Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(2): 214-224, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27992402

RESUMO

The signaling adaptor MAVS forms prion-like aggregates to activate an innate antiviral immune response after viral infection. However, the molecular mechanisms that regulate MAVS aggregation are poorly understood. Here we identified TRIM31, an E3 ubiquitin ligase of the TRIM family of proteins, as a regulator of MAVS aggregation. TRIM31 was recruited to mitochondria after viral infection and specifically regulated antiviral signaling mediated by RLR pattern-recognition receptors. TRIM31-deficient mice were more susceptible to infection with RNA virus than were wild-type mice. TRIM31 interacted with MAVS and catalyzed the Lys63 (K63)-linked polyubiquitination of Lys10, Lys311 and Lys461 on MAVS. This modification promoted the formation of prion-like aggregates of MAVS after viral infection. Our findings reveal new insights in the molecular regulation of MAVS aggregation and the cellular antiviral response through TRIM31-mediated K63-linked polyubiquitination of MAVS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Macrófagos/fisiologia , Proteínas Nucleares/metabolismo , Príons/imunologia , Viroses/imunologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Imunidade Inata/genética , Lisina/genética , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Agregação de Receptores/genética , Transdução de Sinais/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação/genética
2.
Semin Cell Dev Biol ; 99: 115-130, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31818518

RESUMO

Prion-like behaviour is an abrupt process, an "all-or-nothing" transition between a monomeric species and an "infinite" fibrillated form. Once a nucleation point is formed, the process is unstoppable as fibrils self-propagate by recruiting and converting all monomers into the amyloid fold. After the "mad cow" episode, prion diseases have made the headlines, but more and more prion-like behaviours have emerged in neurodegenerative diseases, where formation of fibrils and large conglomerates of proteins deeply disrupt the cell homeostasis. More interestingly, in the last decade, examples emerged to suggest that prion-like conversion can be used as a positive gain of function, for memory storage or structural scaffolding. More recent experiments show that we are only seeing the tip of the iceberg and that, for example, prion-like amplification is found in many pathways of the immune response. In innate immunity, receptors on the cellular surface or within the cells 'sense' danger and propagate this information as signal, through protein-protein interactions (PPIs) between 'receptor', 'adaptor' and 'effector' proteins. In innate immunity, the smallest signal of a foreign element or pathogen needs to trigger a macroscopic signal output, and it was found that adaptor polymerize to create an extreme signal amplification. Interestingly, our body uses multiple structural motifs to create large signalling platform; a few innate proteins use amyloid scaffolds but most of the polymers discovered are composed by self-assembly in helical filaments. Some of these helical assemblies even have intercellular "contamination" in a "true" prion action, as demonstrated for ASC specks and MyD88 filaments. Here, we will describe the current knowledge in neurodegenerative diseases and innate immunity and show how these two very different fields can cross-seed discoveries.


Assuntos
Saúde , Imunidade Inata/imunologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Príons/imunologia , Príons/metabolismo , Animais , Humanos
3.
Curr Genet ; 67(6): 833-847, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34319422

RESUMO

The yeast prions (infectious proteins) [URE3] and [PSI+] are essentially non-functional (or even toxic) amyloid forms of Ure2p and Sup35p, whose normal function is in nitrogen catabolite repression and translation termination, respectively. Yeast has an array of systems working in normal cells that largely block infection with prions, block most prion formation, cure most nascent prions and mitigate the toxic effects of those prions that escape the first three types of systems. Here we review recent progress in defining these anti-prion systems, how they work and how they are regulated. Polymorphisms of the prion domains partially block infection with prions. Ribosome-associated chaperones ensure proper folding of nascent proteins, thus reducing [PSI+] prion formation and curing many [PSI+] variants that do form. Btn2p is a sequestering protein which gathers [URE3] amyloid filaments to one place in the cells so that the prion is often lost by progeny cells. Proteasome impairment produces massive overexpression of Btn2p and paralog Cur1p, resulting in [URE3] curing. Inversely, increased proteasome activity, by derepression of proteasome component gene transcription or by 60S ribosomal subunit gene mutation, prevents prion curing by Btn2p or Cur1p. The nonsense-mediated decay proteins (Upf1,2,3) cure many nascent [PSI+] variants by associating with Sup35p directly. Normal levels of the disaggregating chaperone Hsp104 can also cure many [PSI+] prion variants. By keeping the cellular levels of certain inositol polyphosphates / pyrophosphates low, Siw14p cures certain [PSI+] variants. It is hoped that exploration of the yeast innate immunity to prions will lead to discovery of similar systems in humans.


Assuntos
Resistência à Doença/imunologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Doenças Priônicas/etiologia , Príons/imunologia , Amiloide/química , Amiloide/imunologia , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/imunologia , Proteínas Amiloidogênicas/metabolismo , Animais , Autofagia , Suscetibilidade a Doenças/imunologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Chaperonas Moleculares/metabolismo , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Doenças Priônicas/metabolismo , Príons/química , Príons/genética , Príons/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ribossomos/metabolismo
4.
PLoS Pathog ; 14(10): e1007335, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273408

RESUMO

Antibodies to the prion protein, PrP, represent a promising therapeutic approach against prion diseases but the neurotoxicity of certain anti-PrP antibodies has caused concern. Here we describe scPOM-bi, a bispecific antibody designed to function as a molecular prion tweezer. scPOM-bi combines the complementarity-determining regions of the neurotoxic antibody POM1 and the neuroprotective POM2, which bind the globular domain (GD) and flexible tail (FT) respectively. We found that scPOM-bi confers protection to prion-infected organotypic cerebellar slices even when prion pathology is already conspicuous. Moreover, scPOM-bi prevents the formation of soluble oligomers that correlate with neurotoxic PrP species. Simultaneous targeting of both GD and FT was more effective than concomitant treatment with the individual molecules or targeting the tail alone, possibly by preventing the GD from entering a toxic-prone state. We conclude that simultaneous binding of the GD and flexible tail of PrP results in strong protection from prion neurotoxicity and may represent a promising strategy for anti-prion immunotherapy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Cerebelo/imunologia , Imunoterapia , Doenças Priônicas/terapia , Proteínas Priônicas/imunologia , Príons/toxicidade , Animais , Anticorpos Biespecíficos/imunologia , Células Cultivadas , Regiões Determinantes de Complementaridade/imunologia , Camundongos , Camundongos Transgênicos , Doenças Priônicas/imunologia , Príons/imunologia
5.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023255

RESUMO

Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.


Assuntos
Encéfalo/imunologia , Sistema Imunitário/imunologia , Doenças Priônicas/imunologia , Príons/imunologia , Envelhecimento/imunologia , Envelhecimento/patologia , Encéfalo/metabolismo , Suscetibilidade a Doenças , Humanos , Sistema Imunitário/metabolismo , Imunomodulação/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Príons/genética
6.
J Immunol ; 199(11): 3821-3827, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070671

RESUMO

Several complement proteins exacerbate prion disease, including C3, C1q, and CD21/35. These proteins of the complement cascade likely increase uptake, trafficking, and retention of prions in the lymphoreticular system, hallmark sites of early prion propagation. Complement regulatory protein factor H (fH) binds modified host proteins and lipids to prevent C3b deposition and, thus, autoimmune cell lysis. Previous reports show that fH binds various conformations of the cellular prion protein, leading us to question the role of fH in prion disease. In this article, we report that transgenic mice lacking Cfh alleles exhibit delayed peripheral prion accumulation, replication, and pathogenesis and onset of terminal disease in a gene-dose manner. We also report a biophysical interaction between purified fH and prion rods enriched from prion-diseased brain. fH also influences prion deposition in brains of infected mice. We conclude from these data and previous findings that the interplay between complement and prions likely involves a complex balance of prion sequestration and destruction via local tissue macrophages, prion trafficking by B and dendritic cells within the lymphoreticular system, intranodal prion replication by B and follicular dendritic cells, and potential prion strain selection by CD21/35 and fH. These findings reveal a novel role for complement-regulatory proteins in prion disease.


Assuntos
Linfócitos B/imunologia , Encéfalo/metabolismo , Fator H do Complemento/metabolismo , Células Dendríticas/imunologia , Macrófagos/imunologia , Doenças Priônicas/imunologia , Príons/imunologia , Animais , Encéfalo/patologia , Células Cultivadas , Fator H do Complemento/genética , Inativadores do Complemento , Via Alternativa do Complemento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Priônicas/genética , Ligação Proteica
7.
Nature ; 501(7465): 102-6, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23903654

RESUMO

Prion infections cause lethal neurodegeneration. This process requires the cellular prion protein (PrP(C); ref. 1), which contains a globular domain hinged to a long amino-proximal flexible tail. Here we describe rapid neurotoxicity in mice and cerebellar organotypic cultured slices exposed to ligands targeting the α1 and α3 helices of the PrP(C) globular domain. Ligands included seven distinct monoclonal antibodies, monovalent Fab1 fragments and recombinant single-chain variable fragment miniantibodies. Similar to prion infections, the toxicity of globular domain ligands required neuronal PrP(C), was exacerbated by PrP(C) overexpression, was associated with calpain activation and was antagonized by calpain inhibitors. Neurodegeneration was accompanied by a burst of reactive oxygen species, and was suppressed by antioxidants. Furthermore, genetic ablation of the superoxide-producing enzyme NOX2 (also known as CYBB) protected mice from globular domain ligand toxicity. We also found that neurotoxicity was prevented by deletions of the octapeptide repeats within the flexible tail. These deletions did not appreciably compromise globular domain antibody binding, suggesting that the flexible tail is required to transmit toxic signals that originate from the globular domain and trigger oxidative stress and calpain activation. Supporting this view, various octapeptide ligands were not only innocuous to both cerebellar organotypic cultured slices and mice, but also prevented the toxicity of globular domain ligands while not interfering with their binding. We conclude that PrP(C) consists of two functionally distinct modules, with the globular domain and the flexible tail exerting regulatory and executive functions, respectively. Octapeptide ligands also prolonged the life of mice expressing the toxic PrP(C) mutant, PrP(Δ94-134), indicating that the flexible tail mediates toxicity in two distinct PrP(C)-related conditions. Flexible tail-mediated toxicity may conceivably play a role in further prion pathologies, such as familial Creutzfeldt-Jakob disease in humans bearing supernumerary octapeptides.


Assuntos
Anticorpos/imunologia , Anticorpos/toxicidade , Maleabilidade , Príons/química , Príons/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/toxicidade , Sítios de Ligação de Anticorpos , Calpaína/metabolismo , Cerebelo , Síndrome de Creutzfeldt-Jakob/metabolismo , Reagentes de Ligações Cruzadas , Mapeamento de Epitopos , Feminino , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/toxicidade , Técnicas In Vitro , Ligantes , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/imunologia , Príons/genética , Espécies Reativas de Oxigênio/metabolismo , Deleção de Sequência/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/toxicidade
8.
Glia ; 64(6): 937-51, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26880394

RESUMO

Prion diseases are progressive neurodegenerative disorders affecting humans and various mammals. The prominent neuropathological change in prion diseases is neuroinflammation characterized by activation of neuroglia surrounding prion deposition. The cause and effect of this cellular response, however, is unclear. We investigated innate immune defenses against prion infection using primary mixed neuronal and glial cultures. Conditional prion propagation occurred in glial cultures depending on their immune status. Preconditioning of the cells with the toll-like receptor (TLR) ligand, lipopolysaccharide, resulted in a reduction in prion propagation, whereas suppression of the immune responses with the synthetic glucocorticoid, dexamethasone, increased prion propagation. In response to recombinant prion fibrils, glial cells up-regulated TLRs (TLR1 and TLR2) expression and secreted cytokines (tumor necrosis factor-α, interleukin-1ß, interleukin-6, granulocyte-macrophage colony-stimulating factor, and interferon-ß). Preconditioning of neuronal and glial cultures with recombinant prion fibrils inhibited prion replication and altered microglial and astrocytic populations. Our results provide evidence that, in early stages of prion infection, glial cells respond to prion infection through TLR-mediated innate immunity.


Assuntos
Imunidade Inata/imunologia , Neuroglia/metabolismo , Príons/metabolismo , Receptores Toll-Like/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Neuroglia/imunologia , Príons/imunologia , Fator de Necrose Tumoral alfa/metabolismo
9.
J Virol ; 89(18): 9532-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26157121

RESUMO

UNLABELLED: Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE: Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal GALT are the essential early sites of prion accumulation. Furthermore, congruent infection with a large intestinal helminth (worm) around the time of oral prion exposure did not affect disease pathogenesis. This is important for our understanding of the factors that influence the risk of prion infection and the preclinical diagnosis of disease. The detection of prions within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, our data suggest that using these biopsy specimens may miss individuals in the early stages of oral prion infection and significantly underestimate the disease prevalence.


Assuntos
Células Dendríticas Foliculares/imunologia , Intestino Delgado/imunologia , Tecido Linfoide/imunologia , Doenças Priônicas/imunologia , Doenças Priônicas/transmissão , Príons/imunologia , Animais , Células Dendríticas Foliculares/patologia , Humanos , Intestino Grosso/imunologia , Intestino Grosso/parasitologia , Intestino Grosso/patologia , Intestino Delgado/parasitologia , Intestino Delgado/patologia , Tecido Linfoide/patologia , Camundongos , Doenças Priônicas/parasitologia , Príons/patogenicidade , Tricuríase/imunologia , Tricuríase/patologia , Trichuris/imunologia
10.
J Neurosci ; 34(18): 6140-5, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790184

RESUMO

Alzheimer's disease (AD) is associated with pathological assembly states of amyloid-ß protein (Aß). Aß-related synaptotoxicity can be blocked by anti-prion protein (PrP) antibodies, potentially allowing therapeutic targeting of this aspect of AD neuropathogenesis. Here, we show that intravascular administration of a high-affinity humanized anti-PrP antibody to rats can prevent the plasticity-disrupting effects induced by exposure to soluble AD brain extract. These results provide an in vivo proof of principle for such a therapeutic strategy.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Anticorpos Monoclonais/administração & dosagem , Região CA1 Hipocampal/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Príons/imunologia , Idoso de 80 Anos ou mais , Análise de Variância , Animais , Biofísica , Vias de Administração de Medicamentos , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Príons/metabolismo , Ratos , Ratos Wistar , Lobo Temporal/química , Lobo Temporal/metabolismo
11.
Bioorg Khim ; 41(2): 145-53, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26165121

RESUMO

The prion protein is considered as one of the membrane targets of neurotoxic beta-amyloid during Alzheimer's disease development. We have chosen and synthesized 17-33, 23-33, 95-110 and 101-115 prion fragments involved in beta-amyloid binding. The effect of immunization with the peptides on the features of Alzheimer's disease was investigated in animals with an experimentally induced form of the disease. It was shown that immunization either with peptide 17-33 or with protein conjugates of peptides 23-33 and 101-115 increases the level of brain beta-amyloid and improves morfofunctional state of the brain.


Assuntos
Doença de Alzheimer/prevenção & controle , Imunização , Peptídeos/farmacologia , Príons/farmacologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Peptídeos/imunologia , Príons/imunologia
12.
J Virol ; 87(10): 5882-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487467

RESUMO

The cellular prion protein (PrP) often plays a cytoprotective role by regulating autophagy in response to cell stress. The stress of infection with intracellular pathogens can stimulate autophagy, and autophagic degradation of pathogens can reduce their replication and thus help protect the infected cells. PrP also restricts replication of several viruses, but whether this activity is related to an effect on autophagy is not known. Herpes simplex virus 1 (HSV-1) effectively counteracts autophagy through binding of its ICP34.5 protein to the cellular proautophagy protein beclin-1. Autophagy can reduce replication of an HSV-1 mutant, Δ68H, which is incapable of binding beclin-1. We found that deletion of PrP in mice complements the attenuation of Δ68H, restoring its capacity to replicate in the central nervous system (CNS) to wild-type virus levels after intracranial or corneal infection. Cultured primary astrocytes but not neurons derived from PrP(-/-) mice also complemented the attenuation of Δ68H, enabling Δ68H to replicate at levels equivalent to wild-type virus. Ultrastructural analysis showed that normal astrocytes exhibited an increase in the number of autophagosomes after infection with Δ68H compared with wild-type virus, but PrP(-/-) astrocytes failed to induce autophagy in response to Δ68H infection. Redistribution of EGFP-LC3 into punctae occurred more frequently in normal astrocytes infected with Δ68H than with wild-type virus, but not in PrP(-/-) astrocytes, corroborating the ultrastructural analysis results. Our results demonstrate that PrP is critical for inducing autophagy in astrocytes in response to HSV-1 infection and suggest that PrP positively regulates autophagy in the mouse CNS.


Assuntos
Autofagia , Herpesvirus Humano 1/imunologia , Príons/imunologia , Proteínas Virais/genética , Animais , Astrócitos/virologia , Células Cultivadas , Modelos Animais de Doenças , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/genética , Proteínas Priônicas , Fatores de Virulência/genética
13.
Neurobiol Learn Mem ; 107: 50-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24239620

RESUMO

Epidemiological studies demonstrated association between head injury (HI) and the subsequent development of Alzheimer's disease (AD). Certain hallmarks of AD, e.g. amyloid-ß (Aß) containing deposits, may be found in patients following traumatic BI (TBI). Recent studies uncover the cellular prion protein, PrP(C), as a receptor for soluble polymeric forms of Aß (sAß) which are an intermediate of such deposits. We aimed to test the hypothesis that targeting of PrP(C) can prevent Aß related spatial memory deficits in olfactory bulbectomized (OBX) mice utilized here to resemble some clinical features of AD, such as increased level of Aß, memory loss and deficit of the CNS cholin- and serotonin-ergic systems. We demonstrated that immunization with the a.a. 95-123 fragment of cellular prion (PrP-I) recovered cortical and hippocampus neurons from OBX induced degeneration, rescued spatial memory loss in Morris water maze test and significantly decrease the Aß level in brain tissue of these animals. Affinity purified anti-PrP-I antibodies rescued pre-synaptic biomarker synaptophysin eliciting similar effect on memory of OBX mice, and protected hippocampal neurones from Aß25-35-induced toxicity in vitro. Immunization OBX mice with a.a. 200-213 fragment of cellular prion (PrP-II) did not reach a significance in memory protection albeit having similar to PrP-I immunization impact on Aß level in brain tissue. The observed positive effect of targeting the PrP-I by either active or passive immunization on memory of OBX mice revealed the involvement of the PrP(C) in AD-like pathology induced by olfactory bulbectomy. This OBX model may be a useful tool for mechanistic and preclinical therapeutic investigations into the association between PrP(C) and AD.


Assuntos
Transtornos da Memória/terapia , Degeneração Neural/terapia , Fármacos Neuroprotetores/imunologia , Fragmentos de Peptídeos/imunologia , Proteínas PrPC/imunologia , Príons/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos/imunologia , Hipocampo/patologia , Imunização , Imunização Passiva , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos , Neurônios/patologia , Bulbo Olfatório/patologia , Ratos , Ratos Sprague-Dawley , Lobo Temporal/patologia
14.
Rev Neurol (Paris) ; 170(10): 602-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25193013

RESUMO

The immune system plays a major role in certain diseases of the brain like multiple sclerosis and neuromyelitis optica, while the brain may play a major role in modulating certain immunologic diseases of the periphery like inflammatory bowel disease. The most significant developments in neuroimmunology will involve explorations of the roles for the immune system in neurodegenerative conditions often associated with the presence of amyloid deposits. Here I present my personal perspectives on four of the most intriguing challenges that we face in the future of neuroimmunology: (1) Why are the traditional hallmarks of innate and adaptive inflammation conspicuously absent from brains of individuals with prion disease and amyloid pathology? (2) What is the role of adaptive and innate immunity in progressive forms of multiple sclerosis? (3) Is molecular mimicry an adequate explanation for the initiation of neuroinflammatory disease and for exacerbations in conditions like multiple sclerosis, narcolepsy, and neuromyelitis optica? (4) Do neural pathways regulate inflammatory diseases outside the nervous system?


Assuntos
Amiloide/imunologia , Tolerância Imunológica/imunologia , Doenças do Sistema Nervoso/imunologia , Príons/imunologia , Alergia e Imunologia , Previsões , Humanos , Neurologia
15.
Acta Neuropathol Commun ; 12(1): 91, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858742

RESUMO

Synucleinopathies are a group of neurodegenerative disorders characterized by the presence of misfolded α-Synuclein (αSyn) in the brain. These conditions manifest with diverse clinical and pathophysiological characteristics. This disease diversity is hypothesized to be driven by αSyn strains with differing biophysical properties, potentially influencing prion-type propagation and consequentially the progression of illness. Previously, we investigated this hypothesis by injecting brain lysate (seeds) from deceased individuals with various synucleinopathies or human recombinant αSyn preformed fibrils (PFFs) into transgenic mice overexpressing either wild type or A53T human αSyn. In the studies herein, we expanded on these experiments, utilizing a panel of antibodies specific for the major carboxyl-terminally truncated forms of αSyn (αSynΔC). These modified forms of αSyn are found enriched in human disease brains to inform on potential strain-specific proteolytic patterns. With monoclonal antibodies specific for human αSyn cleaved at residues 103, 114, 122, 125, and 129, we demonstrate that multiple system atrophy (MSA) seeds and PFFs induce differing neuroanatomical spread of αSyn pathology associated with host specific profiles. Overall, αSyn cleaved at residue 103 was most widely present in the induced pathological inclusions. Furthermore, αSynΔC-positive inclusions were present in astrocytes, but more frequently in activated microglia, with patterns dependent on host and inoculum. These findings support the hypothesis that synucleinopathy heterogeneity might stem from αSyn strains with unique biochemical properties that include proteolytic processing, which could result in dominant strain properties.


Assuntos
Encéfalo , Modelos Animais de Doenças , Camundongos Transgênicos , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/imunologia , Animais , Humanos , Camundongos , Encéfalo/patologia , Encéfalo/metabolismo , Sinucleinopatias/patologia , Sinucleinopatias/metabolismo , Sinucleinopatias/imunologia , Anticorpos Monoclonais , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/imunologia , Atrofia de Múltiplos Sistemas/metabolismo , Príons/imunologia , Príons/metabolismo , Feminino
16.
PLoS Pathog ; 7(9): e1002216, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21909267

RESUMO

Several hurdles must be overcome in order to achieve efficient and safe immunotherapy against conformational neurodegenerative diseases. In prion diseases, the main difficulty is that the prion protein is tolerated as a self protein, which prevents powerful immune responses. Passive antibody therapy is effective only during early, asymptomatic disease, well before diagnosis is made. If efficient immunotherapy of prion diseases is to be achieved, it is crucial to understand precisely how immune tolerance against the prion protein can be overcome and which effector pathways may delay disease progression. To this end, we generated a transgenic mouse that expresses the ß-chain of a T cell receptor recognizing a PrP epitope presented by the class II major histocompatibility complex. The fact that the constraint is applied to only one TCR chain allows adaptation of the other chain according to the presence or absence of tolerogenic PrP. We first show that transgene-bearing T cells, pairing with rearranged α-chains conferring anti-PrP specificity, are systematically eliminated during ontogeny in PrP+ mice, suggesting that precursors with good functional avidity are rare in a normal individual. Second, we show that transgene-bearing T cells with anti-PrP specificity are not suppressed when transferred into PrP+ recipients and proliferate more extensively in a prion-infected host. Finally, such T cells provide protection through a cell-mediated pathway involving IL-4 production. These findings support the idea that cell-mediated immunity in neurodegenerative conditions may not be necessarily detrimental and may even contribute, when properly controlled, to the resolution of pathological processes.


Assuntos
Príons/imunologia , Scrapie/prevenção & controle , Células Th2/imunologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/transplante , Regiões Determinantes de Complementaridade , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Interleucina-4 , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
17.
Reprod Biol Endocrinol ; 11: 25, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23531155

RESUMO

BACKGROUND: The impact of prion proteins in the rules that dictate biological reproduction is still poorly understood. Likewise, the role of prnt gene, encoding the prion-like protein testis specific (Prt), in ram reproductive physiology remains largely unknown. In this study, we assessed the effect of Prt in ovine fertilization by using an anti-Prt antibody (APPA) in fertilization medium incubated with spermatozoa and oocytes. Moreover, a computational model was constructed to infer how the results obtained could be related to a hypothetical role for Prt in sperm-zona pellucida (ZP) binding. METHODS: Mature ovine oocytes were transferred to fertilization medium alone (control) or supplemented with APPA, or pre-immune serum (CSerum). Oocytes were inseminated with ovine spermatozoa and after 18 h, presumptive zygotes (n=142) were fixed to evaluate fertilization rates or transferred (n=374) for embryo culture until D6-7. Predicted ovine Prt tertiary structure was compared with data obtained by circular dichroism spectroscopy (CD) and a protein-protein computational docking model was estimated for a hypothetical Prt/ZP interaction. RESULTS: The fertilizing rate was lower (P=0.006) in APPA group (46.0+/-6.79%) when compared to control (78.5+/-7.47%) and CSerum (64.5+/-6.65%) groups. In addition, the cleavage rate was higher (P<0.0001) in control (44.1+/-4.15%) than in APPA group (19.7+/-4.22%). Prt CD spectroscopy showed a 22% alpha-helical structure in 30% (m/v) aqueous trifluoroethanol (TFE) and 17% alpha in 0.6% (m/v) TFE. The predominant alpha-helical secondary structure detected correlates with the predicted three dimensional structure for ovine Prt, which was subsequently used to test Prt/ZP docking. Computational analyses predicted a favorable Prt-binding activity towards ZP domains. CONCLUSIONS: Our data indicates that the presence of APPA reduces the number of fertilized oocytes and of cleaved embryos. Moreover, the CD analysis data reinforces the predicted ovine Prt trend towards an alpha-helical structure. Predicted protein-protein docking suggests a possible interaction between Prt and ZP, thus supporting an important role for Prt in ovine fertilization.


Assuntos
Anticorpos Monoclonais/farmacologia , Fertilização in vitro/efeitos dos fármacos , Príons/metabolismo , Zona Pelúcida/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Dicroísmo Circular , Proteínas do Ovo/química , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Príons/química , Príons/imunologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Ovinos , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Fatores de Tempo , Trifluoretanol/química , Trifluoretanol/farmacologia , Glicoproteínas da Zona Pelúcida
18.
Clin Dev Immunol ; 2013: 473706, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24228054

RESUMO

Transmissible spongiform encephalopathies (TSEs) are fatal, untreatable neurodegenerative diseases. While the impact of TSEs on human health is relatively minor, these diseases are having a major influence on how we view, and potentially treat, other more common neurodegenerative disorders. Until recently, TSEs encapsulated a distinct category of neurodegenerative disorder, exclusive in their defining characteristic of infectivity. It now appears that similar mechanisms of self-propagation may underlie other proteinopathies such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. This link is of scientific interest and potential therapeutic importance as this route of self-propagation offers conceptual support and guidance for vaccine development efforts. Specifically, the existence of a pathological, self-promoting isoform offers a rational vaccine target. Here, we review the evidence of prion-like mechanisms within a number of common neurodegenerative disorders and speculate on potential implications and opportunities for vaccine development.


Assuntos
Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/terapia , Príons/patogenicidade , Animais , Epitopos/imunologia , Humanos , Imunoterapia , Modelos Biológicos , Doenças Neurodegenerativas/diagnóstico , Proteínas PrPC/imunologia , Proteínas PrPC/metabolismo , Proteínas PrPSc/imunologia , Proteínas PrPSc/metabolismo , Príons/imunologia
19.
BMC Vet Res ; 9: 82, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23601183

RESUMO

BACKGROUND: In classical scrapie, the disease-associated abnormal isoform (PrP(Sc)) of normal prion protein accumulates principally in the nervous system and lymphoid tissues of small ruminants. Lymph nodes traffic leukocytes via lymphatic and blood vasculatures but hemal nodes lack lymphatic vessels and thus traffic leukocytes only via the blood. Although PrP(Sc) accumulation profiles are well-characterized in ovine lymphoid tissues, there is limited information on such profiles in hemal nodes. Therefore, the objective of this study was to compare the follicular accumulation of PrP(Sc) within hemal nodes and lymph nodes by prion epitope mapping and western blot studies. RESULTS: Our studies found that PrP(Sc) accumulation in 82% of animals' abdominal hemal nodes when PrP(Sc) is detected in both mesenteric and retropharyngeal lymph nodes collected from preclinical and clinical, naturally and experimentally (blood transfusion) scrapie-infected sheep representing all three major scrapie-susceptible Prnp genotypes. Abdominal hemal nodes and retropharyngeal lymph nodes were then used to analyze immune cell phenotypes and PrP(Sc) epitope mapping by immunohistochemistry and PrP(Sc) banding patterns by western blot. Similar patterns of PrP(Sc) accumulation were detected within the secondary follicles of hemal nodes and retropharyngeal lymph nodes, where cellular labeling was mostly associated with macrophages and follicular dendritic cells. The pattern of PrP(Sc) accumulation within hemal nodes and retropharyngeal lymph nodes also did not differ with respect to epitope mapping with seven mAbs (N-terminus, n = 4; globular domain, n = 2; C-terminus, n = 1) in all three Prnp genotypes. Western blot analysis of hemal node and retropharyngeal lymph node homogenates revealed identical three banding patterns of proteinase K resistant PrP(Sc). CONCLUSION: Despite the anatomical difference in leukocyte trafficking between lymph nodes and hemal nodes, the follicles of hemal nodes appear to process PrP(Sc) similarly to lymph nodes.


Assuntos
Hemolinfa/metabolismo , Proteínas PrPSc/metabolismo , Scrapie/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Western Blotting/veterinária , Mapeamento de Epitopos/veterinária , Linfonodos/metabolismo , Macrófagos/metabolismo , Príons/imunologia , Príons/metabolismo , Ovinos
20.
Int J Mol Sci ; 14(9): 19109-27, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24048248

RESUMO

Accumulation of misfolded proteins has been implicated in a variety of neurodegenerative diseases including prion diseases, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In the past decade, single-chain fragment variable (scFv) -based immunotherapies have been developed to target abnormal proteins or various forms of protein aggregates including Aß, SNCA, Htt, and PrP proteins. The scFvs are produced by fusing the variable regions of the antibody heavy and light chains, creating a much smaller protein with unaltered specificity. Because of its small size and relative ease of production, scFvs are promising diagnostic and therapeutic reagents for protein misfolded diseases. Studies have demonstrated the efficacy and safety of scFvs in preventing amyloid protein aggregation in preclinical models. Herein, we discuss recent developments of these immunotherapeutics. We review efforts of our group and others using scFv in neurodegenerative disease models. We illustrate the advantages of scFvs, including engineering to enhance misfolded conformer specificity and subcellular targeting to optimize therapeutic action.


Assuntos
Doenças Neurodegenerativas/terapia , Anticorpos de Cadeia Única/uso terapêutico , Peptídeos beta-Amiloides/imunologia , Humanos , Proteína Huntingtina , Imunização Passiva , Proteínas do Tecido Nervoso/imunologia , Príons/imunologia , Anticorpos de Cadeia Única/imunologia , alfa-Sinucleína/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA