Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 573(7775): 609-613, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31534226

RESUMO

The underlying molecular mechanisms of cooperativity and allosteric regulation are well understood for many proteins, with haemoglobin and aspartate transcarbamoylase serving as prototypical examples1,2. The binding of effectors typically causes a structural transition of the protein that is propagated through signalling pathways to remote sites and involves marked changes on the tertiary and sometimes even the quaternary level1-5. However, the origin of these signals and the molecular mechanism of long-range signalling at an atomic level remain unclear5-8. The different spatial scales and timescales in signalling pathways render experimental observation challenging; in particular, the positions and movement of mobile protons cannot be visualized by current methods of structural analysis. Here we report the experimental observation of fluctuating low-barrier hydrogen bonds as switching elements in cooperativity pathways of multimeric enzymes. We have observed these low-barrier hydrogen bonds in ultra-high-resolution X-ray crystallographic structures of two multimeric enzymes, and have validated their assignment using computational calculations. Catalytic events at the active sites switch between low-barrier hydrogen bonds and ordinary hydrogen bonds in a circuit that consists of acidic side chains and water molecules, transmitting a signal through the collective repositioning of protons by behaving as an atomistic Newton's cradle. The resulting communication synchronizes catalysis in the oligomer. Our studies provide several lines of evidence and a working model for not only the existence of low-barrier hydrogen bonds in proteins, but also a connection to enzyme cooperativity. This finding suggests new principles of drug and enzyme design, in which sequences of residues can be purposefully included to enable long-range communication and thus the regulation of engineered biomolecules.


Assuntos
Modelos Moleculares , Transcetolase/química , Transcetolase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/enzimologia , Humanos , Ligação de Hidrogênio , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Simulação de Dinâmica Molecular , Mutação , Estrutura Terciária de Proteína , Piruvato Oxidase/química , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Transcetolase/genética
2.
J Bacteriol ; 203(24): e0043921, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606370

RESUMO

Streptococcus pneumoniae invades a myriad of host tissues following efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for evasion of host intracellular defenses governing successful transcytosis across host cellular barriers remain elusive. In this study, using brain endothelium as a model host barrier, we observed that pneumococcus containing endocytic vacuoles (PCVs), formed following S. pneumoniae internalization into brain microvascular endothelial cells (BMECs), undergo early maturation and acidification, with a major subset acquiring lysosome-like characteristics. Exploration of measures that would preserve pneumococcal viability in the lethal acidic pH of these lysosome-like vacuoles revealed a critical role of the two-component system response regulator, CiaR, which was previously implicated in induction of acid tolerance response. Pyruvate oxidase (SpxB), a key sugar-metabolizing enzyme that catalyzes oxidative decarboxylation of pyruvate to acetyl phosphate, was found to contribute to acid stress tolerance, presumably via acetyl phosphate-mediated phosphorylation and activation of CiaR, independent of its cognate kinase CiaH. Hydrogen peroxide, the by-product of an SpxB-catalyzed reaction, was also found to improve pneumococcal intracellular survival by oxidative inactivation of lysosomal cysteine cathepsins, thus compromising the degradative capacity of the host lysosomes. As expected, a ΔspxB mutant was found to be significantly attenuated in its ability to survive inside the BMEC endocytic vacuoles, reflecting its reduced transcytosis ability. Collectively, our studies establish SpxB as an important virulence determinant facilitating pneumococcal survival inside host cells, ensuring successful trafficking across host cellular barriers. IMPORTANCE Host cellular barriers have innate immune defenses to restrict microbial passage into sterile compartments. Here, by focusing on the blood-brain barrier endothelium, we investigated mechanisms that enable Streptococcus pneumoniae to traverse through host barriers. Pyruvate oxidase, a pneumococcal sugar-metabolizing enzyme, was found to play a crucial role in this via generation of acetyl phosphate and hydrogen peroxide. A two-pronged approach consisting of acetyl phosphate-mediated activation of acid tolerance response and hydrogen peroxide-mediated inactivation of lysosomal enzymes enabled pneumococci to maintain viability inside the degradative vacuoles of the brain endothelium for successful transcytosis across the barrier. Thus, pyruvate oxidase is a key virulence determinant and can potentially serve as a viable candidate for therapeutic interventions for better management of invasive pneumococcal diseases.


Assuntos
Endotélio Vascular/metabolismo , Viabilidade Microbiana , Piruvato Oxidase/metabolismo , Streptococcus pneumoniae/enzimologia , Transcitose/fisiologia , Barreira Hematoencefálica , Células Cultivadas , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Piruvato Oxidase/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
3.
Appl Environ Microbiol ; 87(13): e0048721, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33863707

RESUMO

Altering metabolic flux at a key branch point in metabolism has commonly been accomplished through gene knockouts or by modulating gene expression. An alternative approach to direct metabolic flux preferentially toward a product is decreasing the activity of a key enzyme through protein engineering. In Escherichia coli, pyruvate can accumulate from glucose when carbon flux through the pyruvate dehydrogenase complex is suppressed. Based on this principle, 16 chromosomally expressed AceE variants were constructed in E. coli C and compared for growth rate and pyruvate accumulation using glucose as the sole carbon source. To prevent conversion of pyruvate to other products, the strains also contained deletions in two nonessential pathways: lactate dehydrogenase (ldhA) and pyruvate oxidase (poxB). The effect of deleting phosphoenolpyruvate synthase (ppsA) on pyruvate assimilation was also examined. The best pyruvate-accumulating strains were examined in controlled batch and continuous processes. In a nitrogen-limited chemostat process at steady-state growth rates of 0.15 to 0.28 h-1, an engineered strain expressing the AceE[H106V] variant accumulated pyruvate at a yield of 0.59 to 0.66 g pyruvate/g glucose with a specific productivity of 0.78 to 0.92 g pyruvate/g cells·h. These results provide proof of concept that pyruvate dehydrogenase complex variants can effectively shift carbon flux away from central carbon metabolism to allow pyruvate accumulation. This approach can potentially be applied to other key enzymes in metabolism to direct carbon toward a biochemical product. IMPORTANCE Microbial production of biochemicals from renewable resources has become an efficient and cost-effective alternative to traditional chemical synthesis methods. Metabolic engineering tools are important for optimizing a process to perform at an economically feasible level. This study describes an additional tool to modify central metabolism and direct metabolic flux to a product. We have shown that variants of the pyruvate dehydrogenase complex can direct metabolic flux away from cell growth to increase pyruvate production in Escherichia coli. This approach could be paired with existing strategies to optimize metabolism and create industrially relevant and economically feasible processes.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Acetilcoenzima A/metabolismo , Escherichia coli/genética , L-Lactato Desidrogenase/genética , Engenharia Metabólica , Mutação , Fosfotransferases (Aceptores Pareados)/genética , Piruvato Oxidase/genética
4.
BMC Microbiol ; 20(1): 128, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448120

RESUMO

BACKGROUND: Pyruvate oxidase (Pox) is an important enzyme in bacterial metabolism for increasing ATP production and providing a fitness advantage via hydrogen peroxide production. However, few Pox enzymes have been characterized from bacterial species. The tetrameric non-hydrogen-peroxide producing Pox from E. coli is activated by phospholipids, which is important for its function in vivo. RESULTS: We characterized the hydrogenperoxide-producing Pox from L. delbrueckii strain STYM1 and showed it is specifically activated by phosphotidylethanolamine (16:0-18:1), but not by phosphotidylcholine or phosphotidylglycerol. This activation is a mixture of K- and V-type activation as both km and enzyme turnover are altered. Furthermore, we demonstrated that the L. delbrueckii Pox forms pentamers and either decamers or dimers of pentamers in solution, which is different from other characterized Pox enzymes. Lastly, we generated a C-terminal truncation mutant that was only weakly activated by phosphotidylethanolamine, which suggests the C-terminus is important for lipid activation. CONCLUSIONS: To our knowledge this is the first known hydrogenperoxide-producing Pox enzyme that is activated by phospholipids. Our results suggest that there are substantial differences between Pox enzymes from different bacterial species, which could be important for their role in biological systems as well as in the development of Pox-based biosensors.


Assuntos
Lactobacillus delbrueckii/enzimologia , Fosfatidiletanolaminas/metabolismo , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Lactobacillus delbrueckii/genética , Mutação , Multimerização Proteica , Piruvato Oxidase/química
5.
Chembiochem ; 20(13): 1672-1677, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30866142

RESUMO

Chorismate and isochorismate constitute branch-point intermediates in the biosynthesis of many aromatic metabolites in microorganisms and plants. To obtain unnatural compounds, we modified the route to menaquinone in Escherichia coli. We propose a model for the binding of isochorismate to the active site of MenD ((1R,2S, 5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxycyclohex-3-ene-1-carboxylate (SEPHCHC) synthase) that explains the outcome of the native reaction with α-ketoglutarate. We have rationally designed variants of MenD for the conversion of several isochorismate analogues. The double-variant Asn117Arg-Leu478Thr preferentially converts (5S,6S)-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate (2,3-trans-CHD), the hydrolysis product of isochorismate, with a >70-fold higher ratio than that for the wild type. The single-variant Arg107Ile uses (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate (2,3-trans-CHA) as substrate with >6-fold conversion compared to wild-type MenD. The novel compounds have been made accessible in vivo (up to 5.3 g L-1 ). Unexpectedly, as the identified residues such as Arg107 are highly conserved (>94 %), some of the designed variations can be found in wild-type SEPHCHC synthases from other bacteria (Arg107Lys, 0.3 %). This raises the question for the possible natural occurrence of as yet unexplored branches of the shikimate pathway.


Assuntos
Ácidos Cicloexanocarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Piruvato Oxidase/metabolismo , Domínio Catalítico , Ácido Corísmico/química , Ácido Corísmico/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Engenharia de Proteínas , Piruvato Oxidase/química , Piruvato Oxidase/genética , Especificidade por Substrato
6.
Biochem J ; 475(22): 3651-3667, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30341164

RESUMO

The bacterial enzyme MenD, or 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC) synthase, catalyzes an essential Stetter reaction in menaquinone (vitamin K2) biosynthesis via thiamine diphosphate (ThDP)-bound tetrahedral post-decarboxylation intermediates. The detailed mechanism of this intermediate chemistry, however, is still poorly understood, but of significant interest given that menaquinone is an essential electron transporter in many pathogenic bacteria. Here, we used site-directed mutagenesis, enzyme kinetic assays, and protein crystallography to reveal an active-inactive intermediate equilibrium in MenD catalysis and its modulation by two conserved active site arginine residues. We observed that these conserved residues play a key role in shifting the equilibrium to the active intermediate by orienting the C2-succinyl group of the intermediates through strong ionic hydrogen bonding. We found that when this interaction is moderately weakened by amino acid substitutions, the resulting proteins are catalytically competent with the C2-succinyl group taking either the active or the inactive orientation in the post-decarboxylation intermediate. When this hydrogen-bonding interaction was strongly weakened, the succinyl group was re-oriented by 180° relative to the native intermediate, resulting in the reversal of the stereochemistry at the reaction center that disabled catalysis. Interestingly, this inactive intermediate was formed with a distinct kinetic behavior, likely as a result of a non-native mode of enzyme-substrate interaction. The mechanistic insights gained from these findings improve our understanding of the new ThDP-dependent catalysis. More importantly, the non-native-binding site of the inactive MenD intermediate uncovered here provides a new target for the development of antibiotics.


Assuntos
Arginina/genética , Domínio Catalítico , Proteínas de Escherichia coli/genética , Piruvato Oxidase/genética , Vitamina K 2/metabolismo , Arginina/química , Arginina/metabolismo , Biocatálise , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ligação Proteica , Conformação Proteica , Piruvato Oxidase/química , Piruvato Oxidase/metabolismo , Especificidade por Substrato , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo
7.
J Bacteriol ; 200(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29378884

RESUMO

Pyruvate oxidase (SpxB)-dependent H2O2 production is under the control of carbon catabolite protein A (CcpA) in the oral species Streptococcus sanguinis and Streptococcus gordonii Interestingly, both species react differently to the presence of the preferred carbohydrate source glucose. S. gordonii CcpA-dependent regulation of spxB follows classical carbon catabolite repression. Conversely, spxB expression in S. sanguinis is not influenced by glucose but is repressed by CcpA. Here, we constructed strains expressing the heterologous versions of CcpA or the spxB promoter region to learn if the distinct regulation of spxB expression is transferable from S. gordonii to S. sanguinis and vice versa. While cross-species binding of CcpA to the spxB promoter is conserved in vitro, we were unable to swap the species-specific regulation. This suggests that a regulatory mechanism upstream of CcpA most likely is responsible for the observed difference in spxB expression. Moreover, the overall ecological significance of differential spxB regulation in the presence of various glucose concentrations was tested with additional oral streptococcus isolates and demonstrated that carbohydrate-dependent and carbohydrate-independent mechanisms exist to control expression of spxB in the oral biofilm. Overall, our data demonstrate the unexpected finding that metabolic pathways between two closely related oral streptococcal species can be regulated differently despite an exceptionally high DNA sequence identity.IMPORTANCE Polymicrobial diseases are the result of interactions among the residential microbes, which can lead to a dysbiotic community. Streptococcus sanguinis and Streptococcus gordonii are considered commensal species that are present in the healthy dental biofilm. Both species are able to produce significant amounts of H2O2 via the enzymatic action of the pyruvate oxidase SpxB. H2O2 is able to inhibit species associated with oral diseases. SpxB and its gene-regulatory elements present in both species are highly conserved. Nonetheless, a differential response to the presence of glucose was observed. Here, we investigate the mechanisms that lead to this differential response. Detailed knowledge of the regulatory mechanisms will aid in a better understanding of oral disease development and how to prevent dysbiosis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Piruvato Oxidase/metabolismo , Streptococcus gordonii/metabolismo , Streptococcus sanguis/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Regiões Promotoras Genéticas , Piruvato Oxidase/genética , Streptococcus gordonii/genética , Streptococcus sanguis/genética
8.
Lett Appl Microbiol ; 67(3): 262-269, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29856486

RESUMO

Pyruvate oxidase is an important enzyme used as a reagent in kits and biochemical analyses; however, the yield of pyruvate oxidase from wild microbial strains is low. In this study, high-level expression of Aerococcus viridans pyruvate oxidase was achieved in recombinant Escherichia coli by optimizing the expression system and induction conditions. Three recombinant pET vectors were constructed for pyruvate oxidase expression in E. coli. The isopropyl-ß-d-thiogalactoside (IPTG) concentration and induction temperature were optimized, with the result that the highest pyruvate oxidase yield (4106·9 U l-1 ) of the recombinant E. colipET28a-pod was obtained under conditions of 25°C, 0·5 mmol l-1 IPTG, 0·5 OD600 , after 24 h of induction, which was 34·2 times the yield achieved with the wild-type strain. The soluble pyruvate oxidase contributed 99·6% of the total pyruvate oxidase expressed. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates that a highly soluble pyruvate oxidase can be obtained in recombinant Escherichia coli by optimizing vectors and induction conditions. The pyruvate oxidase yield achieved is the highest reported so far, which provides a convenient and cost-saving way to produce pyruvate oxidase. This research promotes pyruvate oxidase application in the pharmaceutical and biochemical industries.


Assuntos
Aerococcus/enzimologia , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Vetores Genéticos/genética , Piruvato Oxidase/metabolismo , Aerococcus/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Vetores Genéticos/metabolismo , Piruvato Oxidase/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Temperatura
9.
Prep Biochem Biotechnol ; 48(2): 188-193, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29355461

RESUMO

Pyruvate oxidase (PyOD) is a very powerful enzyme for clinical diagnostic applications and environmental monitoring. Influences of temperature on cell growth, plasmid stability, and PyOD expression during the PyOD fermentation process by recombinant Escherichia coli were investigated. Based on the influences of temperature on the physiological metabolism, a novel high-cell density fed-batch cultivation with gradient temperature decrease strategy for effective PyOD production was achieved, under which the biomass (OD600) of recombinant E. coli could reach to 71 and the highest PyOD activity in broth could reach to 3,307 U/L in 26 hr fermentation.


Assuntos
Aerococcus/enzimologia , Técnicas de Cultura Celular por Lotes/métodos , Escherichia coli/metabolismo , Piruvato Oxidase/metabolismo , Aerococcus/genética , Aerococcus/metabolismo , Reatores Biológicos , Meios de Cultura/metabolismo , Escherichia coli/genética , Fermentação , Plasmídeos/genética , Plasmídeos/metabolismo , Piruvato Oxidase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
10.
Biochem Biophys Res Commun ; 485(2): 461-467, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202416

RESUMO

Oral streptococci including mitis group streptococci are commensal residents and are also the first to colonize the oral cavity. However, various species of these oral streptococci have the potential to invade the host and occasionally lead to severe infectious disease such as cardiovascular diseases. Oral streptococci have close interactions with the host immune system including macrophages at the oral mucosal surface. One notable common trait of oral streptococcus including Streptococcus oralis (S. oralis) is the production of hydrogen peroxide (H2O2). Using a comprehensive microarray approach, we sought to understand the innate immune response profiling affected by H2O2 production from oral streptococci. We compared the gene expression patterns of macrophages infected with S. oralis wild type (WT) and streptococcal pyruvate oxidase knockout (SpxB-KO), a strain that does not produce H2O2. We found that H2O2 from S. oralis suppressed proinflammatory gene expression such as TNF-α, that is induced in response to infection, and activated the cellular stress genes such as Egr-1 in response to oxidative stress. A comparative gene ontology analysis of S. oralis WT and SpxB-KO strains revealed that during infection, down regulated genes were closely related to the processes involved in the host defense reaction and up regulated genes were related with the cellular stress responses. Using qPCR analysis, we also confirmed the same pattern of expression changes such as TNF-α, IL-6 and Egr-1. Furthermore, supernatant from SpxB-KO could not suppress the expression of TNF-α in macrophages stimulated with LPS. These findings suggested that H2O2 production from S. oralis leads to the suppression of inflammatory responses and NF-κB signaling pathways in macrophages as well as the induction of the oxidative stress response. We concluded that streptococcal H2O2 production has the beneficial effects of modulating the innate immune response, thereby stabilizing streptococcal colonization at the mucosal surface and even in the bloodstream leading to cardiovascular disease after invasion, in addition to the commensal role to compete other bacterial species as initial colonizer at oral cavity.


Assuntos
Perfilação da Expressão Gênica/métodos , Peróxido de Hidrogênio/metabolismo , Macrófagos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Streptococcus oralis/metabolismo , Células 3T3 , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Linhagem Celular , Análise por Conglomerados , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Ontologia Genética , Interações Hospedeiro-Patógeno , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptococcus oralis/genética , Streptococcus oralis/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Appl Environ Microbiol ; 83(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842545

RESUMO

Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively.IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB.


Assuntos
Acetatos/metabolismo , Ácido Láctico/metabolismo , Levilactobacillus brevis/metabolismo , Oxigênio/metabolismo , Aerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Glucose/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Levilactobacillus brevis/enzimologia , Levilactobacillus brevis/genética , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Ácido Pirúvico/metabolismo
12.
Antimicrob Agents Chemother ; 60(1): 409-17, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26525786

RESUMO

We studied the transcriptomic response of Streptococcus pneumoniae to the fluoroquinolone moxifloxacin at a concentration that inhibits DNA gyrase. Treatment of the wild-type strain R6, at a concentration of 10× the MIC, triggered a response involving 132 genes after 30 min of treatment. Genes from several metabolic pathways involved in the production of pyruvate were upregulated. These included 3 glycolytic enzymes, which ultimately convert fructose 6-phosphate to pyruvate, and 2 enzymes that funnel phosphate sugars into the glycolytic pathway. In addition, acetyl coenzyme A (acetyl-CoA) carboxylase was downregulated, likely leading to an increase in acetyl-CoA. When coupled with an upregulation in formate acetyltransferase, an increase in acetyl-CoA would raise the production of pyruvate. Since pyruvate is converted by pyruvate oxidase (SpxB) into hydrogen peroxide (H2O2), an increase in pyruvate would augment intracellular H2O2. Here, we confirm a 21-fold increase in the production of H2O2 and a 55-fold increase in the amount of hydroxyl radical in cultures treated during 4 h with moxifloxacin. This increase in hydroxyl radical through the Fenton reaction would damage DNA, lipids, and proteins. These reactive oxygen species contributed to the lethality of the drug, a conclusion supported by the observed protective effects of an SpxB deletion. These results support the model whereby fluoroquinolones cause redox alterations. The transcriptional response of S. pneumoniae to moxifloxacin is compared with the response to levofloxacin, an inhibitor of topoisomerase IV. Levofloxacin triggers the transcriptional activation of iron transport genes and also enhances the Fenton reaction.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Fluoroquinolonas/farmacologia , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , Farmacorresistência Bacteriana Múltipla , Frutosefosfatos/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Ontologia Genética , Glicólise/efeitos dos fármacos , Glicólise/genética , Ferro/metabolismo , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Moxifloxacina , Estresse Oxidativo/efeitos dos fármacos , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Ácido Pirúvico/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transcrição Gênica
13.
BMC Microbiol ; 16(1): 271, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829373

RESUMO

BACKGROUND: Streptococcus pneumoniae is one of the leading causes of community acquired pneumonia and acute otitis media. Certain aspects of S. pneumoniae's virulence are dependent upon expression and release of the protein toxin pneumolysin (PLY) and upon the activity of the peroxide-producing enzyme, pyruvate oxidase (SpxB). We investigated the possible synergy of these two proteins and identified that release of PLY is enhanced by expression of SpxB prior to stationary phase growth. RESULTS: Mutants lacking the spxB gene were defective in PLY release and complementation of spxB restored PLY release. This was demonstrated by cytotoxic effects of sterile filtered supernatants upon epithelial cells and red blood cells. Additionally, peroxide production appeared to contribute to the mechanism of PLY release since a significant correlation was found between peroxide production and PLY release among a panel of clinical isolates. Exogenous addition of H2O2 failed to induce PLY release and catalase supplementation prevented PLY release in some strains, indicating peroxide may exert its effect intracellularly or in a strain-dependent manner. SpxB expression did not trigger bacterial cell death or LytA-dependent autolysis, but did predispose cells to deoxycholate lysis. CONCLUSIONS: Here we demonstrate a novel link between spxB expression and PLY release. These findings link liberation of PLY toxin to oxygen availability and pneumococcal metabolism.


Assuntos
Piruvato Oxidase/metabolismo , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Autólise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catalase , DNA Bacteriano/genética , Células Epiteliais/microbiologia , Eritrócitos/microbiologia , Genes Bacterianos , Peróxido de Hidrogênio/metabolismo , Oxigênio , Piruvato Oxidase/genética , Deleção de Sequência , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética , Estreptolisinas/genética , Virulência
14.
Food Microbiol ; 59: 57-65, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27375244

RESUMO

This study focused on the spxB gene, which encodes for pyruvate oxidase. The presence of spxB in the genome and its transcription could be a way to produce energy and allow bacterial growth during carbohydrate starvation. In addition, the activity of pyruvate oxidase, which produces hydrogen peroxide, could be a mechanism for interspecies competition. Because this gene seems to provide advantages for the encoding species for adaptation in complex ecosystems, we studied spxB in a large set of cheese isolates belonging to the Lactobacillus casei group. Through this study, we demonstrated that this gene is widely found in the genomes of members of the L. casei group and shows variability useful for taxonomic studies. In particular, the HRM analysis method allowed for a specific discrimination between Lactobacillus rhamnosus, Lactobacillus paracasei and L. casei. Regarding the coding region, the spxB functionality in cheese was shown for the first time by real-time PCR, and by exploiting the heterogeneity between the L. casei group species, we identified the bacterial communities encoding the spxB gene in this ecosystem. This study allowed for monitoring of the active bacterial community involved in different stages of ripening by following the POX pathway.


Assuntos
Proteínas de Bactérias/genética , Queijo/microbiologia , Microbiologia de Alimentos , Genoma Bacteriano , Lacticaseibacillus casei/genética , Piruvato Oxidase/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Complementar , Lacticaseibacillus casei/crescimento & desenvolvimento , Lacticaseibacillus casei/metabolismo , Lacticaseibacillus paracasei/genética , Lacticaseibacillus rhamnosus/genética , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Piruvato Oxidase/metabolismo , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alinhamento de Sequência , Temperatura
15.
J Appl Microbiol ; 119(3): 763-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25996113

RESUMO

AIMS: This study evaluated the aerobic and respiratory metabolism in Lactobacillus reuteri and Lactobacillus spicheri, two heterofermentative species used in sourdough fermentation. METHODS AND RESULTS: In silico genome analysis, production of metabolites and gene expression of pyruvate oxidase, pyruvate dehydrogenase and cytochrome oxidase were assessed in anaerobic and aerobic cultures of Lact. reuteri and Lact. spicheri. Respiring homofermentative Lactobacillus casei N87 and Lact. rhamnosus N132 were used for comparison. Aerobiosis and respiration increased the biomass production of heterofermentative strains compared to anaerobic cultivation. Respiration led to acetoin production by Lact. rhamnosus and Lact. casei, but not in heterofermentative strains, in which lactate and acetate were the major end-products. Lactobacillus spicheri LP38 showed the highest oxygen uptake. Pyruvate oxidase, respiratory cytochromes, NADH oxidase and NADH peroxidase were present in the genome of Lact. spicheri LP38. Both Lact. spicheri LP38 and Lact. rhamnosus N132 overexpressed pox in aerobic cultures, while cydA was up-regulated only when haeme was supplied; pdh was repressed during aerobic growth. CONCLUSIONS: Aerobic and respiratory growth provided physiological and metabolic advantages also in heterofermentative lactobacilli. SIGNIFICANCE AND IMPACT OF THE STUDY: The exploitation of oxygen-tolerant phenotypes of Lact. spicheri may be useful for the development of improved starter cultures.


Assuntos
Lactobacillus/metabolismo , Limosilactobacillus reuteri/metabolismo , Oxigênio/metabolismo , Aerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Lactobacillus/enzimologia , Lactobacillus/genética , Limosilactobacillus reuteri/enzimologia , Limosilactobacillus reuteri/genética , Peroxidases/genética , Peroxidases/metabolismo , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo
16.
FEBS J ; 290(12): 3258-3269, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36727297

RESUMO

The pyruvate oxidases from Escherichia coli (EcPOX) and Lactobacillus plantarum (LpPOX) are both thiamin-dependent flavoenzymes. Their sequence and structure are closely related, and they catalyse similar reactions-but they differ in their activity pattern: LpPOX is always highly active, EcPOX only when activated by lipids or limited proteolysis, both involving the protein's C-terminal 23 residues (the 'α-peptide'). Here, we relate the redox-induced infrared (IR) difference spectrum of EcPOX to its unusual activation mechanism. The IR difference spectrum of EcPOX is marked by contributions from the protein backbone, reflecting major conformational changes. A rare sulfhydryl (-SH) difference signal indicates changes in the vicinity of cysteines. We could pin the Cys-SH difference signal to Cys88 and Cys494, both being remote from the moving α-peptide and the redox-active flavin cofactor. Yet, when the α-peptide is proteolytically removed, the Cys-SH difference signal disappears, together with several difference signals in the amide range. The remaining IR signature of the permanently activated EcPOXΔ23 is strikingly similar to the simpler signature of LpPOX. The loss of the α-peptide 'transforms' the catalytically complex EcPOX into the catalytically 'simpler' LpPOX.


Assuntos
Cisteína , Escherichia coli , Escherichia coli/metabolismo , Cisteína/metabolismo , Piruvato Oxidase/genética , Piruvato Oxidase/química , Piruvato Oxidase/metabolismo , Flavinas/metabolismo , Oxirredução
17.
Metab Eng ; 14(4): 380-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22480945

RESUMO

Microbial biosynthesis of fatty acid like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Wild type E. coli strains produce fatty acids mainly for the biosynthesis of lipids and cell membranes and do not accumulate free fatty acids as intermediates in lipid biosynthesis. However, free fatty acids can be produced by breaking the fatty acid elongation through the overexpression of an acyl-ACP thioesterase. Since acetyl-CoA might be an important factor for fatty acid synthesis (acetate formation pathways are the main competitive pathways in consuming acetyl-CoA or pyruvate, a precursor of acetyl-CoA), and the long chain fatty acid CoA-ligase (FadD) plays a pivotal role in the transport and activation of exogenous fatty acids prior to their subsequent degradation, we examined the composition and the secretion of the free fatty acids in four different strains including the wild type MG1655, a mutant strain with inactivation of the fatty acid beta-oxidation pathway (fadD mutant (ML103)), and mutant strains with inactivation of the two major acetate production pathways (an ack-pta (acetate kinase/phosphotransacetylase), poxB (pyruvate oxidase) double mutant (ML112)) and a fadD, ack-pta, poxB triple mutant (ML115). The engineered E. coli cells expressing acyl-ACP thioesterase with glucose yield is higher than 40% of theoretical yield. Compared to MG1655(pXZ18) and ML103(pXZ18), acetate forming pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar quantity of total free fatty acids, which indicated that acetyl-CoA availability does not appear to be limiting factor for fatty acid production in these strains. However, these strains did show significant differences in the composition of free fatty acids. Different from MG1655(pXZ18) and ML103(pXZ18), acetate formation pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar level of C14, C16:1 and C16 free fatty acids, and the free fatty acid compositions of both strains did not change significantly with time. In addition, the strains bearing the fadD mutation showed significant differences in the quantities of free fatty acids found in the broth. Finally, we examined two potential screening methods for selecting and isolating high free fatty acids producing cells.


Assuntos
Acetatos/metabolismo , Coenzima A Ligases/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/biossíntese , Palmitoil-CoA Hidrolase/biossíntese , Ricinus/enzimologia , Acetato Quinase/genética , Acetato Quinase/metabolismo , Escherichia coli/genética , Ácidos Graxos não Esterificados/genética , Ácidos Graxos não Esterificados/metabolismo , Mutação , Palmitoil-CoA Hidrolase/genética , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Ricinus/genética
18.
Appl Environ Microbiol ; 78(7): 2120-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22287002

RESUMO

Complex interspecies interactions occur constantly between oral commensals and the opportunistic pathogen Streptococcus mutans in dental plaque. Previously, we showed that oral commensal Streptococcus oligofermentans possesses multiple enzymes for H(2)O(2) production, especially lactate oxidase (Lox), allowing it to out-compete S. mutans. In this study, through extensive biochemical and genetic studies, we identified a pyruvate oxidase (pox) gene in S. oligofermentans. A pox deletion mutant completely lost Pox activity, while ectopically expressed pox restored activity. Pox was determined to produce most of the H(2)O(2) in the earlier growth phase and log phase, while Lox mainly contributed to H(2)O(2) production in stationary phase. Both pox and lox were expressed throughout the growth phase, while expression of the lox gene increased by about 2.5-fold when cells entered stationary phase. Since lactate accumulation occurred to a large degree in stationary phase, the differential Pox- and Lox-generated H(2)O(2) can be attributed to differential gene expression and substrate availability. Interestingly, inactivation of pox causes a dramatic reduction in H(2)O(2) production from lactate, suggesting a synergistic action of the two oxidases in converting lactate into H(2)O(2). In an in vitro two-species biofilm experiment, the pox mutant of S. oligofermentans failed to inhibit S. mutans even though lox was active. In summary, S. oligofermentans develops a Pox-Lox synergy strategy to maximize its H(2)O(2) formation so as to win the interspecies competition.


Assuntos
Antibiose , Oxigenases de Função Mista/metabolismo , Piruvato Oxidase/metabolismo , Streptococcus mutans/enzimologia , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus/enzimologia , Streptococcus/fisiologia , Biofilmes/crescimento & desenvolvimento , Deleção de Genes , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Boca/microbiologia , Piruvato Oxidase/genética , Análise de Sequência de DNA , Especificidade da Espécie , Streptococcus/classificação , Streptococcus/genética , Streptococcus/crescimento & desenvolvimento , Streptococcus mutans/genética
19.
Biochemistry ; 50(40): 8712-21, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21928762

RESUMO

MenD catalyzes the thiamin diphosphate-dependent decarboxylative carboligation of α-ketoglutarate and isochorismate. The enzyme is essential for menaquinone biosynthesis in many bacteria and has been proposed to be an antibiotic target. The kinetic mechanism of this enzyme has not previously been demonstrated because of the limitations of the UV-based kinetic assay. We have reported the synthesis of an isochorismate analogue that acts as a substrate for MenD. The apparent weaker binding of this analogue is advantageous in that it allows accurate kinetic experiments at substrate concentrations near K(m). Using this substrate in concert with the dead-end inhibitor methyl succinylphosphonate, an analogue of α-ketoglutarate, we show that MenD follows a ping-pong kinetic mechanism. Using both the natural and synthetic substrates, we have measured the effects of 12 mutations of residues at the active site. The results give experimental support to previous models and hypotheses and allow observations unavailable using only the natural substrate.


Assuntos
Domínio Catalítico , Ácido Corísmico/química , Ácido Corísmico/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Piruvato Oxidase/química , Sequência de Aminoácidos , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Especificidade por Substrato
20.
Biochim Biophys Acta ; 1801(9): 1098-104, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20601114

RESUMO

FabF elongation condensing enzyme is a critical factor in determining the spectrum of products produced by the FASII pathway. Its active site contains a critical cysteine-thiol residue, which is a plausible target for oxidation by H2O2. Streptococcus pneumoniae produces exceptionally high levels of H2O2, mainly through the conversion of pyruvate to acetyl-P via pyruvate oxidase (SpxB). We present evidence showing that endogenous H2O2 inhibits FabF activity by specifically oxidizing its active site cysteine-thiol residue. Thiol trapping methods revealed that one of the three FabF cysteines in the wild-type strain was oxidized, whereas in an spxB mutant, defective in H2O2 production, none of the cysteines was oxidized, indicating that the difference in FabF redox state originated from endogenous H2O2. In vitro exposure of the spxB mutant to various H2O2 concentrations further confirmed that only one cysteine residue was susceptible to oxidation. By blocking FabF active site cysteine with cerulenin we show that the oxidized cysteine was the catalytic one. Inhibition of FabF activity by either H2O2 or cerulenin resulted in altered membrane fatty acid composition. We conclude that FabF activity is inhibited by H2O2 produced by S. pneumoniae.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Western Blotting , Catálise , Domínio Catalítico , Cerulenina/farmacologia , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Imunização , Immunoblotting , Imunoglobulina G/imunologia , Imunoprecipitação , Mutação/genética , Oxirredução , Infecções Pneumocócicas/genética , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , RNA Mensageiro/genética , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA