Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(18): 7986-7997, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38657129

RESUMO

The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 µg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Retardadores de Chama , Compostos Organofosforados , Plastificantes , Retardadores de Chama/análise , Plastificantes/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , China , Compostos Organofosforados/análise , Monitoramento Ambiental , Humanos , Poluentes Atmosféricos/análise
2.
Anal Bioanal Chem ; 416(19): 4301-4313, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852120

RESUMO

Phthalate plasticizers (PAEs) illegally used in food pose a great threat to human health. A new and efficient sensing platform for the sensitive detection of the PAE residues in biological fluids needs to be designed and developed. Here, we report a simple and reliable surface-enhanced Raman spectroscopy (SERS) active platform with extralong hot spots of Au nanobipyramids@Ag nanorods (Au NBPs@Ag NRs) for the rapid and sensitive detection of PAEs in biological fluids. To achieve high activity, Au NBPs@Ag NRs with different shell lengths were fabricated by controlling the synthesis conditions, and the corresponding SERS properties were investigated by using crystal violet (CryV) and butyl benzyl phthalate (BBP). The experimental results showed that a longer shell length correlated to greater Raman activity, which was confirmed by finite-difference time-domain (FDTD) electromagnetic simulation. More importantly, the extralong hot spots of the Au NBPs@Ag NR SERS-active substrate showed excellent homogeneity and reproducibility for the CryV probe molecules (6.21%), and the detection limit was 10-9 M for both BBP and diethylhexyl phthalate (DEHP). Furthermore, through the standard addition method, an extralong hot spots SERS substrate could achieve highly sensitive detection of BBP and DEHP in serum and tears fluids, and the detection limit was as low as 3.52 × 10-8 M and 2.82 × 10-8 M. Therefore, the Au NBPs@Ag NR substrate with an extraordinarily long surface is efficient and versatile, and can potentially be used for high-efficiency sensing analysis in complex biological fluids.


Assuntos
Ouro , Limite de Detecção , Ácidos Ftálicos , Plastificantes , Prata , Análise Espectral Raman , Lágrimas , Análise Espectral Raman/métodos , Ácidos Ftálicos/análise , Plastificantes/análise , Humanos , Ouro/química , Prata/química , Lágrimas/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Nanotubos/química
3.
Environ Res ; 258: 119465, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908658

RESUMO

In the United States and abroad, ortho-phthalates and non-ortho-phthalate plasticizers continue to be used within a diverse array of consumer products. Prior California-specific biomonitoring programs for ortho-phthalates have focused on rural, agricultural communities and, to our knowledge, these programs have not measured the potential for exposure to non-ortho-phthalate plasticizers. Therefore, the potential for human exposure to ortho-phthalates and non-ortho-phthalate plasticizers have not been adequately addressed in regions of California that have higher population density. Since there are numerous sources of ortho-phthalates and non-ortho-phthalate plasticizers in population-dense, urban regions, the objective of this study was to leverage silicone wristbands to quantify aggregate ortho-phthalate and non-ortho-phthalate plasticizer exposure over a 5-day period across two different cohorts (2019 and 2020) of undergraduate students at the University of California, Riverside (UCR) that commute from all over Southern California. Based on 5 d of aggregate exposure across two different cohorts, total ortho-phthalate plus non-ortho-phthalate plasticizer concentrations ranged, on average, from ∼100,000-1,000,000 ng/g. Based on the distribution of individual ortho-phthalate and non-ortho-phthalate plasticizer concentrations, the concentrations of di-isononyl phthalate (DiNP, a high molecular weight ortho-phthalate), di (2-ethylhexyl) phthalate (DEHP, a high molecular weight ortho-phthalate), and di-2-ethylhexyl terephthalate (DEHT, a non-ortho-phthalate plasticizer) detected within wristbands were higher than the remaining seven ortho-phthalates and non-ortho-phthalate plasticizers measured, accounting for approximately 94-97% of the total mass depending on the cohort. Overall, our findings raise concerns about chronic DiNP, DEHP, and DEHT exposure in urban, population-dense regions throughout California.


Assuntos
Exposição Ambiental , Ácidos Ftálicos , Plastificantes , Humanos , Plastificantes/análise , California , Ácidos Ftálicos/análise , Exposição Ambiental/análise , Silicones/química , Poluentes Ambientais/análise , Feminino , Masculino , Adulto Jovem , Monitoramento Ambiental/métodos , Punho , Adulto
4.
Ecotoxicol Environ Saf ; 279: 116517, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805830

RESUMO

With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 µg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 µg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and µg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.


Assuntos
Monitoramento Ambiental , Água Doce , Ácidos Ftálicos , Plastificantes , Poluentes Químicos da Água , Qualidade da Água , Ácidos Ftálicos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas , Água Doce/química , Monitoramento Ambiental/métodos , Plastificantes/análise , Plastificantes/toxicidade , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Ésteres , China , Animais , Dibutilftalato/toxicidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-39168605

RESUMO

BACKGROUND: Plastic additives have adverse effects on human health. Children frequently use toys that contain various substances found in paints, plasticizers, and other materials, which heighten the risk of specific chemical exposure. Infants are particularly prone to chemical exposure through the "mouthing" behavior because of the possibility of placing toys in their mouths. Thus, this vulnerability should be considered during risk assessments of chemical exposure. METHODS: This study performed a comprehensive analysis of the chemical components in various 84 plastic toys including "designated toys" (toys that may be harmful to infant health if in contact with their mouths: Article 78 of the Enforcement Regulations of the Food Sanitation Law by the Minister of Health, Labor and Welfare) such as dolls, balls, blocks, bathing toys, toy vehicles, pacifiers, and household items, purchased in the Japanese market by nontargeted and targeted analysis. RESULTS: Plasticizers, flame retardants, and fragrances were the main compounds in almost all the toy products. The results showed that plastic products made in China tended to contain high levels of phthalate esters. In particular, hazardous plasticizers, such as diisodecyl, di-n-octyl, and diisononyl phthalates were detected above the regulatory limit (0.1%) in used products manufactured before regulations were passed in Japan. Furthermore, we detected alternative plasticizers, such as acetyl tributyl citrate (ATBC; 52%), diisononyl adipate (DINA; 50%), and di(2-ethylhexyl) terephthalate (DEHT; 40%). ATBC was detected at high concentrations in numerous toy products. Thus, infants with free access to indoor plastic toys might be exposed to these chemicals. CONCLUSIONS: This study observed that the chemical profiles of toy products were dependent on the year of manufacture. Furthermore, the detection of currently regulated plasticizers in secondhand products manufactured before regulations were enforced, along with the increasing trend of using alternative substances to regulated phthalate esters in products, suggests the potential exposure of infants to these plasticizers through the use of toys. Therefore, regular fact-finding surveys should continue to be conducted for the risk assessment and safety management of domestic toy products.


Assuntos
Plastificantes , Plásticos , Jogos e Brinquedos , Japão , Plastificantes/análise , Humanos , Plásticos/análise , Lactente , Retardadores de Chama/análise , Ácidos Ftálicos/análise
6.
Pediatr Res ; 94(5): 1609-1618, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37264138

RESUMO

BACKGROUND: Phthalates exposure might affect children's intelligence development. This study aimed to determine (1) whether sex and age affect cognitive function and (2) whether sex differences in cognitive performance are wider with higher phthalate concentrations. METHODS: Data were collected from PubMed (1998-2022), PROQUEST (1997-2022), and SpringerLink (1995-2022). The study followed the PRISMA process. The included articles were followed by PECO framework. The GRADE applied to assess the certainty of evidence. Of 2422 articles obtained, nine were selected using inclusion criteria. The random-effects model was used to estimate the pooled effects. RESULTS: Our meta-regression indicated a significant difference between sex differences with age at phthalate concentration assessment (ß = -0.25; 95% CI = -0.47, -0.03) and MEHP concentration (ß = -0.20; 95% CI = -0.37, -0.03). CONCLUSIONS: The limitation of the current article is it only provides information on intelligence level rather than other aspects of cognitive function. Thus, the sequelae of phthalate exposure on attention and executive function are still unclear. Our analysis shows significant difference between sex differences in cognitive function scores associated with age at phthalate concentration assessment. Girls might be more resilient in cognitive function at a younger age or during lower concentrations of phthalates metabolites. IMPACT: This is the first meta-analysis to evaluate the pooled estimates of sex differences in objective cognitive functions among children with phthalate exposure. The female might be a protective factor when exposed to toxic plasticizers while the concentration is low. This study captures the possible role of sex in cognitive functioning and plasticizer exposure through a meta-analysis of children's sex, cognitive scores, and plasticizer exposure.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Criança , Masculino , Feminino , Plastificantes/análise , Caracteres Sexuais , Cognição , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/análise , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade
7.
Vox Sang ; 118(7): 533-542, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37246454

RESUMO

BACKGROUND AND OBJECTIVES: Polyvinyl chloride (PVC) plasticized with di(2-ethylhexyl) phthalate (DEHP) is a widely used material for medical transfusion devices. Not covalently bound to PVC, DEHP can migrate into blood products during storage. Recognized as an endocrine disruptor and raising concerns about its potential carcinogenicity and reprotoxicity, DEHP is gradually being withdrawn from the medical device market. Therefore, the use of alternative plasticizers, such as diisononylcyclohexane-1,2-dicarboxylate (DINCH) and di(2-ethylhexyl) terephthalate (DEHT), as potential candidates for the replacement of DEHP in medical transfusion devices has been investigated. The purpose of this study was to evaluate the quantity of PVC-plasticizers in the blood components according to their preparation, storage conditions and in function of the plasticizer. MATERIALS AND METHODS: Whole blood was collected, and labile blood products (LBPs) were prepared by the buffy-coat method with a PVC blood bag plasticized either with DEHP, DINCH or DEHT. DINCH and DEHT equivalent concentrations were quantified in LBPs by liquid chromatography-tandem mass spectrometry or coupled with UV and compared to DEHP equivalent concentrations. RESULTS: The plasticizer equivalent concentration to which a patient is exposed during a transfusion depends on the preparation of LBPs as well as their storage conditions, that is, temperature and storage time. At day 1, for all LBPs, the migration of DEHP is 5.0 and 8.5 times greater than DINCH and DEHT, respectively. At the end of the 49 days storage period, the DEHP equivalent concentration in red blood cells concentrate is statistically higher when compared to DINCH and DEHT, with maximal values of 1.85, 1.13 and 0.86 µg/dm2 /mL, respectively. CONCLUSION: In addition to lower toxicity, transfused patients using PVC-DEHT or PVC-DINCH blood bags are less exposed to plasticizers than using PVC-DEHP bags with a ranging exposure reduction from 38.9% to 87.3%, due to lower leachability into blood components.


Assuntos
Preservação de Sangue , Ácidos Cicloexanocarboxílicos , Dietilexilftalato , Ácidos Ftálicos , Plastificantes , Humanos , Dietilexilftalato/análise , Plastificantes/análise , Cloreto de Polivinila/química , Preservação de Sangue/instrumentação , Preservação de Sangue/normas , Segurança do Sangue , Transfusão de Sangue/instrumentação , Transfusão de Sangue/normas , Ácidos Cicloexanocarboxílicos/análise , Cromatografia Líquida de Alta Pressão
8.
Environ Res ; 235: 116667, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453508

RESUMO

Phthalate esters (PAEs) due to their ability to leach from plastics, widely used in our daily life, are intensely accumulating in wastewater water treatment plants (WWTP) and rivers, before being exported to downstream situated estuarine systems. This study aimed to investigate the external sources of eight plasticizers to the largest European lagoon (the Curonian Lagoon, south-east Baltic Sea), focusing on their seasonal variation and transport behaviour through the partitioning between dissolved and particulate phases. The obtained results were later combined with hydrological inputs at the inlet and outlet of the lagoon to estimate system role in regulating the transport of pollutants to the sea. Plasticizers were detected during all sampling events with a total concentration ranging from 0.01 to 6.17 µg L-1. Di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAEs and was mainly found attached to particulate matter, highlighting the importance of this matrix in the transport of such contaminant. Dibutyl phthalate (DnBP) and diisobutyl phthalate (DiBP) were the other two dominant PAEs found in the area, mainly detected in dissolved phase. Meteorological conditions appeared to be an important factor regulating the distribution of PAEs in environment. During the river ice-covered season, PAEs concentration showed the highest value suggesting the importance of ice in the retention of PAEs. While heavy rainfall impacts the amount of water delivered to WWTP, there is an increase of PAEs concentration supporting the hypothesis of their transport via soil leaching and infiltration into wastewater networks. Rainfall could also be a direct source of PAEs to the lagoon resulting in net surplus export of PAEs to the Baltic Sea.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Plastificantes/análise , Estações do Ano , Águas Residuárias , Gelo , Ésteres , China
9.
Environ Res ; 236(Pt 2): 116712, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482128

RESUMO

Due to adverse health effects, di-(2-ethylhexyl) phthalate (DEHP), a plasticizer used to soften plastic medical devices (PMDs), was restricted, and gradually replaced by alternative plasticizers (APs). Up to this date, urine was the sole matrix studied for plasticizer exposure in neonates hospitalized in the neonatal intensive care unit (NICU), a population highly vulnerable to toxic effects of plasticizers. The primary aim of this study was to assess simultaneous measurement of phthalate and AP metabolites in neonatal scalp hair. In addition, we aimed to use this matrix to investigate exposure of premature neonates to plasticizers during their stay in the NICU. Hair samples in this study were collected from premature neonates and their mothers included in a prospective birth cohort study in a tertiary NICU at the Antwerp University Hospital (UZA), Belgium. Samples from premature neonates (n = 45) and their mothers (n = 107) as well as from control neonates (n = 24) and mothers (n = 29) were analyzed using liquid-chromatography coupled to tandem mass spectrometry. This is the first study reporting metabolites of phthalate and alternative plasticizers in neonatal hair samples as biomarkers for exposure to these plasticizers. Results showed that hair sampled from premature neonates after a NICU stay contained significantly higher metabolite concentrations of both phthalates (DEHP, DiBP, and DnBP; 9.0-2500, 9.3-2200, and 24.7-5300 ng/g), and alternative plasticizers (DEHA, DEHT, and TOTM; 38.8-3400, 127.5-5700, and 10.8-8700 ng/g) - when compared to healthy control neonates. Besides, DEHP and DEHT metabolite concentrations were significantly higher than in hair sampled from adult populations. In addition, prolonged NICU exposure to non-invasive respiratory support devices and gastric tubes was correlated with increased concentrations in hair samples, indicating accumulation of plasticizers in this alternative matrix. In conclusion, our data indicate that preterm neonates are still highly exposed to phthalate and alternative plasticizers during NICU stay, despite the EU Medical Devices Regulation.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Recém-Nascido , Adulto , Humanos , Plastificantes/análise , Unidades de Terapia Intensiva Neonatal , Estudos Prospectivos , Estudos de Coortes , Cabelo/química , Exposição Ambiental/análise
10.
Chem Biodivers ; 20(9): e202300903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37505806

RESUMO

Many plants have been known to be contaminated and accumulate plasticizers from the environment, including water sources, soil, and atmosphere. Plasticizers are used to confer elasticity and flexibility to various fiber and plastic products. Consumption of plasticizers can lead to many adverse effects on human health, including reproductive and developmental toxicity, endocrine disruption, and cancer. Herein, we report for the first time that two plasticizers, bis(2-ethylhexyl) terephthalate (DEHT) and bis(2-ethylhexyl) phthalate (DEHP), have been isolated from the leaves of Capparis spinosa L. (the caper bush), a plant that is widely used in food seasonings and traditional medicine. 297 mg/kg of DEHT and 48 mg/kg of DEHP were isolated from dried and grounded C. spinosa L. leaves using column chromatography and semi-preparative high-performance liquid chromatography. Our study adds to the increase in the detection of plasticizers in our food and medicinal plants and to the alarming concern about their potential adverse effects on human health.


Assuntos
Capparis , Dietilexilftalato , Humanos , Plastificantes/toxicidade , Plastificantes/análise , Dietilexilftalato/toxicidade , Dietilexilftalato/análise , Plantas , Folhas de Planta/química
11.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446766

RESUMO

In the process of production, processing, transportation, and storage of edible oils, the oils inevitably come into contact with plastic products. As a result, plasticizers migrate into edible oils, are harmful to human health, and can exhibit reproductive toxicity. Therefore, the determination of plasticizers in edible oils is very important, and a series of sample preparation methods and determination techniques have been developed for the determination of plasticizers in edible oils. Phthalic acid ester (PAE) plasticizers are the most widely used among all plasticizers. This review aims to provide a comprehensive overview of the sample preparation methods and detection techniques reported for the determination of PAEs in edible oils since 2010, focusing on sample preparation methods of edible oils combined with various separation-based analytical techniques, such as gas chromatography (GC) and liquid chromatography (LC) with different detectors. Furthermore, the advantages, disadvantages, and limitations of these techniques as well as the prospective future developments are also discussed.


Assuntos
Ácidos Ftálicos , Plastificantes , Humanos , Plastificantes/análise , Ácidos Ftálicos/análise , Óleos de Plantas/química , Ésteres/análise
12.
Compr Rev Food Sci Food Saf ; 22(3): 2043-2080, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988015

RESUMO

This systematic review aimed to investigate the occurrence of phthalates (phthalic acid esters [PAEs]) in different food matrices, as well as report the main sources of PAEs in food, the potential risks to the population, and the factors that influence its migration from food contact materials (FCMs) to food. Nineteen PAEs were identified, including di-(2-ehtylhexyl) phthalate (DEHP), dibutyl-phthalate (DBP), benzylbutyl phthalate (BBP), diisononyl phthalate (DINP), and diisodecyl phthalate (DIDP) in fruits and vegetables, milk and dairy products, cereals, meat, fish, fat and oils, snacks, condiments and sauces, miscellaneous, and baby food. Fifty-seven values of PAEs were above the legal limits of countries. DEHP is the PAE with the highest incidence, with maximum concentrations above the specific migration limit (SML) for milk and dairy products, oils and fats, fish, cereals, condiments and sauces, meat, and fruits and vegetables. The risk of exceeding the tolerable daily intake (TDI) was high for DEHP and DBP in fish, fat and oils, cereals, and milk and dairy products for children and adults. Fat and oils are the most critical food for DEHP, DBP, BBP, and DINP. Comparing the estimated daily intake (EDI) with the TDI, there was a risk for "milk and dairy products" in adults and for "cereal and cereal products" in children concerning DEHP. "Cereal and cereal products" presented a risk in children and adults concerning DBP. The "fat and oils" category presented a risk in children and adults about DBP and DINP. Temperature, contact time between food and the FCM, fat percent, and acidity positively correlate with the PAE's migration. The contamination occurs in many steps of the production chain.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Animais , Plastificantes/análise , Ácidos Ftálicos/análise , Dibutilftalato , Verduras , Óleos
13.
Anal Chem ; 94(40): 13777-13784, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36169133

RESUMO

Chlorinated paraffins (CPs) are complex mixtures consisting of various C homologues (nC ≈ 10-30) and Cl homologues (nCl ≈ 2-20). Technical CP mixtures are produced on a large scale (>106 t/y) and are widely used such as plasticizers in plastic and coolants in metalwork. Since 2017, short-chain CPs (C10-C13) are classified as persistent organic pollutants (POPs) by the Stockholm Convention but longer-chain CPs are not regulated. Analysis of technical CP mixtures is challenging because they consist of hundreds of homologues and millions of constitutional isomers and stereoisomers. Furthermore, such mixtures can also contain byproducts and transformation products such as chlorinated olefins (COs). We applied a liquid-chromatography method coupled to an atmospheric pressure chemical ionization technique with a high-resolution mass detector (LC-APCI-Orbitrap-MS) to study CP and CO homologues in two plastic materials. Respective mass spectra can contain up to 23,000 signals from 1320 different C-Cl homologue classes. The R-based automated spectra evaluation routine (RASER) was developed to efficiently search for characteristic ions in these complex mass spectra. With it, the time needed to evaluate such spectra was reduced from weeks to hours, compared to manual data evaluation. Unique sets of homologue distributions could be obtained from the two plastic materials. CPs were found together with their transformation products, the chlorinated mono-olefins (COs), di-olefins (CdiOs), and tri-olefins (CtriOs) in both plastic materials. Based on these examples, it can be shown that RASER is an efficient and selective tool for evaluating high-resolution mass spectra of CP mixtures containing hundreds of homologues.


Assuntos
Hidrocarbonetos Clorados , Parafina , Alcenos/análise , China , Misturas Complexas/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/análise , Parafina/análise , Parafina/química , Poluentes Orgânicos Persistentes , Plastificantes/análise , Plásticos
14.
Crit Rev Food Sci Nutr ; 62(19): 5224-5244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33563047

RESUMO

Edible and highly demanded plant-derived products such as herbs, spices, and tea may be subjected to exogenous contamination of well-known chemical hazards such as persistent organic pollutants (POPs), and emerging ones such as plasticizers, affecting negatively the safety of these food commodities. This fact has led to the increasing analysis of exogenous compounds including priority POPs such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs), as well as highly persistent polycyclic aromatic hydrocarbons (PAHs). Currently, plasticizer residues are also considered an emerging issue because of the extensive use in food packaging and potential migration into foodstuffs. In this review, the studies published from 2010 to 2020 were discussed, including the main extraction methods applied for these contaminants from herbs, spices, and tea, and it was revealed the trend toward the use of less solvent-consuming and time-effective methods. Chromatographic methods were also described, which were mainly combined with detection techniques such as classical or mass spectrometry (MS) detection. Finally, a comprehensive overview of the occurrence of these selected exogenous compounds was presented in the studied matrices, showing that their monitoring should be further investigated to ensure food safety of highly consumed condiments and tea.


Assuntos
Bifenilos Policlorados , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Dibenzofuranos/análise , Dibenzofuranos Policlorados/análise , Monitoramento Ambiental/métodos , Poluentes Orgânicos Persistentes , Plastificantes/análise , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Especiarias/análise , Chá
15.
Environ Res ; 210: 112983, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35192803

RESUMO

A novel analytical method for the monitoring of four newly identified plasticizers, namely di-propylene glycol dibenzoate (DiPGDB), tri-n-butyl trimellitate (TBTM), isooctyl 2-phenoxyethyl terephthalate (IOPhET) and bis 3,5,5-trimethylhexyl phosphate (TMHPh), in handwipes based on pulverization was developed and in-house validated. In total, 164 handwipe samples (paired with house dust and human urine) were collected during winter (n = 82) and summer (n = 82) 2019 from adults and toddlers living in Flanders, Belgium. Method LOQs ranged from 1 to 200 ng/g. The ranges of Σplasticizers were 70-5400 ng/g for winter and 70-3720 ng/g for summer. The detection frequencies were 39% for DiPGDB, 27% for TBTM and <5% for IOPhET and TMHPh in winter samples and 33% for DiPGDB, 21% for TBTM and <10% for IOPhET and TMHPh in summer ones. The dominant compound in handwipes was DiPGDB, with mean contributions of 74% and 83% for winter and summer, followed by TBTM (24% and 9.2%), TMHPh (1.8% and 8.1%) and IOPhET (<1% and <1%). Σplasticizers concentrations were positively correlated in summer with the use of sanitizer (r = 0.375, p < 0.05) and negatively correlated in winter with the use of personal care products (r = -0.349, p < 0.05). DiPGDB was found positively correlated with the age of the participants (r = 0.363, p < 0.05) and the time spent indoors (r = 0.359, p < 0.05), indicating indoor environment as a potential source. Levels of TBTM in handwipes were positively correlated with dust samples collected from the same households (r = 0.597, p < 0.05), and those detected in toddler handwipes were significantly higher compared to adults (p < 0.05). Human daily exposure via dermal absorption was evaluated using the dermal derived no effects level values (DNEL), available in the database of the European Chemicals Agency (ECHA) and estimated using the theoretical bio-accessible fractions per compound. Toddler exposure to TBTM was significantly higher compared to adults (T-test, p < 0.05). No risk for adverse human health effects was derived from the comparison with DNELs for all compounds.


Assuntos
Poluição do Ar em Ambientes Fechados , Plastificantes , Adulto , Poluição do Ar em Ambientes Fechados/análise , Bélgica , Poeira/análise , Exposição Ambiental , Humanos , Organofosfatos , Plastificantes/análise
16.
Environ Res ; 214(Pt 2): 113927, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35868575

RESUMO

Phthalates are widely used as plasticizers. Laboratory-based mechanistic and epidemiological studies suggest that phthalates are detrimental to human health. Here, we present prospective analyses on phthalate exposure and all-cause, as well as cause-specific, mortality from the National Health and Nutrition Examination Survey (NHANES), a population-based cohort. Between 1999 and 2018, urinary concentrations of 12 phthalate metabolites were measured by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry in spot urine samples of 10,881 adults aged 40-85 years, of which 2382 died over a median duration of 8.9 years after sample provision. Multivariable Cox regression analyses adjusted for a wide range of lifestyle factors and comorbidities showed that higher concentrations of mono-benzyl phthalate (MBzP) and Mono-n-butyl phthalate (MnBP) were associated with increased mortality. The hazard ratios for participants in the highest quartiles of MBzP and MnBP concentrations were at 1.27 [95% confidence interval: 1.08, 1.49; p linear trend = 0.002] and 1.35 [1.13, 1.62; p linear trend = 0.005). These findings reinforce the need for monitoring of phthalate exposure in relation to health outcomes.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Adulto , Exposição Ambiental/análise , Poluentes Ambientais/urina , Humanos , Inquéritos Nutricionais , Ácidos Ftálicos/urina , Plastificantes/análise , Estudos Prospectivos
17.
Indoor Air ; 32(7): e13071, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35904395

RESUMO

Settled house dust (SHD) is a reservoir for various contaminants, including endocrine-disrupting chemicals (EDCs), trace metals, and house dust mite allergens. This study aimed to characterize various chemical and biological contaminants in SHD and identify determinants governing the indoor contaminants. In total, 106 SHD samples were collected from 106 houses in Seoul and Gyeonggi Province, Korea, in 2021. Bedding dust samples were collected from 30 of these 106 houses. All participants completed a questionnaire comprised of housing and lifestyle-related factors. The samples were analyzed for 18 organophosphate flame retardants (OPFRs), 16 phthalates, five alternative plasticizers (APs), seven trace metals, and two house dust mite allergens (Dermatophagoides farinae type 1 [Der f1] and Dermatophagoides pteronyssinus type 1 [Der p1]). A multiple regression analysis was conducted to identify the determinants governing the concentrations and profiles of various contaminants. OPFRs, phthalates, APs, and trace metals were detected in all SHD samples, indicating ubiquitous contamination in indoor environments. Among the three EDC groups, APs were detected at the highest concentrations (geometric mean [GM] (geometric standard deviation, [GSD]): 1452 (1.6) µg/g in total), followed by phthalates (GM (GSD): 676 (1.4) µg/g in total) and OPFRs (GM (GSD): 10 (1.4) µg/g in total). Der f1 was detected in all bedding dust samples with significantly higher levels than Der p1 (GM (GSD): 0.1 (1.8) µg/g vs. 1.4 × 10-3 (2.3) µg/g). The concentrations of OPFRs, plasticizers, and trace metals in SHD were significantly associated with the type and number of electronic appliances and combustion activities. Der f1 was significantly associated with the number of occupants and water penetration. Ventilation, vacuum cleaning, and wet cleaning or dry mopping significantly reduced the levels of most contaminants in SHD. As residents are persistently exposed to a wide array of pollutants, comprehensive and adequate measures are required to prevent potential exposures.


Assuntos
Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Poluição do Ar em Ambientes Fechados/análise , Alérgenos/análise , Animais , Antígenos de Dermatophagoides/análise , Poeira/análise , Retardadores de Chama/análise , Humanos , Organofosfatos/análise , Plastificantes/análise , Pyroglyphidae
18.
Ecotoxicol Environ Saf ; 241: 113742, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679726

RESUMO

The application of plastic mulch films brings convenience to agricultural production, but also causes plastic waste that can be degraded into microplastics (MPs). However, little is known about the fate of plastic waste in agricultural ecosystem under freeze-thaw alternation in middle and high latitudes, as well as in highlands around the world. Whether the release of plasticizers, i.e. phthalate esters (PAEs), under such conditions would pose a potential risk to exposed organisms due to bioaccumulation is also unknown. To fill these data gaps, the agricultural fields in Liaoning of China with typical freeze-thaw alternation was selected as the study area. The transformation of plastic film was demonstrated by simulation freeze-thaw alternating from -30 to 20 â„ƒ. Soil samples were collected to investigate the patterns of MP composition, abundance, and distribution. Concurrently, the concentrations of two PAEs including bis(2-ethylhexyl) phthalate (DEHP) and diethyl phthalate (DEP) in soils were analyzed to provide information on the correlation between MPs abundance and PAEs concentrations as well as potential risks. The results showed that freeze-thaw alternating can accelerate the formation of MPs and release of PAEs from plastic waste. The abundance of MPs was positively correlated with the concentration of PAEs. Soil PAEs ranged from 3268 ± 213-6351 ± 110 µg/kg, indicating that over 40 % of the PAEs were transferred from plastic films to soils. Such residual amounts could pose risk for exposed organisms. Hence, the current study suggested that special concerns should be given to the release plasticizers in plastic waste of agricultural soils.


Assuntos
Ácidos Ftálicos , Poluentes do Solo , China , Dibutilftalato , Ecossistema , Ésteres , Plastificantes/análise , Plásticos , Solo , Poluentes do Solo/análise
19.
Ecotoxicol Environ Saf ; 242: 113909, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35999756

RESUMO

Phthalates (PAEs) are widely used plasticizers drawing increasing concern due to reproductive toxicity. However, studies on serum PAEs metabolites (mPAEs) and their associations with human ovarian function remain very scarce. In this study, from April 2019 to August 2020, a total of 297 women of childbearing age were recruited in Tianjin, China. Eleven mPAEs were analyzed in serum samples and eight mPAEs were detected at frequencies > 65% with median concentrations of 0.43-15.3 ng/mL. In multinomial logistic analysis, an increase in serum mono (2-isobutyl) phthalate (miBP) was associated with decline in antral follicle count (AFC) (OR=1.26, 95% CI: 0.99, 1.61) and 5-mono-(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP) was significantly associated with AFC increase (OR=1.43, 95% CI: 1.06, 1.92), which were aligned with the associations found between mPAEs and AMH through generalized linear regression. In multiple linear regression models, per 10% increase in serum mono (2-ethylhexyl) phthalate (mEHP), mono (2-ethyl-5-oxohexyl) phthalate (mEOHP) (oxo-mEHP), and principal component 1 featured for high concentrations of mono-n-butyl phthalate (mBP), miBP and mEHP were associated with 0.15 (95% CI: -0.29, -0.02), 0.01 (95% CI: -0.01, 0.00) and 0.01 (95% CI: -0.02, 0.00) ln-unit decrease in estradiol (E2) levels, respectively, while mono-[(2-carboxymethyl) hexyl] phthalate (mCMHP) (carboxymethyl-mEHP) was positively associated with 0.05 ln-unit increase of E2 (95% CI: 0.02, 0.08). The observed negative associations between mPAEs and the Anti-Müllerian hormone (AMH) also aligned with the change in AFC. Generalized linear regression also revealed nonlinear associations between mono-ethyl phthalate (mEP), mCMHP and follicle-stimulating hormone (FSH). Overall, serum mEHP and its metabolites were negatively associated with E2. miBP was negatively associated with AFC. The nonlinear associations between mPAEs and FSH, and AMH need further study.


Assuntos
Poluentes Ambientais , Reserva Ovariana , Ácidos Ftálicos , Biomarcadores , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Ambientais/análise , Feminino , Hormônio Foliculoestimulante , Humanos , Ácidos Ftálicos/metabolismo , Plastificantes/análise
20.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807230

RESUMO

The concentration levels of thirteen organic pollutants and selected heavy metals were investigated in 40 plastics bottled and tap water samples. Some of the selected contaminants have an ascertained or suspected endocrine disrupting activity, such as Bisphenol A (BPA) and its analogs, and Bis 2-ethylhexyl phthalate (DEHP), which are used by industries as plasticizers. The most frequently detected pollutants were Bisphenol AF (BPAF) (detection frequency (DF) = 67.5%, mean 387.21 ng L-1), DEHP (DF = 62.5%, mean 46.19 µg L-1) and BPA (DF = 60.0%, mean 458.57 ng L-1), with higher concentration levels found in tap waters. Furthermore, a possible level of exposure to thirteen pollutants via drinking water intake was calculated. Our findings show that, even though the occurrence of contaminants and heavy metals in drinking waters does not pose an immediate, acute health risk for the population, their levels should be constantly monitored and "hard-wired" into everyday practice. Indeed, the health impact to the continuous and simultaneous intake of a huge variety of xenobiotics from various sources by humans is complex and still not fully understood.


Assuntos
Dietilexilftalato , Água Potável , Disruptores Endócrinos , Poluentes Ambientais , Poluentes Químicos da Água , Compostos Benzidrílicos/análise , Dietilexilftalato/análise , Disruptores Endócrinos/análise , Humanos , Plastificantes/análise , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA