Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105740, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340794

RESUMO

Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.


Assuntos
Citoesqueleto de Actina , Actinas , Leishmania major , Parasitos , Profilinas , Animais , Humanos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalização , Cristalografia por Raios X , Leishmania major/citologia , Leishmania major/metabolismo , Parasitos/citologia , Parasitos/metabolismo , Profilinas/química , Profilinas/metabolismo , Ligação Proteica , Domínios Proteicos
2.
Biol Chem ; 405(6): 367-381, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662449

RESUMO

Structural and allergenic characterization of mite profilins has not been previously pursued to a similar extent as plant profilins. Here, we describe structures of profilins originating from Tyrophagus putrescentiae (registered allergen Tyr p 36.0101) and Dermatophagoides pteronyssinus (here termed Der p profilin), which are the first structures of profilins from Arachnida. Additionally, the thermal stabilities of mite and plant profilins are compared, suggesting that the high number of cysteine residues in mite profilins may play a role in their increased stability. We also examine the cross-reactivity of plant and mite profilins as well as investigate the relevance of these profilins in mite inhalant allergy. Despite their high structural similarity to other profilins, mite profilins have low sequence identity with plant and human profilins. Subsequently, these mite profilins most likely do not display cross-reactivity with plant profilins. At the same time the profilins have highly conserved poly(l-proline) and actin binding sites.


Assuntos
Reações Cruzadas , Profilinas , Animais , Reações Cruzadas/imunologia , Profilinas/imunologia , Profilinas/química , Profilinas/metabolismo , Humanos , Ácaros/imunologia , Ácaros/química , Sequência de Aminoácidos , Hipersensibilidade/imunologia , Plantas/imunologia , Plantas/química , Plantas/metabolismo , Modelos Moleculares , Alérgenos/imunologia , Alérgenos/química
3.
Nature ; 562(7727): 439-443, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283132

RESUMO

The origin of the eukaryotic cell is unresolved1,2. Metagenomics sequencing has recently identified several potential eukaryotic gene homologues in Asgard archaea3,4, consistent with the hypothesis that the eukaryotic cell evolved from within the Archaea domain. However, many of these eukaryotic-like sequences are highly divergent and the organisms have yet to be imaged or cultivated, which brings into question the extent to which these archaeal proteins represent functional equivalents of their eukaryotic counterparts. Here we show that Asgard archaea encode functional profilins and thereby establish that this archaeal superphylum has a regulated actin cytoskeleton, one of the hallmarks of the eukaryotic cell5. Loki profilin-1, Loki profilin-2 and Odin profilin adopt the typical profilin fold and are able to interact with rabbit actin-an interaction that involves proteins from species that diverged more than 1.2 billion years ago6. Biochemical experiments reveal that mammalian actin polymerizes in the presence of Asgard profilins; however, Loki, Odin and Heimdall profilins impede pointed-end elongation. These archaeal profilins also retard the spontaneous nucleation of actin filaments, an effect that is reduced in the presence of phospholipids. Asgard profilins do not interact with polyproline motifs and the profilin-polyproline interaction therefore probably evolved later in the Eukarya lineage. These results suggest that Asgard archaea possess a primordial, polar, profilin-regulated actin system, which may be localized to membranes owing to the sensitivity of Asgard profilins to phospholipids. Because Asgard archaea are also predicted to encode potential eukaryotic-like genes involved in membrane-trafficking and endocytosis3,4, imaging is now necessary to elucidate whether these organisms are capable of generating eukaryotic-like membrane dynamics that are regulated by actin, such as are observed in eukaryotic cell movement, podosomes and endocytosis.


Assuntos
Actinas/metabolismo , Archaea/genética , Archaea/metabolismo , Evolução Molecular , Genoma Arqueal/genética , Profilinas/genética , Profilinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Motivos de Aminoácidos , Animais , Archaea/citologia , Movimento Celular , Endocitose , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Filogenia , Polimerização , Profilinas/química , Ligação Proteica/efeitos dos fármacos , Coelhos
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074767

RESUMO

Profilin-1 (PFN1) plays important roles in modulating actin dynamics through binding both monomeric actin and proteins enriched with polyproline motifs. Mutations in PFN1 have been linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). However, whether ALS-linked mutations affect PFN1 function has remained unclear. To address this question, we employed an unbiased proteomics analysis in mammalian cells to identify proteins that differentially interact with mutant and wild-type (WT) PFN1. These studies uncovered differential binding between two ALS-linked PFN1 variants, G118V and M114T, and select formin proteins. Furthermore, both variants augmented formin-mediated actin assembly relative to PFN1 WT. Molecular dynamics simulations revealed mutation-induced changes in the internal dynamic couplings within an alpha helix of PFN1 that directly contacts both actin and polyproline, as well as structural fluctuations within the actin- and polyproline-binding regions of PFN1. These data indicate that ALS-PFN1 variants have the potential for heightened flexibility in the context of the ternary actin-PFN1-polyproline complex during actin assembly. Conversely, PFN1 C71G was more severely destabilized than the other PFN1 variants, resulting in reduced protein expression in both transfected and ALS patient lymphoblast cell lines. Moreover, this variant exhibited loss-of-function phenotypes in the context of actin assembly. Perturbations in actin dynamics and assembly can therefore result from ALS-linked mutations in PFN1. However, ALS-PFN1 variants may dysregulate actin polymerization through different mechanisms that depend upon the solubility and stability of the mutant protein.


Assuntos
Actinas/metabolismo , Esclerose Lateral Amiotrófica/genética , Forminas/efeitos adversos , Polimerização , Profilinas/genética , Profilinas/metabolismo , Animais , Células HeLa , Humanos , Proteínas Mutantes/química , Mutação , Doenças Neurodegenerativas , Fenótipo , Profilinas/química , Conformação Proteica em alfa-Hélice , Deficiências na Proteostase
5.
Proc Natl Acad Sci U S A ; 117(11): 5844-5852, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32127471

RESUMO

Human profilin I reduces aggregation and concomitant toxicity of the polyglutamine-containing N-terminal region of the huntingtin protein encoded by exon 1 (httex1) and responsible for Huntington's disease. Here, we investigate the interaction of profilin with httex1 using NMR techniques designed to quantitatively analyze the kinetics and equilibria of chemical exchange at atomic resolution, including relaxation dispersion, exchange-induced shifts, and lifetime line broadening. We first show that the presence of two polyproline tracts in httex1, absent from a shorter huntingtin variant studied previously, modulates the kinetics of the transient branched oligomerization pathway that precedes nucleation, resulting in an increase in the populations of the on-pathway helical coiled-coil dimeric and tetrameric species (τex ≤ 50 to 70 µs), while leaving the population of the off-pathway (nonproductive) dimeric species largely unaffected (τex ∼750 µs). Next, we show that the affinity of a single molecule of profilin to the polyproline tracts is in the micromolar range (Kdiss ∼ 17 and ∼ 31 µM), but binding of a second molecule of profilin is negatively cooperative, with the affinity reduced ∼11-fold. The lifetime of a 1:1 complex of httex1 with profilin, determined using a shorter huntingtin variant containing only a single polyproline tract, is shown to be on the submillisecond timescale (τex ∼ 600 µs and Kdiss ∼ 50 µM). Finally, we demonstrate that, in stable profilin-httex1 complexes, the productive oligomerization pathway, leading to the formation of helical coiled-coil httex1 tetramers, is completely abolished, and only the pathway resulting in "nonproductive" dimers remains active, thereby providing a mechanistic basis for how profilin reduces aggregation and toxicity of httex1.


Assuntos
Éxons , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Profilinas/química , Profilinas/metabolismo , Sítios de Ligação , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos , Conformação Proteica , Domínios Proteicos
6.
Metab Brain Dis ; 37(1): 229-241, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302583

RESUMO

The hydrogen/deuterium exchange (HDX) is a reliable method to survey the dynamic behavior of proteins and epitope mapping. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) is a quantifying tool to assay for HDX in the protein of interest. We combined HDX-MALDI-TOF MS and molecular docking/MD simulation to identify accessible amino acids and analyze their contribution into the structural changes of profilin-1 (PFN-1). The molecular docking/MD simulations are computational tools for enabling the analysis of the type of amino acids that may be involved via HDX identified under the lowest binding energy condition. Glycine to valine amino acid (G117V) substitution mutation is linked to amyotrophic lateral sclerosis (ALS). This mutation is found to be in the actin-binding site of PFN-1 and prevents the dimerization/polymerization of actin and invokes a pathologic toxicity that leads to ALS. In this study, we sought to understand the PFN-1 protein dynamic behavior using purified wild type and mutant PFN-1 proteins. The data obtained from HDX-MALDI-TOF MS for PFN-1WT and PFN-1G117V at various time intervals, from seconds to hours, revealed multiple peaks corresponding to molecular weights from monomers to multimers. PFN-1/Benzaldehyde complexes identified 20 accessible amino acids to HDX that participate in the docking simulation in the surface of WT and mutant PFN-1. Consistent results from HDX-MALDI-TOF MS and docking simulation predict candidate amino acid(s) involved in the dimerization/polymerization of PFNG117V. This information may shed critical light on the structural and conformational changes with details of amino acid epitopes for mutant PFN-1s' dimerization, oligomerization, and aggregation.


Assuntos
Esclerose Lateral Amiotrófica , Medição da Troca de Deutério , Profilinas , Esclerose Lateral Amiotrófica/genética , Biologia Computacional , Deutério , Humanos , Simulação de Acoplamento Molecular , Profilinas/química , Profilinas/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
J Biol Chem ; 295(49): 16713-16731, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32978259

RESUMO

The actin cytoskeleton is of profound importance to cell shape, division, and intracellular force generation. Profilins bind to globular (G-)actin and regulate actin filament formation. Although profilins are well-established actin regulators, the distinct roles of the dominant profilin, profilin 1 (PFN1), versus the less abundant profilin 2 (PFN2) remain enigmatic. In this study, we use interaction proteomics to discover that PFN2 is an interaction partner of the actin N-terminal acetyltransferase NAA80, and further confirm this by analytical ultracentrifugation. Enzyme assays with NAA80 and different profilins demonstrate that PFN2 binding specifically increases the intrinsic catalytic activity of NAA80. NAA80 binds PFN2 through a proline-rich loop, deletion of which abrogates PFN2 binding. Small-angle X-ray scattering shows that NAA80, actin, and PFN2 form a ternary complex and that NAA80 has partly disordered regions in the N-terminus and the proline-rich loop, the latter of which is partly ordered upon PFN2 binding. Furthermore, binding of PFN2 to NAA80 via the proline-rich loop promotes binding between the globular domains of actin and NAA80, and thus acetylation of actin. However, the majority of cellular NAA80 is stably bound to PFN2 and not to actin, and we propose that this complex acetylates G-actin before it is incorporated into filaments. In conclusion, we reveal a functionally specific role of PFN2 as a stable interactor and regulator of the actin N-terminal acetyltransferase NAA80, and establish the modus operandi for NAA80-mediated actin N-terminal acetylation, a modification with a major impact on cytoskeletal dynamics.


Assuntos
Acetiltransferases/metabolismo , Actinas/metabolismo , Profilinas/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Animais , Biocatálise , Linhagem Celular , Humanos , Profilinas/química , Profilinas/deficiência , Profilinas/genética , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Ultracentrifugação , Difração de Raios X
8.
FASEB J ; 34(2): 2147-2160, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908005

RESUMO

Profilin is a major regulator of actin dynamics in multiple specific processes localized in different cellular compartments. This specificity is not only meditated by its binding to actin but also its interaction with phospholipids such as phosphatidylinositol (4,5)-bisphosphate (PIP2 ) at the membrane and a plethora of proteins containing poly-L-proline (PLP) stretches. These interactions are fine-tuned by posttranslational modifications such as phosphorylation. Several phospho-sites have already been identified for profilin1, the ubiquitously expressed isoform. However, little is known about the phosphorylation of profilin2a. Profilin2a is a neuronal isoform important for synapse function. Here, we identified several putative profilin2a phospho-sites in silico and tested recombinant phospho-mimetics with regard to their actin-, PLP-, and PIP2 -binding properties. Moreover, we assessed their impact on actin dynamics employing a pyrene-actin polymerization assay. Results indicate that distinct phospho-sites modulate specific profilin2a functions. We could identify a molecular switch site at serine residue 71 which completely abrogated actin binding-as well as other sites important for fine-tuning of different functions, for example, tyrosine 29 for PLP binding. Our findings suggest that differential profilin2a phosphorylation is a sensitive mechanism for regulating its neuronal functions. Moreover, the dysregulation of profilin2a phosphorylation may contribute to neurodegeneration.


Assuntos
Actinas/química , Profilinas/química , Multimerização Proteica , Actinas/metabolismo , Humanos , Neurônios/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação , Profilinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
9.
J Biol Chem ; 294(17): 6972-6985, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30814249

RESUMO

Dynamic regulation of the actin cytoskeleton is an essential feature of cell motility. Action of Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP), a family of conserved actin-elongating proteins, is an important aspect of regulation of the actin cytoskeletal architecture at the leading edge that controls membrane protrusion and cell motility. In this study, we performed mutagenesis experiments in overexpression and knockdown-rescue settings to provide, for the first time, direct evidence of the role of the actin-binding protein profilin1 (Pfn1) in VASP-mediated regulation of cell motility. We found that VASP's interaction with Pfn1 is promoted by cell-substrate adhesion and requires down-regulation of PKA activity. Our experimental data further suggest that PKA-mediated Ser137 phosphorylation of Pfn1 potentially negatively regulates the Pfn1-VASP interaction. Finally, Pfn1's ability to be phosphorylated on Ser137 was partly responsible for the anti-migratory action elicited by exposing cells to a cAMP/PKA agonist. On the basis of these findings, we propose a mechanism of adhesion-protrusion coupling in cell motility that involves dynamic regulation of Pfn1 by PKA activity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Profilinas/metabolismo , Células HEK293 , Humanos , Fosforilação , Profilinas/química , Ligação Proteica , Serina/metabolismo
10.
Biochem Biophys Res Commun ; 522(1): 8-13, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31735333

RESUMO

Profilin (PROF) is a small actin-binding protein presented in apicomplexan protozoa. It was previously reported that Neospora caninum profilin (NcPROF) is secreted into the hemolymph of silkworm larvae regardless of the lack of an identified regular secretion signal peptide. To date, which domain is required for its secretion still remains unknown. To this end, we express a fluorescent protein (mCherry) fused with NcPROF at its N-terminus or C-terminus. Both fusion proteins were expressed and secreted into the culture supernatant from Bm5 cells or hemolymph from silkworm larvae, respectively. To further narrow down the C-terminal minimal domain required for its secretion, we constructed three truncated C-terminal domain constructions, ΔN (aa41-163), ΔN1 (aa50-163), and ΔN2 (aa144-163) respectively. All three fusion proteins were detected in the culture supernatant of Bm5 cells and silkworm hemolymph. Surprisingly, a 20-aa C-terminal α-helix domain facilitates the secretion of mCherry, allowing purification of ΔN2-mCherry from silkworm larval hemolymph by affinity chromatography. Taken together, the secretion domain from NcPROF was identified, indicating that can be utilized for the secretory expression of recombinant proteins in the future.


Assuntos
Neospora/química , Profilinas/química , Proteínas de Protozoários/química , Proteínas Recombinantes de Fusão/química , Animais , Baculoviridae , Bombyx , Cromatografia de Afinidade , Hemolinfa/química , Ligação Proteica , Domínios Proteicos , Sinais Direcionadores de Proteínas
11.
Molecules ; 25(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963206

RESUMO

Four recombinant (r) allergens (rAmb a 8.0101, rArt v 4.0101, rBet v 2.0101, and rPhl p 12.0101) were successfully produced and used for sensitization studies. The allergens belong to the profilin family which is one of the most numerous allergen families. These four proteins represent allergens originating from pollen of weeds (rAmb a 8.0101 and rArt v 4.0101), tree (rBet v 2.0101) and grass (rPhl p 12.0101). The recombinant allergens were characterized using various biochemical and biophysical methods and tested for their ability to bind patient-derived antibodies. One hundred patients aged 2 to 50 years sensitized to pollen and plant-derived food allergens (IgE > 0.35 kU/L) were included. Sensitization to individual allergen sources and components of birch and timothy pollens was evaluated using multiparameter immunoblots. The presence of IgE to pollen-derived recombinant profilins rAmb a 8.0101, rArt v 4.0101, rBet v 2.0101, and rPhl p 12.0101 in serum was evaluated using ELISA method. The presence of IgE against pollen profilins was detected in 20 out of 100 studied patients. High correlation was seen between IgE ELISA results with individual pollen profilins. In summary, it was shown that the recombinant versions of the four allergenic profilins can be used for sensitization studies and for component-resolved allergy diagnostics.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Hipersensibilidade/imunologia , Profilinas/imunologia , Proteínas Recombinantes/imunologia , Alérgenos/química , Sequência de Aminoácidos , Antígenos de Plantas/química , Imunização , Modelos Moleculares , Profilinas/química , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica
12.
J Biol Chem ; 293(26): 10303-10313, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760185

RESUMO

A set of missense mutations in the gene encoding profilin-1 has been linked to the onset of familial forms of ALS (fALS), also known as Lou Gehrig's disease. The pathogenic potential of these mutations is linked to the formation of intracellular inclusions of the mutant proteins and correlates with the mutation-induced destabilization of its native, fully folded state. However, the mechanism by which these mutations promote misfolding and self-assembly is yet unclear. Here, using temperature-jump and stopped-flow kinetic measurements, we show that, during refolding, WT profilin-1 transiently populates a partially folded (PF) state endowed with hydrophobic clusters exposed to the solvent and with no detectable secondary structure. We observed that this conformational state is marginally stable at neutral pH but becomes significantly populated at mildly acidic pH. Interestingly, the fALS-associated mutations did not cause a change in the refolding mechanism of profilin-1, but induced a stabilization of the PF state. In the presence of preformed profilin-1 aggregates, the PF state, unlike the unfolded and folded states, could interact with these aggregates via nonspecific hydrophobic interactions and also increase thioflavin-T fluorescence, revealing its amyloidogenic potential. Moreover, in the variants tested, we found a correlation between conformational stability of PF and aggregation propensity, defining this conformational state as an aggregation-prone folding intermediate. In conclusion, our findings indicate that mutation-induced stabilization of a partially folded state can enhance profilin-1 aggregation and thereby contribute to the pathogenicity of the mutations.


Assuntos
Profilinas/química , Profilinas/metabolismo , Agregados Proteicos , Dobramento de Proteína , Esclerose Lateral Amiotrófica/genética , Humanos , Concentração de Íons de Hidrogênio , Mutação , Profilinas/genética , Redobramento de Proteína , Estabilidade Proteica
13.
J Biol Chem ; 293(50): 19161-19176, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30381396

RESUMO

Chloride intracellular channel 4 (CLIC4) is a cytosolic protein implicated in diverse actin-based processes, including integrin trafficking, cell adhesion, and tubulogenesis. CLIC4 is rapidly recruited to the plasma membrane by RhoA-activating agonists and then partly colocalizes with ß1 integrins. Agonist-induced CLIC4 translocation depends on actin polymerization and requires conserved residues that make up a putative binding groove. However, the mechanism and significance of CLIC4 trafficking have been elusive. Here, we show that RhoA activation by either lysophosphatidic acid (LPA) or epidermal growth factor is necessary and sufficient for CLIC4 translocation to the plasma membrane and involves regulation by the RhoA effector mDia2, a driver of actin polymerization and filopodium formation. We found that CLIC4 binds the G-actin-binding protein profilin-1 via the same residues that are required for CLIC4 trafficking. Consistently, shRNA-induced profilin-1 silencing impaired agonist-induced CLIC4 trafficking and the formation of mDia2-dependent filopodia. Conversely, CLIC4 knockdown increased filopodium formation in an integrin-dependent manner, a phenotype rescued by wild-type CLIC4 but not by the trafficking-incompetent mutant CLIC4(C35A). Furthermore, CLIC4 accelerated LPA-induced filopodium retraction. We conclude that through profilin-1 binding, CLIC4 functions in a RhoA-mDia2-regulated signaling network to integrate cortical actin assembly and membrane protrusion. We propose that agonist-induced CLIC4 translocation provides a feedback mechanism that counteracts formin-driven filopodium formation.


Assuntos
Proteínas de Transporte/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Profilinas/metabolismo , Pseudópodes/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Canais de Cloreto/química , Sequência Conservada , Cristalografia por Raios X , Ativação Enzimática , Forminas , Células HeLa , Humanos , Integrinas/metabolismo , Modelos Moleculares , Profilinas/química , Ligação Proteica , Conformação Proteica , Transporte Proteico
14.
J Biol Chem ; 293(7): 2606-2616, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29282288

RESUMO

Profilin 1 (Pfn1) is an important regulator of the actin cytoskeleton and plays a vital role in many actin-based cellular processes. Therefore, identification of a small-molecule intervention strategy targeted against the Pfn1-actin interaction could have broad utility in cytoskeletal research and further our understanding of the role of Pfn1 in actin-mediated biological processes. Based on an already resolved Pfn1-actin complex crystal structure, we performed structure-based virtual screening of small-molecule libraries to seek inhibitors of the Pfn1-actin interaction. We identified compounds that match the pharmacophore of the key actin residues of Pfn1-actin interaction and therefore have the potential to act as competitive inhibitors of this interaction. Subsequent biochemical assays identified two candidate compounds with nearly identical structures that can mitigate the effect of Pfn1 on actin polymerization in vitro As a further proof-of-concept test for cellular effects of these compounds, we performed proximity ligation assays in endothelial cells (ECs) to demonstrate compound-induced inhibition of Pfn1-actin interaction. Consistent with the important role of Pfn1 in regulating actin polymerization and various fundamental actin-based cellular activities (migration and proliferation), treatment of these compounds reduced the overall level of cellular filamentous (F) actin, slowed EC migration and proliferation, and inhibited the angiogenic ability of ECs both in vitro and ex vivo In summary, this study provides the first proof of principle of small-molecule-mediated interference with the Pfn1-actin interaction. Our findings may have potential general utility for perturbing actin-mediated cellular activities and biological processes.


Assuntos
Actinas/metabolismo , Profilinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/antagonistas & inibidores , Actinas/genética , Animais , Aorta Torácica/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Polimerização/efeitos dos fármacos , Profilinas/antagonistas & inibidores , Profilinas/química , Profilinas/genética , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
15.
J Biol Chem ; 293(10): 3734-3746, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358329

RESUMO

Huntingtin N-terminal fragments (Htt-NTFs) with expanded polyglutamine tracts form a range of neurotoxic aggregates that are associated with Huntington's disease. Here, we show that aggregation of Htt-NTFs, irrespective of polyglutamine length, yields at least three phases (designated M, S, and F) that are delineated by sharp concentration thresholds and distinct aggregate sizes and morphologies. We found that monomers and oligomers make up the soluble M phase, ∼25-nm spheres dominate in the soluble S phase, and long, linear fibrils make up the insoluble F phase. Previous studies showed that profilin, an abundant cellular protein, reduces Htt-NTF aggregation and toxicity in cells. We confirm that profilin achieves its cellular effects through direct binding to the C-terminal proline-rich region of Htt-NTFs. We show that profilin preferentially binds to Htt-NTF M-phase species and destabilizes aggregation and phase separation by shifting the concentration boundaries for phase separation to higher values through a process known as polyphasic linkage. Our experiments, aided by coarse-grained computer simulations and theoretical analysis, suggest that preferential binding of profilin to the M-phase species of Htt-NTFs is enhanced through a combination of specific interactions between profilin and polyproline segments and auxiliary interactions between profilin and polyglutamine tracts. Polyphasic linkage may be a general strategy that cells utilize to regulate phase behavior of aggregation-prone proteins. Accordingly, detailed knowledge of phase behavior and an understanding of how ligands modulate phase boundaries may pave the way for developing new therapeutics against a variety of aggregation-prone proteins.


Assuntos
Proteína Huntingtina/metabolismo , Modelos Moleculares , Profilinas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle , Substituição de Aminoácidos , Sítios de Ligação , Fluorescência , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/ultraestrutura , Processamento de Imagem Assistida por Computador , Ligantes , Microscopia Eletrônica de Transmissão , Mutação , Coloração Negativa , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Ácido Poliglutâmico/química , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , Profilinas/química , Profilinas/genética , Profilinas/ultraestrutura , Domínios Proteicos Ricos em Prolina , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espalhamento a Baixo Ângulo , Solubilidade , Termodinâmica , Triptofano/química
16.
J Chem Phys ; 150(1): 015102, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621420

RESUMO

The large magnitude of protein-protein interaction (PPI) pairs within the human interactome necessitates the development of predictive models and screening tools to better understand this fundamental molecular communication. However, despite enormous efforts from various groups to develop predictive techniques in the last decade, PPI complex structures are in general still very challenging to predict due to the large number of degrees of freedom. In this study, we use the binding complex of human profilin (PFN1) and polyproline-10 (P10) as a model system to examine various approaches, with the aim of going beyond normal protein docking for PPI prediction and evaluation. The potential of mean force (PMF) was first obtained from the time-consuming umbrella sampling, which confirmed that the most stable binding structure identified by the maximal PMF difference is indeed the crystallographic binding structure. Moreover, crucial residues previously identified in experimental studies, W3, H133, and S137 of PFN1, were found to form favorable hydrogen bonds with P10, suggesting a zipping process during the binding between PFN1 and P10. We then explored both regular molecular dynamics (MD) and steered molecular dynamics (SMD) simulations, seeking for better criteria of ranking the PPI prediction. Despite valuable information obtained from conventional MD simulations, neither the commonly used interaction energy between the two binding parties nor the long-term root mean square displacement correlates well with the PMF results. On the other hand, with a sizable collection of trajectories, we demonstrated that the average and minimal rupture works calculated from SMD simulations correlate fairly well with the PMFs (R 2 = 0.67), making this a promising PPI screening method.


Assuntos
Peptídeos/metabolismo , Profilinas/metabolismo , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Peptídeos/química , Profilinas/química , Ligação Proteica
17.
J Cell Biochem ; 119(4): 3683-3696, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29236299

RESUMO

Profilin is one of the actin-binding proteins that regulate dynamics of actin polymerization. It plays a key role in cell motility and invasion. It also interacts with several other proteins notably through its poly-L-proline (PLP) binding site. Profilin in apicomplexa is characterized by a unique mini-domain consisting of a large ß-hairpin extension and an acidic loop which is relatively longer in Plasmodium species. Profilin is essential for the invasive blood stages of Plasmodium falciparum. In the current study, unbound profilins from Plasmodium falciparum (Pf), Toxoplasma gondii (Tg), and Homo sapiens (Hs) were subjected to molecular dynamics (MD) simulations for a timeframe of 100 ns each to understand the conformational dynamics of these proteins. It was found that the ß-hairpin of profilins from Pf and Tg shows a hinge-like movement. This movement in Pf profilin may possibly be driven by the loss of a salt-bridge within profilin. The impact of this conformational change on actin binding was assessed by docking three dimensional (3D) structures of profilin from Pf and Tg with their corresponding actins using ClusPro2.0. The stability of docked Pf profilin-actin complex was assessed through a 50 ns MD simulation. As Hs profilin I does not have the apicomplexa specific mini-domain, MD simulation was performed for this protein and its dynamics was compared to that of profilins from Pf and Tg. Using an immunoinformatics approach, potential epitope regions were predicted for Pf profilin. This has a potential application in the design of vaccines as they mapped to its unique mini-domain.


Assuntos
Plasmodium/química , Profilinas/química , Toxoplasma/química , Análise por Conglomerados , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química
18.
Cell Mol Life Sci ; 74(6): 967-981, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27669692

RESUMO

Profilins were discovered in the 1970s and were extensively studied for their significant physiological roles. Profilin1 is the most prominent isoform and has drawn special attention due to its role in the cytoskeleton, cell signaling, and its link to conditions such as cancer and vascular hypertrophy. Recently, multiple mutations in the profilin1 gene were linked to amyotrophic lateral sclerosis (ALS). In this review, we will discuss the physiological and pathological roles of profilin1. We will further highlight the cytoskeletal function and dysfunction caused by profilin1 dysregulation. Finally, we will discuss the implications of mutant profilin1 in various diseases with an emphasis on its contribution to the pathogenesis of ALS.


Assuntos
Actinas/metabolismo , Mutação/genética , Profilinas/genética , Animais , Encéfalo/embriologia , Doença/genética , Humanos , Plasticidade Neuronal , Profilinas/química , Profilinas/metabolismo
19.
Cell Mol Life Sci ; 74(7): 1297-1318, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27838743

RESUMO

Five structurally and functionally different proteins, an enzyme superoxide dismutase 1 (SOD1), a TAR-DNA binding protein-43 (TDP-43), an RNA-binding protein FUS, a cofilin-binding protein C9orf72, and polypeptides generated as a result of its intronic hexanucleotide expansions, and to lesser degree actin-binding profilin-1 (PFN1), are considered to be the major drivers of amyotrophic lateral sclerosis. One of the features common to these proteins is the presence of significant levels of intrinsic disorder. The goal of this study is to consider these neurodegeneration-related proteins from the intrinsic disorder perspective. To this end, we employed a broad set of computational tools for intrinsic disorder analysis and conducted intensive literature search to gain information on the structural peculiarities of SOD1, TDP-43, FUS, C9orf72, and PFN1 and their intrinsic disorder predispositions, and the roles of intrinsic disorder in their normal and pathological functions.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Algoritmos , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72 , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados de Proteínas , Humanos , Proteínas Intrinsicamente Desordenadas/química , Mutação , Profilinas/química , Profilinas/genética , Profilinas/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
20.
Metab Brain Dis ; 33(6): 1975-1984, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30203378

RESUMO

Single amino acid mutations in profilin 1 (PFN1) have been found to cause amyotrophic lateral sclerosis (ALS). Recently, we developed a mouse model for ALS using a PFN1 mutation (glycine 118 to valine, G118V), and we are now interested in understanding how PFN1 becomes toxically lethal with only one amino acid substitution. Therefore, we studied mutation-related changes in the PFN1 protein and hypothesized that such changes significantly disturb its structure. Initially, we expressed and studied the purified PFN1WT and PFN1G118V proteins from bacterial culture. We found that the PFN1G118V protein has a different mean residue ellipticity, as measured by far-UV circular dichroism, accompanied by a spectral shift. The intrinsic fluorescence of PFN1G118V showed a small fluctuation in maximum fluorescence absorption and intensity. Moreover, we examined the time course of PFN1 aggregation using SDS-PAGE, western blotting, and MALDI-TOF/TOF and found that compared with PFN1WT, PFN1G118V had an increased tendency to form aggregates. Dynamic light scattering data confirmed this, showing a larger size distribution for PFN1G118V. Our data explain why PFN1G118V tends to aggregate, a phenotype that may be the basis for its neurotoxicity.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação/genética , Profilinas/química , Profilinas/genética , Agregados Proteicos/genética , Humanos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA