Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983847

RESUMO

Symplasmicly connected cells called sieve elements form a network of tubes in the phloem of vascular plants. Sieve elements have essential functions as they provide routes for photoassimilate distribution, the exchange of developmental signals, and the coordination of defense responses. Nonetheless, they are the least understood main type of plant cells. They are extremely sensitive, possess a reduced endomembrane system without Golgi apparatus, and lack nuclei and translation machineries, so that transcriptomics and similar techniques cannot be applied. Moreover, the analysis of phloem exudates as a proxy for sieve element composition is marred by methodological problems. We developed a simple protocol for the isolation of sieve elements from leaves and stems of Nicotiana tabacum at sufficient amounts for large-scale proteome analysis. By quantifying the enrichment of individual proteins in purified sieve element relative to bulk phloem preparations, proteins of increased likelyhood to function specifically in sieve elements were identified. To evaluate the validity of this approach, yellow fluorescent protein constructs of genes encoding three of the candidate proteins were expressed in plants. Tagged proteins occurred exclusively in sieve elements. Two of them, a putative cytochrome b561/ferric reductase and a reticulon-like protein, appeared restricted to segments of the endoplasmic reticulum (ER) that were inaccessible to green fluorescent protein dissolved in the ER lumen, suggesting a previously unknown differentiation of the endomembrane system in sieve elements. Evidently, our list of promising candidate proteins ( SI Appendix, Table S1) provides a valuable exploratory tool for sieve element biology.


Assuntos
Retículo Endoplasmático/metabolismo , Nicotiana/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteômica , Retículo Endoplasmático/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Caules de Planta/citologia , Caules de Planta/genética , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Nicotiana/citologia , Nicotiana/genética
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33597298

RESUMO

Plant fertilization involves both an egg cell, which fuses with a sperm cell, and synergid cells, which guide pollen tubes for sperm cell delivery. Therefore, egg and synergid cell functional specifications are prerequisites for successful fertilization. However, how the egg and synergid cells, referred to as the "egg apparatus," derived from one mother cell develop into distinct cell types remains an unanswered question. In this report, we show that the final position of the nuclei in female gametophyte determines the cell fate of the egg apparatus. We established a live imaging system to visualize the dynamics of nuclear positioning and cell identity establishment in the female gametophyte. We observed that free nuclei should migrate to a specific position before egg apparatus specialization. Artificial changing in the nuclear position on disturbance of the actin cytoskeleton, either in vitro or in vivo, could reset the cell fate of the egg apparatus. We also found that nuclei of the same origin moved to different positions and then showed different cell identities, whereas nuclei of different origins moved to the same position showed the same cell identity, indicating that the final positions of the nuclei, rather than specific nucleus lineage, play critical roles in the egg apparatus specification. Furthermore, the active auxin level was higher in the egg cell than in synergid cells. Auxin transport inhibitor could decrease the auxin level in egg cells and impair egg cell identity, suggesting that directional and accurate auxin distribution likely acts as a positional cue for egg apparatus specialization.


Assuntos
Arabidopsis/citologia , Óvulo Vegetal/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Diferenciação Celular , Núcleo Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Células Vegetais/fisiologia , Plantas Geneticamente Modificadas/citologia
3.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573352

RESUMO

The rice cell suspension culture system is a good way to produce recombinant human proteins, owing to its high biosafety and low production cost. Human Octamer-binding Transcription Factor 4 (Oct4) is a fundamental transcription factor responsible for maintaining human pluripotent embryonic stem cells. Recombinant Oct4 protein has been used to induce pluripotent stem cells. In this study, recombinant Oct4 proteins are produced via a sugar starvation-inducible αAmy3/RAmy3D promoter-signal peptide-based rice recombinant protein expression system. Oct4 mRNAs accumulate in the transgenic rice suspension cells under sugar starvation. The Oct4 recombinant protein is detected in the transgenic rice suspension cells, and its highest yield is approximately 0.41% of total cellular soluble proteins after one day of sugar starvation. The rice cell-synthesized recombinant human Oct4 protein show DNA-binding activity in vitro, which implies that the protein structure is correct for enabling specific binding to the target DNA motif.


Assuntos
Técnicas de Cultura de Células/métodos , Fator 3 de Transcrição de Octâmero/isolamento & purificação , Oryza/citologia , Células Cultivadas , Contenção de Riscos Biológicos , Regulação da Expressão Gênica de Plantas , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , alfa-Amilases/genética
4.
Plant Cell ; 29(3): 575-588, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28223441

RESUMO

The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Arabidopsis thaliana Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms controlling IYO nuclear accumulation were unknown, and the evidence that increased nuclear IYO levels trigger differentiation remained correlative. Searching for IYO interactors, we identified RPAP2 IYO Mate (RIMA), a homolog of yeast and human proteins linked to nuclear import of selective cargo. Knockdown of RIMA causes delayed onset of cell differentiation, phenocopying the effects of IYO knockdown at the transcriptomic and developmental levels. Moreover, differentiation is completely blocked when IYO and RIMA activities are simultaneously reduced and is synergistically accelerated when IYO and RIMA are concurrently overexpressed, confirming their functional interaction. Indeed, RIMA knockdown reduces the nuclear levels of IYO and prevents its prodifferentiation activity, supporting the conclusion that RIMA-dependent nuclear IYO accumulation triggers cell differentiation in Arabidopsis. Importantly, by analyzing the effect of the IYO/RIMA pathway on xylem pole pericycle cells, we provide compelling evidence reinforcing the view that the capacity for de novo organogenesis and regeneration from mature plant tissues can reside in stem cell reservoirs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Inibidores da Monoaminoxidase/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
5.
Plant Cell ; 29(6): 1388-1405, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28584166

RESUMO

During cytokinesis in plants, trans-Golgi network-derived vesicles accumulate at the center of dividing cells and undergo various structural changes to give rise to the planar cell plate. However, how this conversion occurs at the molecular level remains elusive. In this study, we report that SH3 Domain-Containing Protein 2 (SH3P2) in Arabidopsis thaliana plays a crucial role in converting vesicles to the planar cell plate. SH3P2 RNAi plants showed cytokinesis-defective phenotypes and produced aggregations of vesicles at the leading edge of the cell plate. SH3P2 localized to the leading edge of the cell plate, particularly the constricted or curved regions of the cell plate. The BAR domain of SH3P2 induced tubulation of vesicles. SH3P2 formed a complex with dynamin-related protein 1A (DRP1A) and affected DRP1A accumulation to the cell plate. Based on these results, we propose that SH3P2 functions together with DRP1A to convert the fused vesicles to tubular structures during cytokinesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Citocinese/genética , Citocinese/fisiologia , Dinaminas/genética , Dinaminas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/fisiologia
6.
Biotechnol Bioeng ; 117(4): 945-958, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930479

RESUMO

Reconstructing the chemical and structural characteristics of the plant cell wall represents a promising solution to overcoming lignocellulosic biomass recalcitrance to biochemical deconstruction. This study aims to leverage hydroxyproline (Hyp)-O-glycosylation, a process unique to plant cell wall glycoproteins, as an innovative technology for de novo design and engineering in planta of Hyp-O-glycosylated biopolymers (HypGP) that facilitate plant cell wall reconstruction. HypGP consisting of 18 tandem repeats of "Ser-Hyp-Hyp-Hyp-Hyp" motif or (SP4)18 was designed and engineered into tobacco plants as a fusion peptide with either a reporter protein enhanced green fluorescence protein or the catalytic domain of a thermophilic E1 endoglucanase (E1cd) from Acidothermus cellulolyticus. The engineered (SP4)18 module was extensively Hyp-O-glycosylated with arabino-oligosaccharides, which facilitated the deposition of the fused protein/enzyme in the cell wall matrix and improved the accumulation of the protein/enzyme in planta by 1.5-11-fold. The enzyme activity of the recombinant E1cd was not affected by the fused (SP4)18 module, showing an optimal temperature of 80°C and optimal pH between 5 and 8. The plant biomass engineered with the (SP4)18 -tagged protein/enzyme increased the biomass saccharification efficiency by up to 3.5-fold without having adverse impact on the plant growth.


Assuntos
Biopolímeros , Parede Celular , Engenharia Genética/métodos , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Biopolímeros/química , Biopolímeros/genética , Biopolímeros/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Celulase/química , Celulase/genética , Celulase/metabolismo , Glicoproteínas , Glicosilação , Hidroxiprolina/química , Hidroxiprolina/genética , Hidroxiprolina/metabolismo , Proteínas de Plantas , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo
7.
Nature ; 513(7519): 547-50, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25231869

RESUMO

In photosynthetic organisms, D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major enzyme assimilating atmospheric CO2 into the biosphere. Owing to the wasteful oxygenase activity and slow turnover of Rubisco, the enzyme is among the most important targets for improving the photosynthetic efficiency of vascular plants. It has been anticipated that introducing the CO2-concentrating mechanism (CCM) from cyanobacteria into plants could enhance crop yield. However, the complex nature of Rubisco's assembly has made manipulation of the enzyme extremely challenging, and attempts to replace it in plants with the enzymes from cyanobacteria and red algae have not been successful. Here we report two transplastomic tobacco lines with functional Rubisco from the cyanobacterium Synechococcus elongatus PCC7942 (Se7942). We knocked out the native tobacco gene encoding the large subunit of Rubisco by inserting the large and small subunit genes of the Se7942 enzyme, in combination with either the corresponding Se7942 assembly chaperone, RbcX, or an internal carboxysomal protein, CcmM35, which incorporates three small subunit-like domains. Se7942 Rubisco and CcmM35 formed macromolecular complexes within the chloroplast stroma, mirroring an early step in the biogenesis of cyanobacterial ß-carboxysomes. Both transformed lines were photosynthetically competent, supporting autotrophic growth, and their respective forms of Rubisco had higher rates of CO2 fixation per unit of enzyme than the tobacco control. These transplastomic tobacco lines represent an important step towards improved photosynthesis in plants and will be valuable hosts for future addition of the remaining components of the cyanobacterial CCM, such as inorganic carbon transporters and the ß-carboxysome shell proteins.


Assuntos
Produtos Agrícolas/enzimologia , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo , Biocatálise/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Cloroplastos/enzimologia , Cloroplastos/genética , Cloroplastos/metabolismo , Produtos Agrícolas/citologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Genes Bacterianos/genética , Cinética , Dados de Sequência Molecular , Fenótipo , Fotossíntese/efeitos dos fármacos , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Synechococcus/enzimologia , Synechococcus/genética , Nicotiana/citologia , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
8.
Plant Cell Rep ; 39(1): 119-133, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31679061

RESUMO

KEY MESSAGE: Both OsIPPI1 and OsIPPI2 enzymes are found in the endoplasmic reticulum, providing novel important insights into the role of this compartment in the synthesis of MVA pathway isoprenoids. Isoprenoids are synthesized from the precursor's isopentenyl diphosphate (IPP) and dimethylallyl diphosphosphate (DMAPP), which are interconverted by the enzyme isopentenyl diphosphate isomerase (IPPI). Many plants express multiple isoforms of IPPI, the only enzyme shared by the mevalonate (MVA) and non-mevalonate (MEP) pathways, but little is known about their specific roles. Rice (Oryza sativa) has two IPPI isoforms (OsIPPI1 and OsIPPI2). We, therefore, carried out a comprehensive comparison of IPPI gene expression, protein localization, and isoprenoid biosynthesis in this species. We found that OsIPPI1 mRNA was more abundant than OsIPPI2 mRNA in all tissues, and its expression in de-etiolated leaves mirrored the accumulation of phytosterols, suggesting a key role in the synthesis of MVA pathway isoprenoids. We investigated the subcellular localization of both isoforms by constitutively expressing them as fusions with synthetic green fluorescent protein. Both proteins localized to the endoplasmic reticulum (ER) as well as peroxisomes and mitochondria, whereas only OsIPPI2 was detected in plastids, due to an N-terminal transit peptide which is not present in OsIPPI1. Despite the plastidial location of OsIPPI2, the expression of OsIPPI2 mRNA did not mirror the accumulation of chlorophylls or carotenoids, indicating that OsIPPI2 may be a redundant component of the MEP pathway. The detection of both OsIPPI isoforms in the ER indicates that DMAPP can be synthesized de novo in this compartment. Our work shows that the ER plays an as yet unknown role in the synthesis of MVA-derived isoprenoids, with important implications for the metabolic engineering of isoprenoid biosynthesis in higher plants.


Assuntos
Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Retículo Endoplasmático/enzimologia , Hemiterpenos/metabolismo , Oryza/enzimologia , Terpenos/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Hemiterpenos/genética , Ácido Mevalônico/metabolismo , Mitocôndrias/metabolismo , Compostos Organofosforados/metabolismo , Oryza/genética , Oryza/metabolismo , Peroxissomos/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/metabolismo
9.
Electrophoresis ; 40(22): 2921-2928, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31475363

RESUMO

Application of a microfluidic CE* device for CZE-MS allows for fast, rapid, and in-depth analysis of large sample sets. This microfluidic CZE-MS device, the 908 Devices ZipChip, involves minimal sample preparation and is ideal for small cation analytes, such as alkaloids. Here, we evaluated the microfluidic device for the analysis of alkaloids from Lobelia cardinalis hairy root cultures. Extracts from wild-type, transgenic, and selected mutant plant cultures were analyzed and data batch processed using the mass spectral processing software MZmine2 and the statistical software Prism 8. In total 139 features were detected as baseline resolved peaks via the MZmine2 software optimized for the electrophoretic separations. Statistically significant differences in the relative abundance of the primary alkaloid lobinaline (C27 H34 N2 ), along with several putative "lobinaline-like" molecules were observed utilizing this approach. Additionally, a method for performing both targeted and untargeted MS/MS experiments using the microfluidic device was developed and evaluated. Coupling data-processing software with CZE-MS data acquisition has enabled comprehensive metabolomic profiles from plant cell cultures to be constructed within a single working day.


Assuntos
Alcaloides/análise , Eletroforese Capilar/métodos , Lobelia , Plantas Geneticamente Modificadas , Espectrometria de Massas em Tandem/métodos , Biologia Computacional , Limite de Detecção , Modelos Lineares , Lobelia/química , Lobelia/citologia , Técnicas Analíticas Microfluídicas/métodos , Células Vegetais/química , Extratos Vegetais/química , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/citologia , Reprodutibilidade dos Testes
10.
J Exp Bot ; 70(8): 2325-2338, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753728

RESUMO

Sucrose non-fermenting 1 (SNF1)-related protein kinase 1.1 (SnRK1.1; also known as KIN10 or SnRK1α) has been identified as the catalytic subunit of the complex SnRK1, the Arabidopsis thaliana homologue of a central integrator of energy and stress signalling in eukaryotes dubbed AMPK/Snf1/SnRK1. A nuclear localization of SnRK1.1 has been previously described and is in line with its function as an integrator of energy and stress signals. Here, using two biological models (Nicotiana benthamiana and Arabidopsis thaliana), native regulatory sequences, different microscopy techniques, and manipulations of cellular energy status, it was found that SnRK1.1 is localized dynamically between the nucleus and endoplasmic reticulum (ER). This distribution was confirmed at a spatial and temporal level by co-localization studies with two different fluorescent ER markers, one of them being the SnRK1.1 phosphorylation target HMGR. The ER and nuclear localization displayed a dynamic behaviour in response to perturbations of the plastidic electron transport chain. These results suggest that an ER-associated SnRK1.1 fraction might be sensing the cellular energy status, being a point of crosstalk with other ER stress regulatory pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/citologia , Cloroplastos/metabolismo , Transporte de Elétrons , Metabolismo Energético , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico , Nicotiana/citologia , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo
11.
Plant Cell ; 28(8): 1844-59, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27432873

RESUMO

Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Catalase/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catalase/genética , Morte Celular/genética , Morte Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Peróxido de Hidrogênio/metabolismo , Oxirredução , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
12.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752214

RESUMO

'Candidatus Liberibacter asiaticus' (CLas) is one of the causal agents of citrus Huanglongbing (HLB), a bacterial disease of citrus trees that greatly reduces fruit yield and quality. CLas strains produce an array of currently uncharacterized Sec-dependent secretory proteins. In this study, the conserved chromosomally encoded protein CLIBASIA_03875 was identified as a novel Sec-dependent secreted protein. We show that CLIBASIA_03875 contains a putative Sec- secretion signal peptide (SP), a 29 amino acid residue located at the N-terminus, with a mature protein (m3875) of 22 amino acids found to localize in multiple subcellular components of the leaf epidermal cells of Nicotiana benthamiana. When overexpressed via a Potato virus X (PVX)-based expression vector in N. benthamiana, m3875 suppressed programmed cell death (PCD) and the H2O2 accumulation triggered by the pro-apoptotic mouse protein BAX and the Phytophthora infestans elicitin INF1. Overexpression also resulted in a phenotype of dwarfing, leaf deformation and mosaics, suggesting that m3875 has roles in plant immune response, growth, and development. Substitution mutagenesis of the charged amino acid (D7, R9, R11, and K22) with alanine within m3875 did not recover the phenotypes for PCD and normal growth. In addition, the transiently overexpressed m3875 regulated the transcriptional levels of N. benthamiana orthologs of CNGCs (cyclic nucleotide-gated channels), BI-1 (Bax-inhibitor 1), and WRKY33 that are involved in plant defense mechanisms. To our knowledge, m3875 is the first PCD suppressor identified from CLas. Studying the function of this protein provides insight as to how CLas attenuates the host immune responses to proliferate and cause Huanglongbing disease in citrus plants.


Assuntos
Proteínas de Bactérias/genética , Nicotiana/citologia , Rhizobiaceae/metabolismo , Apoptose , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Mutação , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , Sinais Direcionadores de Proteínas , Nicotiana/genética , Nicotiana/metabolismo , Transfecção
13.
Molecules ; 24(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783586

RESUMO

A disorder in pears that is known as 'hard-end' fruit affects the appearance, edible quality, and market value of pear fruit. RNA-Seq was carried out on the calyx end of 'Whangkeumbae' pear fruit with and without the hard-end symptom to explore the mechanism underlying the formation of hard-end. The results indicated that the genes in the phenylpropanoid pathway affecting lignification were up-regulated in hard-end fruit. An analysis of differentially expressed genes (DEGs) identified three NAC transcription factors, and RT-qPCR analysis of PpNAC138, PpNAC186, and PpNAC187 confirmed that PpNAC187 gene expression was correlated with the hard-end disorder in pear fruit. A transient increase in PpNAC187 was observed in the calyx end of 'Whangkeumbae' fruit when they began to exhibit hard-end symptom. Concomitantly, the higher level of PpCCR and PpCOMT transcripts was observed, which are the key genes in lignin biosynthesis. Notably, lignin content in the stem and leaf tissues of transgenic tobacco overexpressing PpNAC187 was significantly higher than in the control plants that were transformed with an empty vector. Furthermore, transgenic tobacco overexpressing PpNAC187 had a larger number of xylem vessel elements. The results of this study confirmed that PpNAC187 functions in inducing lignification in pear fruit during the development of the hard-end disorder.


Assuntos
Frutas/metabolismo , Lignina/biossíntese , Doenças das Plantas , Proteínas de Plantas/metabolismo , Pyrus/genética , Fatores de Transcrição/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dureza/fisiologia , Filogenia , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pyrus/metabolismo , RNA-Seq , Metabolismo Secundário , Nicotiana/genética , Nicotiana/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
14.
J Biol Chem ; 292(35): 14556-14565, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28710280

RESUMO

Urease is a ubiquitous nickel metalloenzyme. In plants, its activation requires three urease accessory proteins (UAPs), UreD, UreF, and UreG. In bacteria, the UAPs interact with urease and facilitate activation, which involves the channeling of two nickel ions into the active site. So far this process has not been investigated in eukaryotes. Using affinity pulldowns of Strep-tagged UAPs from Arabidopsis and rice transiently expressed in planta, we demonstrate that a urease-UreD-UreF-UreG complex exists in plants and show its stepwise assembly. UreG is crucial for nickel delivery because UreG-dependent urease activation in vitro was observed only with UreG obtained from nickel-sufficient plants. This activation competence could not be generated in vitro by incubation of UreG with nickel, bicarbonate, and GTP. Compared with their bacterial orthologs, plant UreGs possess an N-terminal extension containing a His- and Asp/Glu-rich hypervariable region followed by a highly conserved sequence comprising two potential HXH metal-binding sites. Complementing the ureG-1 mutant of Arabidopsis with N-terminal deletion variants of UreG demonstrated that the hypervariable region has a minor impact on activation efficiency, whereas the conserved region up to the first HXH motif is highly beneficial and up to the second HXH motif strictly required for activation. We also show that urease reaches its full activity several days after nickel becomes available in the leaves, indicating that urease activation is limited by nickel accessibility in vivo Our data uncover the crucial role of UreG for nickel delivery during eukaryotic urease activation, inciting further investigations of the details of this process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Modelos Moleculares , Níquel/metabolismo , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Urease/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/isolamento & purificação , Apoenzimas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Células Cultivadas , Células Clonais , Sequência Conservada , Ativação Enzimática , Deleção de Genes , Hidroponia , Mutação , Oryza/enzimologia , Oryza/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Urease/química , Urease/genética , Urease/isolamento & purificação
15.
Microbiology (Reading) ; 164(2): 113-121, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29297850

RESUMO

The chloroplast of Chlamydomonas reinhardtii and other microalgae represents an attractive new platform for the synthesis of recombinant therapeutics using synthetic biology (synbio) approaches. Transgenes can be designed in silico, assembled from validated DNA parts and inserted at precise and predetermined locations within the chloroplast genome to give stable synthesis of a desired recombinant protein. Numerous recent examples of different therapeutic proteins produced successfully in the C. reinhardtii chloroplast highlight the potential of this green alga as a simple, low-cost and benign host. Furthermore, some of the features of the alga may offer additional advantages over more-established microbial, mammalian or plant-based systems. These include efficient folding and accumulation of the product in the chloroplast; a lack of contaminating toxins or infectious agents; reduced downstream processing requirements; the possibility to make complex therapeutics such as immunotoxins; and the opportunity to use the whole alga as a low-cost oral vaccine. In this paper we review the current status of algal chloroplast engineering with respect to therapeutic proteins. We also consider future advances in synbio tools, together with improvements to recipient strains, which will allow the design of bespoke strains with high levels of productivity.


Assuntos
Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/biossíntese , Biologia Sintética , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Genoma de Cloroplastos/genética , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Biologia Sintética/tendências
16.
Plant Biotechnol J ; 16(2): 451-458, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28664596

RESUMO

Tissue-specific overexpression of useful genes, which we can design according to their cause-and-effect relationships, often gives valuable gain-of-function phenotypes. To develop genetic tools in woody biomass engineering, we produced a collection of Arabidopsis lines that possess chimeric genes of a promoter of an early xylem differentiation stage-specific gene, Arabidopsis Tracheary Element Differentiation-related 4 (AtTED4) and late xylem development-associated genes, many of which are uncharacterized. The AtTED4 promoter directed the expected expression of transgenes in developing vascular tissues from young to mature stage. Of T2 lines examined, 42%, 49% and 9% were judged as lines with the nonrepeat type insertion, the simple repeat type insertion and the other repeat type insertion of transgenes. In 174 T3 lines, overexpression lines were confirmed for 37 genes, whereas only cosuppression lines were produced for eight genes. The AtTED4 promoter activity was high enough to overexpress a wide range of genes over wild-type expression levels, even though the wild-type expression is much higher than AtTED4 expression for several genes. As a typical example, we investigated phenotypes of pAtTED4::At5g60490 plants, in which both overexpression and cosuppression lines were included. Overexpression but not cosuppression lines showed accelerated xylem development, suggesting the positive role of At5g60490 in xylem development. Taken together, this study provides valuable results about behaviours of various genes expressed under an early xylem-specific promoter and about usefulness of their lines as genetic tools in woody biomass engineering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Interferência de RNA , Xilema/citologia , Xilema/genética , Xilema/metabolismo
17.
Plant Cell Physiol ; 58(5): 893-903, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28371923

RESUMO

Meristems such as the shoot apical meristem and flower meristem (FM) act as a reservoir of stem cells, which reproduce themselves and supply daughter cells for the differentiation of lateral organs. In Oryza sativa (rice), the FLORAL ORGAN NUMBER2 (FON2) gene, which is similar to Arabidopsis CLAVATA3, is involved in meristem maintenance. In fon2 mutants, the numbers of floral organs are increased due to an enlargement of the FM. To identify new factors regulating meristem maintenance in rice, we performed a genetic screening of mutants that enhanced the fon2 mutation, and found a mutant line (2B-424) in which pistil number was dramatically increased. By using a map-based approach and next-generation sequencing, we found that the line 2B-424 had a complete loss-of-function mutation (a large deletion) in OsMADS3, a class C MADS-box gene that is known to be involved in stamen specification. Disruption of OsMADS3 in the fon2 mutant by CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9) technology caused a flower phenotype similar to that of 2B-424, confirming that the gene responsible for enhancement of fon2 was OsMADS3. Morphological analysis showed that the fon2 and osmads3 mutations synergistically affected pistil development and FM determinacy. We also found that whorl 3 was duplicated in mature flowers and the FM was enlarged at an early developmental stage in severe osmads3 single mutants. These findings suggest that OsMADS3 is involved not only in FM determinacy in late flower development but also in FM activity in early flower development.


Assuntos
Flores/citologia , Flores/metabolismo , Meristema/citologia , Meristema/metabolismo , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Meristema/genética , Mutação , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
18.
Plant Biotechnol J ; 15(4): 458-471, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27683092

RESUMO

Although a variety of transgenic plants that are tolerant to drought stress have been generated, many of these plants show growth retardation. To improve drought tolerance and plant growth, we applied a gene-stacking approach using two transcription factor genes: DEHYDRATION-RESPONSIVE ELEMENT-BINDING 1A (DREB1A) and rice PHYTOCHROME-INTERACTING FACTOR-LIKE 1 (OsPIL1). The overexpression of DREB1A has been reported to improve drought stress tolerance in various crops, although it also causes a severe dwarf phenotype. OsPIL1 is a rice homologue of Arabidopsis PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), and it enhances cell elongation by activating cell wall-related gene expression. We found that the OsPIL1 protein was more stable than PIF4 under light conditions in Arabidopsis protoplasts. Transactivation analyses revealed that DREB1A and OsPIL1 did not negatively affect each other's transcriptional activities. The transgenic plants overexpressing both OsPIL1 and DREB1A showed the improved drought stress tolerance similar to that of DREB1A overexpressors. Furthermore, double overexpressors showed the enhanced hypocotyl elongation and floral induction compared with the DREB1A overexpressors. Metabolome analyses indicated that compatible solutes, such as sugars and amino acids, accumulated in the double overexpressors, which was similar to the observations of the DREB1A overexpressors. Transcriptome analyses showed an increased expression of abiotic stress-inducible DREB1A downstream genes and cell elongation-related OsPIL1 downstream genes in the double overexpressors, which suggests that these two transcription factors function independently in the transgenic plants despite the trade-offs required to balance plant growth and stress tolerance. Our study provides a basis for plant genetic engineering designed to overcome growth retardation in drought-tolerant transgenic plants.


Assuntos
Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flores/citologia , Flores/genética , Flores/metabolismo , Oryza/citologia , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
19.
Plant Cell ; 26(12): 4875-88, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25538186

RESUMO

Two well-known pathways for the degradation of chloroplast proteins are via autophagy and senescence-associated vacuoles. Here, we describe a third pathway that was activated by senescence- and abiotic stress-induced expression of Arabidopsis thaliana CV (for chloroplast vesiculation). After targeting to the chloroplast, CV destabilized the chloroplast, inducing the formation of vesicles. CV-containing vesicles carrying stromal proteins, envelope membrane proteins, and thylakoid membrane proteins were released from the chloroplasts and mobilized to the vacuole for proteolysis. Overexpression of CV caused chloroplast degradation and premature leaf senescence, whereas silencing CV delayed chloroplast turnover and senescence induced by abiotic stress. Transgenic CV-silenced plants displayed enhanced tolerance to drought, salinity, and oxidative stress. Immunoprecipitation and bimolecular fluorescence complementation assays demonstrated that CV interacted with photosystem II subunit PsbO1 in vivo through a C-terminal domain that is highly conserved in the plant kingdom. Collectively, our work indicated that CV plays a crucial role in stress-induced chloroplast disruption and mediates a third pathway for chloroplast degradation. From a biotechnological perspective, silencing of CV offers a suitable strategy for the generation of transgenic crops with increased tolerance to abiotic stress.


Assuntos
Arabidopsis/metabolismo , Autofagia/fisiologia , Senescência Celular , Cloroplastos/metabolismo , Estresse Fisiológico , Vacúolos/fisiologia , Arabidopsis/citologia , Arabidopsis/fisiologia , Secas , Estresse Oxidativo , Plantas Geneticamente Modificadas/citologia , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia
20.
Proc Natl Acad Sci U S A ; 111(1): 533-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367097

RESUMO

Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/enzimologia , ATPases Translocadoras de Prótons/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Carbono/química , Dióxido de Carbono/química , Membrana Celular/metabolismo , Luz , Fenótipo , Fotossíntese , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Potássio/química , Regiões Promotoras Genéticas , ATPases Translocadoras de Prótons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA