeling to characterize the pharmacokinetics of rifampicin, isoniazid, and pyrazinamide, and investigated the association of human immunodeficiency virus (HIV), antiretroviral therapy (ART), drug formulation, age, and body size with their pharmacokinetics. Data from 387 children from South Africa, Zambia, Malawi, and India were available for analysis; 47% were female and 39% living with HIV (95% on ART). Median (range) age was 2.2 (0.2 to 15.0) years and weight 10.9 (3.2 to 59.3) kg. Body size (allometry) was used to scale clearance and volume of distribution of all 3 drugs. Age affected the bioavailability of rifampicin and isoniazid; at birth, children had 48.9% (95% confidence interval (CI) [36.0%, 61.8%]; p < 0.001) and 64.5% (95% CI [52.1%, 78.9%]; p < 0.001) of adult rifampicin and isoniazid bioavailability, respectively, and reached full adult bioavailability after 2 years of age for both drugs. Age also affected the clearance of all drugs (maturation), children reached 50% adult drug clearing capacity at around 3 months after birth and neared full maturation around 3 years of age. While HIV per se did not affect the pharmacokinetics of first-line tuberculosis drugs, rifampicin clearance was 22% lower (95% CI [13%, 28%]; p < 0.001) and pyrazinamide clearance was 49% higher (95% CI [39%, 57%]; p < 0.001) in children on lopinavir/ritonavir; isoniazid bioavailability was reduced by 39% (95% CI [32%, 45%]; p < 0.001) when simultaneously coadministered with lopinavir/ritonavir and was 37% lower (95% CI [22%, 52%]; p < 0.001) in children on efavirenz. Simulations of 2010 WHO-recommended pediatric tuberculosis doses revealed that, compared to adult values, rifampicin exposures are lower in most children, except those younger than 3 months, who experience relatively higher exposure for all drugs, due to immature clearance. Increasing the rifampicin doses in children older than 3 months by 75 mg for children weighing <25 kg and 150 mg for children weighing >25 kg could improve rifampicin exposures. Our analysis was limited by the differences in availability of covariates among the pooled studies. CONCLUSIONS: Children older than 3 months have lower rifampicin exposures than adults and increasing their dose by 75 or 150 mg could improve therapy. Altered exposures in children with HIV is most likely caused by concomitant ART and not HIV per se. The importance of the drug-drug interactions with lopinavir/ritonavir and efavirenz should be evaluated further and considered in future dosing guidance. TRIAL REGISTRATION: ClinicalTrials.gov registration numbers; NCT02348177, NCT01637558, ISRCTN63579542.


Assuntos
Infecções por HIV , Tuberculose , Adulto , Recém-Nascido , Criança , Humanos , Feminino , Lactente , Pré-Escolar , Adolescente , Masculino , Ritonavir/farmacocinética , Ritonavir/uso terapêutico , Lopinavir/farmacocinética , Lopinavir/uso terapêutico , Rifampina , Isoniazida/uso terapêutico , Isoniazida/farmacocinética , Pirazinamida/farmacocinética , Antituberculosos , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Infecções por HIV/tratamento farmacológico , HIV
4.
Antimicrob Agents Chemother ; 67(11): e0073723, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37882552

RESUMO

Physiological changes during pregnancy may alter the pharmacokinetics (PK) of antituberculosis drugs. The International Maternal Pediatric Adolescent AIDS Clinical Trials Network P1026s was a multicenter, phase IV, observational, prospective PK and safety study of antiretroviral and antituberculosis drugs administered as part of clinical care in pregnant persons living with and without HIV. We assessed the effects of pregnancy on rifampin, isoniazid, ethambutol, and pyrazinamide PK in pregnant and postpartum (PP) persons without HIV treated for drug-susceptible tuberculosis disease. Daily antituberculosis treatment was prescribed following World Health Organization-recommended weight-band dosing guidelines. Steady-state 12-hour PK profiles of rifampin, isoniazid, ethambutol, and pyrazinamide were performed during second trimester (2T), third trimester (3T), and 2-8 of weeks PP. PK parameters were characterized using noncompartmental analysis, and comparisons were made using geometric mean ratios (GMRs) with 90% confidence intervals (CI). Twenty-seven participants were included: 11 African, 9 Asian, 3 Hispanic, and 4 mixed descent. PK data were available for 17, 21, and 14 participants in 2T, 3T, and PP, respectively. Rifampin and pyrazinamide AUC0-24 and C max in pregnancy were comparable to PP with the GMR between 0.80 and 1.25. Compared to PP, isoniazid AUC0-24 was 25% lower and C max was 23% lower in 3T. Ethambutol AUC0-24 was 39% lower in 3T but limited by a low PP sample size. In summary, isoniazid and ethambutol concentrations were lower during pregnancy compared to PP concentrations, while rifampin and pyrazinamide concentrations were similar. However, the median AUC0-24 for rifampin, isoniazid, and pyrazinamide met the therapeutic targets. The clinical impact of lower isoniazid and ethambutol exposure during pregnancy needs to be determined.


Assuntos
Antituberculosos , Tuberculose , Adolescente , Feminino , Humanos , Gravidez , Antituberculosos/efeitos adversos , Antituberculosos/farmacocinética , Etambutol/efeitos adversos , Etambutol/farmacocinética , Infecções por HIV/tratamento farmacológico , Isoniazida/efeitos adversos , Isoniazida/farmacocinética , Período Pós-Parto , Estudos Prospectivos , Pirazinamida/efeitos adversos , Pirazinamida/farmacocinética , Rifampina/efeitos adversos , Rifampina/farmacocinética , Tuberculose/tratamento farmacológico , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase IV como Assunto , Estudos Observacionais como Assunto
5.
Clin Infect Dis ; 75(1): 141-151, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34665866

RESUMO

BACKGROUND: In 2010, the World Health Organization (WHO) revised dosing guidelines for treatment of childhood tuberculosis. Our aim was to investigate first-line antituberculosis drug exposures under these guidelines, explore dose optimization using the current dispersible fixed-dose combination (FDC) tablet of rifampicin/isoniazid/pyrazinamide; 75/50/150 mg, and suggest a new FDC with revised weight bands. METHODS: Children with drug-susceptible tuberculosis in Malawi and South Africa underwent pharmacokinetic sampling while receiving first-line tuberculosis drugs as single formulations according the 2010 WHO recommended doses. Nonlinear mixed-effects modeling and simulation was used to design the optimal FDC and weight-band dosing strategy for achieving the pharmacokinetic targets based on literature-derived adult AUC0-24h for rifampicin (38.7-72.9), isoniazid (11.6-26.3), and pyrazinamide (233-429 mg ∙ h/L). RESULTS: In total, 180 children (42% female; 13.9% living with human immunodeficiency virus [HIV]; median [range] age 1.9 [0.22-12] years; weight 10.7 [3.20-28.8] kg) were administered 1, 2, 3, or 4 FDC tablets (rifampicin/isoniazid/pyrazinamide 75/50/150 mg) daily for 4-8, 8-12, 12-16, and 16-25 kg weight bands, respectively. Rifampicin exposure (for weight and age) was up to 50% lower than in adults. Increasing the tablet number resulted in adequate rifampicin but relatively high isoniazid and pyrazinamide exposures. Administering 1, 2, 3, or 4 optimized FDC tablets (rifampicin/isoniazid/pyrazinamide 120/35/130 mg) to children < 6, 6-13, 13-20. and 20-25 kg, and 0.5 tablet in < 3-month-olds with immature metabolism, improved exposures to all 3 drugs. CONCLUSIONS: Current pediatric FDC doses resulted in low rifampicin exposures. Optimal dosing of all drugs cannot be achieved with the current FDCs. We propose a new FDC formulation and revised weight bands.


Assuntos
Pirazinamida , Tuberculose , Adulto , Antituberculosos/uso terapêutico , Criança , Combinação de Medicamentos , Etambutol/uso terapêutico , Feminino , Humanos , Lactente , Isoniazida , Masculino , Estudos Prospectivos , Pirazinamida/farmacocinética , Rifampina/uso terapêutico , Comprimidos/uso terapêutico , Tuberculose/tratamento farmacológico
6.
Clin Infect Dis ; 75(9): 1520-1528, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-35325074

RESUMO

BACKGROUND: Intrapulmonary pharmacokinetics may better explain response to tuberculosis (TB) treatment than plasma pharmacokinetics. We explored these relationships by modeling bacillary clearance in sputum in adult patients on first-line treatment in Malawi. METHODS: Bacillary elimination rates (BER) were estimated using linear mixed-effects modelling of serial time-to-positivity in mycobacterial growth indicator tubes for sputum collected during the intensive phase of treatment (weeks 0-8) for microbiologically confirmed TB. Population pharmacokinetic models used plasma and intrapulmonary drug levels at 8 and 16 weeks. Pharmacokinetic-pharmacodynamic relationships were investigated using individual-level measures of drug exposure (area-under-the-concentration-time-curve [AUC] and Cmax) for rifampicin, isoniazid, pyrazinamide, and ethambutol, in plasma, epithelial lining fluid, and alveolar cells as covariates in the bacillary elimination models. RESULTS: Among 157 participants (58% human immunodeficiency virus [HIV] coinfected), drug exposure in plasma or alveolar cells was not associated with sputum bacillary clearance. Higher peak concentrations (Cmax) or exposure (AUC) to rifampicin or isoniazid in epithelial lining fluid was associated with more rapid bacillary elimination and shorter time to sputum negativity. More extensive disease on baseline chest radiograph was associated with slower bacillary elimination. Clinical outcome was captured in 133 participants, with 15 (11%) unfavorable outcomes recorded (recurrent TB, failed treatment, or death). No relationship between BER and late clinical outcome was identified. CONCLUSIONS: Greater intrapulmonary drug exposure to rifampicin or isoniazid in the epithelial lining fluid was associated with more rapid bacillary clearance. Higher doses of rifampicin and isoniazid may result in sustained high intrapulmonary drug exposure, rapid bacillary clearance, shorter treatment duration and better treatment outcomes.


Assuntos
Bacillus , Tuberculose Pulmonar , Adulto , Humanos , Isoniazida/uso terapêutico , Isoniazida/farmacocinética , Rifampina/farmacocinética , Escarro/microbiologia , Antituberculosos/farmacocinética , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Pirazinamida/farmacocinética , Etambutol/uso terapêutico
7.
Clin Infect Dis ; 74(10): 1767-1775, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34420049

RESUMO

BACKGROUND: Dispersible pediatric fixed-dose combination (FDC) tablets delivering higher doses of first-line antituberculosis drugs in World Health Organization-recommended weight bands were introduced in 2015. We report the first pharmacokinetic data for these FDC tablets in Zambian and South African children in the treatment-shortening SHINE trial. METHODS: Children weighing 4.0-7.9, 8.0-11.9, 12.0-15.9, or 16.0-24.9 kg received 1, 2, 3, or 4 tablets daily, respectively (rifampicin/isoniazid/pyrazinamide [75/50/150 mg], with or without 100 mg ethambutol, or rifampicin/isoniazid [75/50 mg]). Children 25.0-36.9 kg received doses recommended for adults <37 kg (300, 150, 800, and 550 mg/d, respectively, for rifampicin, isoniazid, pyrazinamide, and ethambutol). Pharmacokinetics were evaluated after at least 2 weeks of treatment. RESULTS: In the 77 children evaluated, the median age (interquartile range) was 3.7 (1.4-6.6) years; 40 (52%) were male and 20 (26%) were human immunodeficiency virus positive. The median area under the concentration-time curve from 0 to 24 hours for rifampicin, isoniazid, pyrazinamide, and ethambutol was 32.5 (interquartile range, 20.1-45.1), 16.7 (9.2-25.9), 317 (263-399), and 9.5 (7.5-11.5) mg⋅h/L, respectively, and lower in children than in adults for rifampicin in the 4.0-7.9-, 8-11.9-, and ≥25-kg weight bands, isoniazid in the 4.0-7.9-kg and ≥25-kg weight bands, and ethambutol in all 5 weight bands. Pyrazinamide exposures were similar to those in adults. CONCLUSIONS: Recommended weight band-based FDC doses result in lower drug exposures in children in lower weight bands and in those ≥25 kg (receiving adult doses). Further adjustments to current doses are needed to match current target exposures in adults. The use of ethambutol at the current World Health Organization-recommended doses requires further evaluation.


Assuntos
Pirazinamida , Tuberculose , Adulto , Antituberculosos/uso terapêutico , Criança , Pré-Escolar , Etambutol/uso terapêutico , Feminino , Humanos , Isoniazida/farmacocinética , Isoniazida/uso terapêutico , Masculino , Pirazinamida/farmacocinética , Rifampina/uso terapêutico , Tuberculose/tratamento farmacológico , Organização Mundial da Saúde
8.
Antimicrob Agents Chemother ; 66(7): e0000322, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35727060

RESUMO

Pyrazinamide is one of the first-line antituberculosis drugs. The efficacy of pyrazinamide is associated with the ratio of 24-h area under the concentration-time curve (AUC24) to MIC. The objective of this study was to develop and validate a limited sampling strategy (LSS) based on a population pharmacokinetic (popPK) model to predict AUC24. A popPK model was developed using an iterative two-stage Bayesian procedure and was externally validated. Using data from 20 treatment-naive adult tuberculosis (TB) patients, a one compartment model with transit absorption and first-order elimination best described pyrazinamide pharmacokinetics and fed state was the only significant covariate for absorption rate constant (ka). External validation, using data from 26 TB patients, showed that the popPK model predicted AUC24 with a slight underestimation of 2.1%. LSS were calculated using Monte Carlo simulation (n = 10,000). External validation showed LSS with time points 0 h, 2 h, and 6 h performed best with RMSE of 9.90% and bias of 0.06%. Food slowed absorption of pyrazinamide, but did not affect bioavailability, which may be advantageous in case of nausea or vomiting in which food can be used to diminish these effects. In this study, we successfully developed and validated a popPK model and LSS, using 0 h, 2 h, and 6 h postdose samples, that could be used to perform therapeutic drug monitoring (TDM) of pyrazinamide in TB patients.


Assuntos
Pirazinamida , Tuberculose , Adulto , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Teorema de Bayes , Monitoramento de Medicamentos/métodos , Humanos , Pirazinamida/farmacocinética , Pirazinamida/uso terapêutico , Tuberculose/tratamento farmacológico
9.
J Antimicrob Chemother ; 77(6): 1710-1719, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35468189

RESUMO

BACKGROUND: Current TB treatment for children is not optimized to provide adequate drug levels in TB lesions. Dose optimization of first-line antituberculosis drugs to increase exposure at the site of disease could facilitate more optimal treatment and future treatment-shortening strategies across the disease spectrum in children with pulmonary TB. OBJECTIVES: To determine the concentrations of first-line antituberculosis drugs at the site of disease in children with intrathoracic TB. METHODS: We quantified drug concentrations in tissue samples from 13 children, median age 8.6 months, with complicated forms of pulmonary TB requiring bronchoscopy or transthoracic surgical lymph node decompression in a tertiary hospital in Cape Town, South Africa. Pharmacokinetic models were used to describe drug penetration characteristics and to simulate concentration profiles for bronchoalveolar lavage, homogenized lymph nodes, and cellular and necrotic lymph node lesions. RESULTS: Isoniazid, rifampicin and pyrazinamide showed lower penetration in most lymph node areas compared with plasma, while ethambutol accumulated in tissue. None of the drugs studied was able to reach target concentration in necrotic lesions. CONCLUSIONS: Despite similar penetration characteristics compared with adults, low plasma exposures in children led to low site of disease exposures for all drugs except for isoniazid.


Assuntos
Isoniazida , Tuberculose Pulmonar , Adulto , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Criança , Etambutol/farmacocinética , Humanos , Lactente , Isoniazida/farmacocinética , Pirazinamida/farmacocinética , África do Sul , Tuberculose Pulmonar/tratamento farmacológico
10.
Artigo em Inglês | MEDLINE | ID: mdl-32122887

RESUMO

Antituberculosis (anti-TB) drug development is dependent on informative trials to secure the development of new antibiotics and combination regimens. Clofazimine (CLO) and pyrazinamide (PZA) are important components of recommended standard multidrug treatments of TB. Paradoxically, in a phase IIa trial aiming to define the early bactericidal activity (EBA) of CLO and PZA monotherapy over the first 14 days of treatment, no significant drug effect was demonstrated for the two drugs using traditional statistical analysis. Using a model-based analysis, we characterized the statistically significant exposure-response relationships for both drugs that could explain the original findings of an increase in the numbers of CFU with CLO treatment and no effect with PZA. Sensitive analyses are crucial for exploring drug effects in early clinical trials to make the right decisions for advancement to further development. We propose that this quantitative semimechanistic approach provides a rational framework for analyzing phase IIa EBA studies and can accelerate anti-TB drug development.


Assuntos
Antituberculosos/uso terapêutico , Carga Bacteriana/efeitos dos fármacos , Clofazimina/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/uso terapêutico , Adulto , Antituberculosos/farmacocinética , Clofazimina/farmacocinética , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Pirazinamida/farmacocinética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
11.
Artigo em Inglês | MEDLINE | ID: mdl-31844002

RESUMO

Tuberculosis is an important cause of maternal morbidity, but little is known about the effects of pregnancy on antituberculosis drug concentrations. We developed population pharmacokinetic models to describe drug dispositions of isoniazid, pyrazinamide, and ethambutol in pregnant women with tuberculosis and HIV. HIV-positive pregnant women with tuberculosis receiving standard first-line tuberculosis treatment and participating in Tshepiso, a prospective cohort study in Soweto, South Africa, underwent sparse pharmacokinetic sampling at >36 weeks of gestation and 7 weeks postpartum. The effects of pregnancy on the pharmacokinetics of isoniazid, pyrazinamide, and ethambutol were investigated via population pharmacokinetic modeling. Isoniazid, pyrazinamide, and ethambutol concentrations were available for 29, 18, and 18 women, respectively. Their median weight was 66 kg while pregnant and 64 kg postpartum. No significant differences were observed in drug clearance, volume of distribution, or bioavailability during and after pregnancy. The model-estimated isoniazid, pyrazinamide, and ethambutol area under the concentration-time curve from 0 to 24 h (AUC0-24) medians were, respectively, 6.88, 419, and 16.5 mg · h/liter during pregnancy versus 5.01, 407, and 19.0 mg · h/liter postpartum. The model-estimated maximum concentration (Cmax) medians for isoniazid, pyrazinamide, and ethambutol were, respectively, 1.39, 35.9, and 1.82 mg/liter during pregnancy versus 1.43, 34.5, and 2.11 mg/liter postpartum. A posteriori power calculations determined that our analysis was powered 91.8%, 59.2%, and 90.1% at a P of <0.01 to detect a 40% decrease in the AUCs of isoniazid, pyrazinamide, and ethambutol, respectively. Pregnancy does not appear to cause relevant changes in the exposure to isoniazid, pyrazinamide, and ethambutol. Additional studies of antituberculosis drugs in pregnancy are needed.


Assuntos
Antituberculosos/farmacocinética , Etambutol/farmacocinética , Infecções por HIV/sangue , Isoniazida/farmacocinética , Pirazinamida/farmacocinética , Tuberculose Pulmonar/sangue , Adulto , Antituberculosos/uso terapêutico , Etambutol/uso terapêutico , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Humanos , Isoniazida/uso terapêutico , Gravidez , Estudos Prospectivos , Pirazinamida/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/metabolismo , Adulto Jovem
12.
PLoS Med ; 16(4): e1002773, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30939136

RESUMO

BACKGROUND: The sites of mycobacterial infection in the lungs of tuberculosis (TB) patients have complex structures and poor vascularization, which obstructs drug distribution to these hard-to-reach and hard-to-treat disease sites, further leading to suboptimal drug concentrations, resulting in compromised TB treatment response and resistance development. Quantifying lesion-specific drug uptake and pharmacokinetics (PKs) in TB patients is necessary to optimize treatment regimens at all infection sites, to identify patients at risk, to improve existing regimens, and to advance development of novel regimens. Using drug-level data in plasma and from 9 distinct pulmonary lesion types (vascular, avascular, and mixed) obtained from 15 hard-to-treat TB patients who failed TB treatments and therefore underwent lung resection surgery, we quantified the distribution and the penetration of 7 major TB drugs at these sites, and we provide novel tools for treatment optimization. METHODS AND FINDINGS: A total of 329 plasma- and 1,362 tissue-specific drug concentrations from 9 distinct lung lesion types were obtained according to optimal PK sampling schema from 15 patients (10 men, 5 women, aged 23 to 58) undergoing lung resection surgery (clinical study NCT00816426 performed in South Korea between 9 June 2010 and 24 June 2014). Seven major TB drugs (rifampin [RIF], isoniazid [INH], linezolid [LZD], moxifloxacin [MFX], clofazimine [CFZ], pyrazinamide [PZA], and kanamycin [KAN]) were quantified. We developed and evaluated a site-of-action mechanistic PK model using nonlinear mixed effects methodology. We quantified population- and patient-specific lesion/plasma ratios (RPLs), dynamics, and variability of drug uptake into each lesion for each drug. CFZ and MFX had higher drug exposures in lesions compared to plasma (median RPL 2.37, range across lesions 1.26-22.03); RIF, PZA, and LZD showed moderate yet suboptimal lesion penetration (median RPL 0.61, range 0.21-2.4), while INH and KAN showed poor tissue penetration (median RPL 0.4, range 0.03-0.73). Stochastic PK/pharmacodynamic (PD) simulations were carried out to evaluate current regimen combinations and dosing guidelines in distinct patient strata. Patients receiving standard doses of RIF and INH, who are of the lower range of exposure distribution, spent substantial periods (>12 h/d) below effective concentrations in hard-to-treat lesions, such as caseous lesions and cavities. Standard doses of INH (300 mg) and KAN (1,000 mg) did not reach therapeutic thresholds in most lesions for a majority of the population. Drugs and doses that did reach target exposure in most subjects include 400 mg MFX and 100 mg CFZ. Patients with cavitary lesions, irrespective of drug choice, have an increased likelihood of subtherapeutic concentrations, leading to a higher risk of resistance acquisition while on treatment. A limitation of this study was the small sample size of 15 patients, performed in a unique study population of TB patients who failed treatment and underwent lung resection surgery. These results still need further exploration and validation in larger and more diverse cohorts. CONCLUSIONS: Our results suggest that the ability to reach and maintain therapeutic concentrations is both lesion and drug specific, indicating that stratifying patients based on disease extent, lesion types, and individual drug-susceptibility profiles may eventually be useful for guiding the selection of patient-tailored drug regimens and may lead to improved TB treatment outcomes. We provide a web-based tool to further explore this model and results at http://saviclab.org/tb-lesion/.


Assuntos
Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Pulmão/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/etiologia , Tuberculose Pulmonar/tratamento farmacológico , Adulto , Técnicas de Apoio para a Decisão , Progressão da Doença , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Farmacorresistência Bacteriana Múltipla , Quimioterapia Combinada , Feminino , Humanos , Isoniazida/administração & dosagem , Isoniazida/farmacocinética , Canamicina/administração & dosagem , Canamicina/farmacocinética , Linezolida/administração & dosagem , Linezolida/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Pirazinamida/administração & dosagem , Pirazinamida/farmacocinética , Estudos Retrospectivos , Rifampina/administração & dosagem , Rifampina/farmacocinética , Distribuição Tecidual , Falha de Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-31358585

RESUMO

The molecular bacterial load (MBL) assay is a new tuberculosis biomarker which provides results in ∼4 hours. The relationship between MBL and time-to-positivity (TTP) has not been thoroughly studied, and predictive models do not exist. We aimed to develop a model for MBL and identify the MBL-TTP relationship in patients. The model was developed on data from 105 tuberculosis patients from Malawi, Mozambique, and Tanzania with joint MBL and TTP observations quantified from patient sputum collected for 12 weeks. MBL was quantified using PCR of mycobacterial RNA and TTP using the mycobacterial growth indicator tube (MGIT) 960 system. Treatment consisted of isoniazid, pyrazinamide, and ethambutol in standard doses together with rifampin 10 or 35 mg/kg of body weight. The developed MBL-TTP model included several linked submodels, a component describing decline of bacterial load in sputum, another component describing growth in liquid culture, and a hazard model translating bacterial growth into a TTP signal. Additional components for contaminated and negative TTP samples were included. Visual predictive checks performed using the developed model gave good description of the observed data. The model predicted greater total sample loss for TTP than MBL due to contamination and negative samples. The model detected an increase in bacterial killing for 35 versus 10 mg/kg rifampin (P = 0.002). In conclusion, a combined model for MBL and TTP was developed that described the MBL-TTP relationship. The full MBL-TTP model or each submodel was used separately. Second, the model can be used to predict biomarker response for MBL given TTP data or vice versa in historical or future trials.


Assuntos
Antituberculosos/farmacologia , Bioensaio , DNA Bacteriano/efeitos dos fármacos , Modelos Estatísticos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Antituberculosos/farmacocinética , Carga Bacteriana/efeitos dos fármacos , Biomarcadores Farmacológicos/metabolismo , Simulação por Computador , Cálculos da Dosagem de Medicamento , Monitoramento de Medicamentos , Etambutol/farmacocinética , Etambutol/farmacologia , Feminino , Humanos , Isoniazida/farmacocinética , Isoniazida/farmacologia , Malaui , Masculino , Moçambique , Mycobacterium tuberculosis/crescimento & desenvolvimento , Pirazinamida/farmacocinética , Pirazinamida/farmacologia , Rifampina/farmacocinética , Rifampina/farmacologia , Escarro/microbiologia , Tanzânia , Fatores de Tempo , Tuberculose Pulmonar/microbiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-31358590

RESUMO

Concentration-QTc modeling was applied to pretomanid, a new nitroimidazooxazine antituberculosis drug. Data came from eight phase 2 and phase 3 studies. Besides pretomanid alone, various combinations with bedaquiline, linezolid, moxifloxacin, and pyrazinamide were considered; special attention was given to the bedaquiline-pretomanid-linezolid (BPaL) regimen that has demonstrated efficacy in the Nix-TB study in subjects with extensively drug-resistant or treatment-intolerant or nonresponsive multidrug-resistant tuberculosis. Three heart rate corrections to QT were considered: Fridericia's QTcF, Bazett's QTcB, and a population-specific correction, QTcN. QTc increased with the plasma concentrations of pretomanid, bedaquiline's M2 metabolite, and moxifloxacin in a manner described by a linear model in which the three slope coefficients were constant across studies, visits within study, and times postdose within visit but where the intercept varied across those dimensions. The intercepts tended to increase on treatment to a plateau after several weeks, a pattern termed the secular trend. The slope terms were similar for the three QTc corrections, but the secular trends differed, suggesting that at least some of the secular trend was due to the elevated heart rates of tuberculosis patients decreasing to normal levels on treatment. For pretomanid 200 mg once a day (QD) alone, a typical steady-state maximum concentration of drug in plasma (Cmax) resulted in a mean change from baseline of QTcN of 9.1 ms, with an upper 90% confidence interval (CI) limit of 10.2 ms. For the BPaL regimen, due to the additional impact of the bedaquiline M2 metabolite, the corresponding values were 13.6 ms and 15.0 ms. The contribution to these values from the secular trend was 4.0 ms.


Assuntos
Antituberculosos/farmacocinética , Diarilquinolinas/farmacocinética , Linezolida/farmacocinética , Síndrome do QT Longo/induzido quimicamente , Modelos Estatísticos , Nitroimidazóis/farmacocinética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/efeitos adversos , Antituberculosos/sangue , Simulação por Computador , Diarilquinolinas/efeitos adversos , Diarilquinolinas/sangue , Método Duplo-Cego , Quimioterapia Combinada/métodos , Eletrocardiografia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Linezolida/efeitos adversos , Linezolida/sangue , Síndrome do QT Longo/sangue , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/fisiopatologia , Moxifloxacina/efeitos adversos , Moxifloxacina/sangue , Moxifloxacina/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Nitroimidazóis/efeitos adversos , Nitroimidazóis/sangue , Pirazinamida/efeitos adversos , Pirazinamida/sangue , Pirazinamida/farmacocinética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/patologia
15.
J Antimicrob Chemother ; 74(12): 3537-3545, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651031

RESUMO

BACKGROUND: Diabetes mellitus (DM) is associated with poor TB treatment outcome. Previous studies examining the effect of DM on TB drug concentrations yielded conflicting results. No studies have been conducted to date in an African population. OBJECTIVES: To compare exposure to TB drugs in Tanzanian TB patients with and without DM. PATIENTS AND METHODS: A prospective pharmacokinetic study was performed among 20 diabetic and 20 non-diabetic Tanzanian TB patients during the intensive phase of TB treatment. Plasma pharmacokinetic parameters of isoniazid, rifampicin, pyrazinamide and ethambutol were compared using an independent-sample t-test on log-transformed data. Multiple linear regression analysis was performed to assess the effects of DM, gender, age, weight, HIV status and acetylator status on exposure to TB drugs. RESULTS: A trend was shown for 25% lower total exposure (AUC0-24) to rifampicin among diabetics versus non-diabetics (29.9 versus 39.9 mg·h/L, P=0.052). The AUC0-24 and peak concentration (Cmax) of isoniazid were also lower in diabetic TB patients (5.4 versus 10.6 mg·h/L, P=0.015 and 1.6 versus 2.8 mg/L, P=0.013). Pyrazinamide AUC0-24 and Cmax values were non-significantly lower among diabetics (P=0.08 and 0.09). In multivariate analyses, DM remained an independent predictor of exposure to isoniazid and rifampicin, next to acetylator status for isoniazid. CONCLUSIONS: There is a need for individualized dosing of isoniazid and rifampicin based on plasma concentration measurements (therapeutic drug monitoring) and for clinical trials on higher doses of these TB drugs in patients with TB and DM.


Assuntos
Antituberculosos/sangue , Antituberculosos/farmacocinética , Complicações do Diabetes , Diabetes Mellitus/sangue , Tuberculose Pulmonar/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antituberculosos/uso terapêutico , Diabetes Mellitus/microbiologia , Feminino , Humanos , Isoniazida/sangue , Isoniazida/farmacocinética , Isoniazida/uso terapêutico , Masculino , Pessoa de Meia-Idade , Plasma , Estudos Prospectivos , Pirazinamida/sangue , Pirazinamida/farmacocinética , Pirazinamida/uso terapêutico , Rifampina/sangue , Rifampina/farmacocinética , Rifampina/uso terapêutico , Tanzânia , Resultado do Tratamento , Adulto Jovem
16.
BMC Infect Dis ; 19(1): 116, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728001

RESUMO

BACKGROUND: Pyrazinamide (PZA) is an important component of first-line drugs because of its distinctive capability to kill subpopulations of persistent Mycobacterium tuberculosis (MTB). The prodrug (PZA) is converted to its active form, pyrazinoic acid (POA) by MTB pncA-encoded pyrazinamidase (PZase). Mutation in pncA is the most common and primary cause of PZA resistance. The aim of the present study was to explore the molecular characterization of PZA resistance in a Pashtun-dominated region of Khyber Pakhtunkhwa, Pakistan. METHODS: We performed drug susceptibility testing (DST) on 753 culture-positive isolates collected from the Provincial Tuberculosis Control Program Khyber Pakhtunkhwa using the BACTEC MGIT 960 PZA method. In addition, the pncA gene was sequenced in PZA-resistant isolates, and PZA susceptibility testing results were used to determine the sensitivity and specificity of pncA gene mutations. RESULTS: A total of 69 isolates were PZA resistant (14.8%). Mutations were investigated in 69 resistant, 26 susceptible and one H37Rv isolates by sequencing. Thirty-six different mutations were identified in PZA-resistant isolates, with fifteen mutations, including 194_203delCCTCGTCGTG and 317_318delTC, that have not been reported in TBDRM and GMTV Databases and previous studies. Mutations Lys96Thr and Ser179Gly were found in the maximum number of isolates (n = 4 each). We did not detect mutations in sensitive isolates, except for the synonymous mutation 195C > T (Ser65Ser). The sensitivity and specificity of the pncA sequencing method were 79.31% (95% CI, 69.29 to 87.25%) and 86.67% (95% CI, 69.28 to 96.24%). CONCLUSION: Mutations in the pncA gene in circulating isolates of geographically distinct regions, especially in high-burden countries, should be investigated for better control and management of drug-resistant TB. Molecular methods for the investigation of PZA resistance are better than DST.


Assuntos
Amidoidrolases/genética , Farmacorresistência Bacteriana/genética , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/farmacologia , Adolescente , Adulto , Idoso , Antituberculosos/farmacologia , Criança , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Paquistão/epidemiologia , Pirazinamida/análogos & derivados , Pirazinamida/farmacocinética , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Tuberculose/epidemiologia , Tuberculose/microbiologia
17.
Clin Infect Dis ; 67(suppl_3): S284-S292, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496458

RESUMO

Background: In the experimental arm of the OFLOTUB trial, gatifloxacin replaced ethambutol in the standard 4-month regimen for drug-susceptible pulmonary tuberculosis. The study included a nested pharmacokinetic (PK) study. We sought to determine if PK variability played a role in patient outcomes. Methods: Patients recruited in the trial were followed for 24 months, and relapse ascertained using spoligotyping. Blood was drawn for drug concentrations on 2 separate days during the first 2 months of therapy, and compartmental PK analyses was performed. Failure to attain sustained sputum culture conversion at the end of treatment, relapse, or death during follow-up defined therapy failure. In addition to standard statistical analyses, we utilized an ensemble of machine-learning methods to identify patterns and predictors of therapy failure from among 27 clinical and laboratory features. Results: Of 126 patients, 95 (75%) had favorable outcomes and 19 (15%) failed therapy, relapsed, or died. Pyrazinamide and rifampicin peak concentrations and area under the concentration-time curves (AUCs) were ranked higher (more important) than gatifloxacin AUCs. The distribution of individual drug concentrations and their ranking varied significantly between South African and West African trial sites; however, drug concentrations still accounted for 31% and 75% of variance of outcomes, respectively. We identified a 3-way antagonistic interaction of pyrazinamide, gatifloxacin, and rifampicin concentrations. These negative interactions disappeared if rifampicin peak concentration was above 7 mg/L. Conclusions: Concentration-dependent antagonism contributed to death, relapse, and therapy failure but was abrogated by high rifampicin concentrations. Therefore, increasing both rifampin and gatifloxacin doses could improve outcomes. Clinical Trials Registration: NCT00216385.


Assuntos
Antituberculosos/farmacocinética , Inteligência Artificial , Gatifloxacina/farmacocinética , Pirazinamida/farmacocinética , Rifampina/farmacocinética , Tuberculose Pulmonar/tratamento farmacológico , Adolescente , Adulto , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Clin Infect Dis ; 67(11): 1743-1749, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29697766

RESUMO

Background: Bacterial susceptibility is categorized as susceptible, intermediate-susceptible dose-dependent (ISDD), and resistant. The strategy is to use higher doses of first-line agents in the ISDD category, thereby preserving the use of these drugs. This system has not been applied to antituberculosis drugs. Pharmacokinetic/pharmacodynamic (PK/PD) target exposures, in tandem with Monte Carlo experiments, recently identified susceptibility breakpoints of 0.0312 mg/L for isoniazid, 0.0625 mg/L for rifampin, and 50 mg/L for pyrazinamide. These have been confirmed in clinical studies. Methods: Target attainment studies were carried out using Monte Carlo experiments to investigate whether rifampin, isoniazid, and pyrazinamide dose increases would achieve the PK/PD target in >90% of 10000 patients with tuberculosis caused by bacteria, revealing minimum inhibitory concentrations (MICs) between the proposed and the traditional breakpoints. Results: We found that an isoniazid dose of 900 mg/day identified a new ISDD MIC range of 0.0312-0.25 mg/L and resistance at MIC ≥0.5 mg/L. Rifampin 1800 mg/day would result in an ISDD of 0.0625-0.25 mg/L and resistance at MIC ≥0.5 mg/L. At a dose of pyrazinamide 4 g/day, the ISDD MIC range was 37.5-50 mg/L and resistance at MIC ≥100 mg/L. Based on MIC distributions, 93% (isoniazid), 78% (rifampin), and 27% (pyrazinamide) of isolates would be within the ISDD range. Conclusions: Drug susceptibility testing at 2 concentrations delineating the ISDD range, and subsequently using higher doses, could prevent switching to a more toxic second-line treatment. Confirmatory clinical studies would provide evidence to change treatment guidelines.


Assuntos
Antituberculosos/farmacocinética , Isoniazida/farmacocinética , Pirazinamida/farmacocinética , Rifampina/farmacocinética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Algoritmos , Humanos , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Mycobacterium tuberculosis/efeitos dos fármacos , África do Sul
19.
Artigo em Inglês | MEDLINE | ID: mdl-29463539

RESUMO

We studied the pharmacokinetics of levofloxacin (LFX), pyrazinamide (PZA), ethionamide (ETH), and cycloserine (CS) in children with multidrug-resistant tuberculosis (MDR-TB) who were being treated according to the Revised National TB Control Programme (RNTCP) guidelines in India. This observational, pharmacokinetic study was conducted in 25 children with MDR-TB at the Sarojini Naidu Medical College, Agra, India, who were being treated with a 24-month daily regimen. Serial blood samples were collected after directly observed administration of drugs. Estimations of plasma LFX, PZA, ETH, and CS were undertaken according to validated methods by high-performance liquid chromatography. Adverse events were noted at 6 months of treatment. The peak concentration (Cmax) of LFX was significantly higher in female than male children (11.5 µg/ml versus 7.3 µg/ml; P = 0.017). Children below 12 years of age had significantly higher ETH exposure (area under the concentration-time curve from 0 to 8 h [AUC0-8]) than those above 12 years of age (17.5 µg/ml · h versus 9.4 µg/ml; P = 0.030). Multiple linear regression analysis showed significant influence of gender on Cmax of ETH and age on Cmax and AUC0-8 of CS. This is the first and only study from India reporting on the pharmacokinetics of LFX, ETH, PZA, and CS in children with MDR-TB treated in the Government of India program. More studies on the safety and pharmacokinetics of second-line anti-TB drugs in children with MDR-TB from different settings are required.


Assuntos
Antituberculosos/farmacocinética , Adolescente , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Ciclosserina/farmacocinética , Etionamida/farmacocinética , Feminino , Humanos , Índia , Levofloxacino/farmacocinética , Masculino , Pirazinamida/farmacocinética , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-30126955

RESUMO

Diabetes mellitus (DM) and tuberculosis (TB) are two common diseases with increasing geographic overlap and clinical interactions. The effect of DM and hemoglobin A1c (HbA1c) values on the pharmacokinetics (PK) and pharmacodynamics (PD) of anti-TB drugs remains poorly characterized. Newly diagnosed TB patients with and without DM starting fixed-dose, thrice-weekly treatment underwent sampling for PK assessments (predose and 0.5, 2, and 6 h postdose) during the intensive and continuation phases of treatment. The effect of DM and HbA1c values on the maximum concentration (Cmax) of rifampin, isoniazid, and pyrazinamide and the association between drug concentrations and microbiologic and clinical outcomes were assessed. Of 243 patients, 101 had DM. Univariate analysis showed significant reductions in the Cmax of pyrazinamide and isoniazid (but not rifampin) with DM or increasing HbA1c values. After adjusting for age, sex, and weight, DM was associated only with reduced pyrazinamide concentrations (adjusted geometric mean ratio = 0.74, P = 0.03). In adjusted Cox models, female gender (adjusted hazards ratio [aHR] = 1.75, P = 0.001), a lower smear grade with the Xpert assay (aHR = 1.40, P < 0.001), and the pyrazinamide Cmax (aHR = 0.99, P = 0.006) were independent predictors of sputum culture conversion to negative. Higher isoniazid or rifampin concentrations were associated with a faster time to culture conversion in patients with DM only. A pyrazinamide Cmax above the therapeutic target was associated with higher unfavorable outcomes (treatment failure, relapse, death) (odds ratio = 1.92, P = 0.04). DM and higher HbA1c values increased the risk of not achieving therapeutic targets for pyrazinamide (but not rifampin or isoniazid). Higher pyrazinamide concentrations, though, were associated with worse microbiologic and clinical outcomes. DM status also appeared to influence PK-PD relationships for isoniazid and rifampin.


Assuntos
Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Diabetes Mellitus/fisiopatologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/fisiopatologia , Adulto , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Isoniazida/farmacocinética , Isoniazida/uso terapêutico , Masculino , Pessoa de Meia-Idade , Pirazinamida/farmacocinética , Pirazinamida/uso terapêutico , Rifampina/farmacocinética , Rifampina/uso terapêutico , Escarro/microbiologia , Tuberculose Pulmonar/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA