Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 677: 108183, 2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31704099

RESUMO

The prostaglandin D2 metabolite, 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2), exerts an anti-inflammatory effect through peroxisome proliferator-activated receptor γ (PPARγ)-dependent and -independent anti-inflammatory actions. In the present study, we focused on heme oxygenase-1 (HO-1) induced by 15d-PGJ2, and evaluated the effects of enema treatment with 15d-PGJ2 in the development of intestinal inflammation using a murine colitis model. Acute colitis was induced with dextran sulfate sodium (DSS) in male C57BL/6 mice (8 weeks old) and NF-E2-related factor-2 (Nrf2) deficient mice. Mice were rectally administered 15d-PGJ2 (1 µM, 0.2 mL: 66.9 ng) daily during DSS administration. Intestinal expression of HO-1 mRNA and protein after rectal administration of 15d-PGJ2 was evaluated by real-time PCR and western blotting, respectively. A disease activity index (DAI) was determined on a daily basis for each animal, and consisted of a calculated score based on changes in body weight, stool consistency, and intestinal bleeding. Tissue-associated myeloperoxidase (MPO) activity as an index of neutrophil infiltration and mRNA expression levels of TNF-α, IFN-γ, and IL-17A were measured in the colonic mucosa. In addition, we evaluated the effects of co-treatment with a HO-1 inhibitor, zinc protoporphyrin IX (ZnPP), or a specific PPARγ antagonist, GW9662. As a result, rectal administration of 15d-PGJ2 markedly induced HO-1 protein and mRNA expression in the colonic mucosa. Treatment with 15d-PGJ2 ameliorated the increase in DAI score and MPO activity and the mRNA expression levels of TNF-α, IFN-γ, and IL-17A after DSS administration. These effects of 15d-PGJ2 against intestinal inflammation were negated by co-treatment with ZnPP, but not with GW9662. In Nrf2 deficient mice, the rectal administration of 15d-PGJ2 did not affect colonic HO-1 expression and activity of DSS-induced colitis. These results demonstrate that 15d-PGJ2 inhibits development of intestinal inflammation in mice via PPAR-independent and Nrf2-HO-1-dependent mechanisms.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Proteínas de Membrana/metabolismo , Prostaglandina D2/análogos & derivados , Administração Retal , Animais , Anti-Inflamatórios/administração & dosagem , Colite/induzido quimicamente , Colo/citologia , Colo/patologia , Sulfato de Dextrana , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Prostaglandina D2/administração & dosagem , Prostaglandina D2/uso terapêutico
2.
J Biol Chem ; 292(35): 14544-14555, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684424

RESUMO

Macrophages use various cell-surface receptors to sense their environment and undergo polarized responses. The cytokines, interleukin (IL)-4 and IL-13, released from T-helper type 2 (Th2) cells, drive macrophage polarization toward an alternatively activated phenotype (M2). This phenotype is associated with the expression of potent pro-resolving mediators, such as the prostaglandin (PG) D2-derived cyclopentenone metabolite, 15d-PGJ2, produced by the cyclooxygenase (Ptgs; Cox) pathway. Interestingly, IL-4 treatment of bone marrow-derived macrophages (BMDMs) significantly down-regulates Cox-2 protein expression, whereas Cox-1 levels are significantly increased. This phenomenon not only challenges the dogma that Cox-1 is only developmentally regulated, but also demonstrates a novel mechanism in which IL-4-dependent regulation of Cox-1 involves the activation of the mechanistic target of rapamycin complex (mTORC). Using specific chemical inhibitors, we demonstrate here that IL-4-dependent Cox-1 up-regulation occurs at the post-transcriptional level via the Fes-Akt-mTORC axis. Activation of AMP-activated protein kinase (AMPK) by metformin, inhibition of mTORC by torin 1, or CRISPR/Cas9-mediated genetic knock-out of tuberous sclerosis complex-2 (Tsc2) blocked the IL-4-dependent expression of Cox-1 and the ability of macrophages to polarize to M2. However, use of 15d-PGJ2 partially rescued the effects of AMPK activation, suggesting the importance of Cox-1 in macrophage polarization as also observed in a model of gastrointestinal helminth clearance. In summary, these findings suggest a new paradigm where IL-4-dependent up-regulation of Cox-1 expression may play a key role in tissue homeostasis and wound healing during Th2-mediated immune responses, such as parasitic infections.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Interleucina-4/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Proteínas de Membrana/agonistas , Modelos Imunológicos , Proteínas Quinases Ativadas por AMP/química , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Imunomodulação/efeitos dos fármacos , Interleucina-4/genética , Ligantes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos Endogâmicos C57BL , Nippostrongylus/efeitos dos fármacos , Nippostrongylus/crescimento & desenvolvimento , Nippostrongylus/imunologia , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Prostaglandina D2/uso terapêutico , Proteínas Recombinantes/metabolismo , Infecções por Strongylida/imunologia , Infecções por Strongylida/metabolismo , Infecções por Strongylida/patologia , Infecções por Strongylida/prevenção & controle
3.
Acta Pharmacol Sin ; 38(5): 672-687, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28216619

RESUMO

Hepatic ischemia-reperfusion (I/R) injury is a common clinical impairment that occurs in many circumstances and leads to poor prognosis. Both apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is one of the best-studied anti-inflammatory prostaglandins, which has been verified to exert anti-inflammatory and cell-protective functions in various types of cells and animal models. In this study we explored the effects of 15d-PGJ2 on both apoptosis and autophagy in mouse hepatic I/R injury and its possible mechanisms. A model of segmental (70%) hepatic warm ischemia was established in Balb/c mice, and the pathological changes in serum and liver tissues were detected at 6, 12, and 24 h post-surgery, while 15d-PGJ2 (2.5, 7.5, 15 µg, iv) was administered 30 min prior the surgery. Pretreatment with 15d-PGJ2 (7.5, 15 µg) significantly ameliorated I/R-induced hepatic injury evidenced by dose-dependent reduction of serum ALT and AST levels as well as alleviated tissue damages. 15d-PGJ2 pretreatment significantly decreased the serum TNF-α and IL-1ß levels and the hepatic expression of F4/80, a major biomarker of macrophages. 15d-PGJ2 pretreatment upregulated the Bcl-2/Bax ratio, thus reducing the number of apoptotic cells in the livers. 15d-PGJ2 pretreatment considerably suppressed the expression of Beclin-1 and LC3, thus decreasing the number of autophagosomes in the livers. Furthermore, 15d-PGJ2 pretreatment activated Nrf2 and inhibited a ROS/HIF1α/BNIP3 pathway in the livers. Pretreatment with the PPARγ receptor blocker GW9662 (2 µg, ip) partly reversed the protective effects of 15d-PGJ2 on hepatic I/R injury. In conclusion, our results confirm the protective effect of 15d-PGJ2 on hepatic I/R injury, an effect that may rely on a reduction in the activation of Kupffer cells and on activation of the Nrf2 pathway, which lead to inhibition of ROS generation, apoptosis, and autophagy.


Assuntos
Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hepatopatias/tratamento farmacológico , Prostaglandina D2/análogos & derivados , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/patologia , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Camundongos Endogâmicos BALB C , Prostaglandina D2/administração & dosagem , Prostaglandina D2/uso terapêutico , Substâncias Protetoras/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
4.
Exp Parasitol ; 170: 100-108, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27693222

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas' disease, causes an intense inflammatory response in several tissues, including the liver. Since this organ is central to metabolism, its infection may be reflected in the outcome of the disease. 15-deoxy-Δ12,14 prostaglandin J2 (15dPGJ2), a natural agonist of peroxisome-proliferator activated receptor (PPAR) γ, has been shown to exert anti-inflammatory effects in the heart upon T. cruzi infection. However, its role in the restoration of liver function and reduction of liver inflammation has not been studied yet. BALB/c mice were infected with T. cruzi. The effects of in vivo treatment with 15dPGJ2 on liver inflammation and fibrosis, as well as on the GOT/GPT ratio were studied and the role of NF-κB pathway on 15dPGJ2-mediated effects was analysed. 15dPGJ2 reduced liver inflammatory infiltrates, proinflammatory enzymes and cytokines expression, restored the De Ritis ratio values to normal, reduced the deposits of interstitial and perisinusoidal collagen, reduced the expression of the pro-fibrotic cytokines and inhibited the translocation of the p65 NF-κB subunit to the nucleus. Thus, we showed that 15dPGJ2 is able to significantly reduce the inflammatory response and fibrosis and reduced enzyme markers of liver damage in mice infected with T. cruzi.


Assuntos
Doença de Chagas/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Fígado/patologia , Prostaglandina D2/análogos & derivados , Animais , Biomarcadores , Doença de Chagas/patologia , Citocinas/efeitos dos fármacos , DNA de Protozoário/análise , DNA de Protozoário/genética , Fígado/metabolismo , Fígado/parasitologia , Cirrose Hepática/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/antagonistas & inibidores , PPAR gama/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , Carga Parasitária , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma cruzi/genética , Trypanosoma cruzi/fisiologia
5.
Mediators Inflamm ; 2016: 9626427, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27872515

RESUMO

The prostaglandin, 15-deoxy Δ12,14-prostaglandin J2 (15d-PGJ2), is a lipid mediator that plays an important role in the control of chronic inflammatory disease. However, the role of prostanoid in rheumatoid arthritis (RA) is not well determined. We demonstrated the therapeutic effect of 15d-PGJ2 in an experimental model of arthritis. Daily administration of 15d-PGJ2 attenuated the severity of CIA, reducing the clinical score, pain, and edema. 15d-PGJ2 treatment was associated with a marked reduction in joint levels of proinflammatory cytokines. Although the mRNA expression of ROR-γt was profoundly reduced, FOXP3 was enhanced in draining lymph node cells from 15d-PGJ2-treated arthritic mice. The specific and polyclonal CD4+ Th17 cell responses were limited during the addition of prostaglandin to cell culture. Moreover, in vitro 15d-PGJ2 increased the expression of FOXP3, GITR, and CTLA-4 in the CD4+CD25- population, suggesting the induction of Tregs on conventional T cells. Prostanoid addition to CD4+CD25- cells selectively suppressed Th17 differentiation and promoted the enhancement of FOXP3 under polarization conditions. Thus, 15d-PGJ2 ameliorated symptoms of collagen-induced arthritis by regulating Th17 differentiation, concomitant with the induction of Tregs, and, consequently, protected mice from diseases aggravation. Altogether, these results indicate that 15d-PGJ2 may represent a potential therapeutic strategy in RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Antígenos CD4/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Prostaglandina D2/análogos & derivados , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Animais , Artrite Experimental/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico
6.
J Immunol ; 189(2): 1043-52, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22706081

RESUMO

The 15-deoxy-(Δ12,14)-PG J(2) (15d-PGJ(2)) has demonstrated excellent anti-inflammatory results in different experimental models. It can be used with a polymeric nanostructure system for modified drug release, which can change the therapeutic properties of the active principle, leading to increased stability and slower/prolonged release. The aim of the current study was to test a nanotechnological formulation as a carrier for 15d-PGJ(2), and to investigate the immunomodulatory effects of this formulation in a mouse periodontitis model. Poly (D,L-lactide-coglycolide) nanocapsules (NC) were used to encapsulate 15d-PGJ(2). BALB/c mice were infected on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 5) that were treated daily during 15 d with 1, 3, or 10 µg/kg 15d-PGJ(2)-NC. The animals were sacrificed, the submandibular lymph nodes were removed for FACS analysis, and the jaws were analyzed for bone resorption by morphometry. Immunoinflammatory markers in the gingival tissue were analyzed by reverse transcriptase-quantitative PCR, Western blotting, or ELISA. Infected animals treated with the 15d-PGJ(2)-NC presented lower bone resorption than infected animals without treatment (p < 0.05). Furthermore, infected animals treated with 10 µg/kg 15d-PGJ(2)-NC had a reduction of CD4(+)CD25(+)FOXP3(+) cells and CD4/CD8 ratio in the submandibular lymph node (p < 0.05). Moreover, CD55 was upregulated, whereas RANKL was downregulated in the gingival tissue of the 10 µg/kg treated group (p < 0.05). Several proinflammatory cytokines were decreased in the group treated with 10 µg/kg 15d-PGJ(2)-NC, and high amounts of 15d-PGJ(2) were observed in the gingiva. In conclusion, the 15d-PGJ(2)-NC formulation presented immunomodulatory effects, decreasing bone resorption and inflammatory responses in a periodontitis mouse model.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Reabsorção Óssea/prevenção & controle , Nanocápsulas/administração & dosagem , Periodontite/tratamento farmacológico , Periodontite/imunologia , Prostaglandina D2/análogos & derivados , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/patologia , Infecções por Actinobacillus/prevenção & controle , Aggregatibacter actinomycetemcomitans/imunologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Reabsorção Óssea/imunologia , Reabsorção Óssea/microbiologia , Modelos Animais de Doenças , Gengiva/efeitos dos fármacos , Gengiva/imunologia , Gengiva/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Nanocápsulas/uso terapêutico , Periodontite/patologia , Prostaglandina D2/administração & dosagem , Prostaglandina D2/uso terapêutico
7.
Transl Vis Sci Technol ; 12(5): 5, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37133840

RESUMO

Purpose: The purpose of this study was to investigate the impact of prostaglandin D2 (PGD2) receptor 2 (DP2) on choroidal neovascularization (CNV) formation in mice. Methods: Using a laser-induced CNV model, the CNV size of wild-type (WT) mice treated with DP2 antagonist (CAY10471 or OC000459) was compared with that of untreated mice. Vascular endothelial growth factor (VEGF) and MCP-1 levels were also compared between the two groups. Similar experiments were performed comparing DP2 knockout (DP2KO) mice with WT mice (8 and 56 weeks old). The number of infiltrating macrophages to laser spots was also compared between the WT and DP2KO mice. We administered a DP2 antagonist to 15-methyl PGD2 (a DP2 agonist)-stimulated ARPE-19 cells and measured VEGF secretion by enzyme-linked immunosorbent assay. Tube formation assay was performed on human umbilical vein endothelial cells with or without a DP2 antagonist. Results: CNV sizes were significantly smaller in mice treated with CAY10471 or OC000459 than in those treated with vehicle. Similarly, the CNV size of DP2KO mice was significantly smaller than that of WT mice. The number of macrophages at laser spots in DP2KO mice was significantly lower than that in WT mice. The VEGF concentration of lasered DP2KO mice's eyes was significantly lower than that of lasered WT mice' eyes. DP2 antagonist treatment suppressed VEGF secretion in ARPE-19 cells under 15-methyl PGD2 stimulation. The tube formation assay suggested that lumen formation was inhibited by a DP2 antagonist. Conclusions: DP2 blockade attenuated choroidal neovascularization. Translational Relevance: Drugs targeting DP2 are potentially a novel treatment for age-related macular degeneration.


Assuntos
Neovascularização de Coroide , Fator A de Crescimento do Endotélio Vascular , Camundongos , Humanos , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Lasers , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Knockout
8.
Int Immunopharmacol ; 121: 110491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329807

RESUMO

15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potential to alleviate liver inflammation in chronic injury but was less studied in acute injury. Acute liver injury was associated with elevated macrophage migration inhibitory factor (MIF) levels in damaged hepatocytes. This study aimed to investigate the regulatory mechanism of hepatocyte-derived MIF by 15d-PGJ2 and its subsequent impact on acute liver injury. In vivo, mouse models were established by carbon tetrachloride (CCl4) intraperitoneal injection, with or without 15d-PGJ2 administration. 15d-PGJ2 treatment reduced the necrotic areas induced by CCl4. In the same mouse model constructed using enhanced green fluorescent protein (EGFP)-labeled bone marrow (BM) chimeric mice, 15d-PGJ2 reduced CCl4 induced BM-derived macrophage (BMM, EGFP+F4/80+) infiltration and inflammatory cytokine expression. Additionally, 15d-PGJ2 down-regulated liver and serum MIF levels; liver MIF expression was positively correlated with BMM percentage and inflammatory cytokine expression. In vitro, 15d-PGJ2 inhibited Mif expression in hepatocytes. In primary hepatocytes, reactive oxygen species inhibitor (NAC) showed no effect on MIF inhibition by 15d-PGJ2; PPARγ inhibitor (GW9662) abolished 15d-PGJ2 suppressed MIF expression and antagonists (troglitazone, ciglitazone) mimicked its function. In Pparg silenced AML12 cells, the suppression of MIF by 15d-PGJ2 was weakened; 15d-PGJ2 promoted PPARγ activation in AML 12 cells and primary hepatocytes. Furthermore, the conditioned medium of recombinant MIF- and lipopolysaccharide-treated AML12 respectively promoted BMM migration and inflammatory cytokine expression. Conditioned medium of 15d-PGJ2- or siMif-treated injured AML12 suppressed these effects. Collectively, 15d-PGJ2 activated PPARγ to suppress MIF expression in injured hepatocytes, reducing BMM infiltration and pro-inflammatory activation, ultimately alleviating acute liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fatores Inibidores da Migração de Macrófagos , Prostaglandina D2 , Animais , Camundongos , Meios de Cultivo Condicionados , Hepatócitos , Fígado , Fatores Inibidores da Migração de Macrófagos/metabolismo , PPAR gama , Prostaglandina D2/uso terapêutico , Prostaglandina D2/farmacologia , Prostaglandinas , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
9.
Am J Pathol ; 179(1): 302-14, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21703412

RESUMO

Prostaglandin D2 (PGD2) exerts its effects through two distinct receptors: the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and the D prostanoid (DP) receptor. Our previous study demonstrated that CRTH2 mediates contact hypersensitivity (CHS) in mice. However, the function of DP receptor remains to be fully established. In this study, we examine the pathophysiological roles of PGD2 using DP-deficient (DP(-/-)) and CRTH2/DP-deficient (CRTH2(-/-)/DP(-/-)) mice to elucidate receptor-mediated PGD2 action in CHS. We observed profound exacerbation of CHS in DP(-/-) mice. CRTH2(-/-)/DP(-/-) mice showed similar exacerbation, but to a lesser extent. These symptoms were accompanied by increased production of interferon-γ and IL-17. The increase in IL-17 producing γδ T cells was marked and presumably contributed to the enhanced CHS. DP deficiency promoted the in vivo migration of dendritic cells to regional lymph nodes. A DP agonist added to DCs in vitro was able to inhibit production of IL-12 and IL-1ß. Interestingly, production of IL-10 in dendritic cells was elevated via the DP pathway, but it was lowered by the CRTH2 pathway. Collectively, PGD2 signals through CRTH2 to mediate CHS inflammation, and conversely, DP signals to exert inhibitory effects on CHS. Thus, we report opposing functions for PGD2 that depend on receptor usage in allergic reactions.


Assuntos
Dermatite de Contato/tratamento farmacológico , Dermatite de Contato/patologia , Prostaglandina D2/uso terapêutico , Receptores Imunológicos/fisiologia , Receptores de Prostaglandina/fisiologia , Animais , Western Blotting , Movimento Celular , Quimiocinas , Citocinas , Dermatite de Contato/metabolismo , Feminino , Citometria de Fluxo , Rearranjo Gênico da Cadeia delta dos Receptores de Antígenos dos Linfócitos T/genética , Rearranjo Gênico da Cadeia gama dos Receptores de Antígenos dos Linfócitos T/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-17/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores
10.
Oxid Med Cell Longev ; 2022: 1571705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437456

RESUMO

The pathogenesis of cerebral ischemia-reperfusion (I/R) injury is complex and does not exhibit an effective strategy. Maternal inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We aimed to investigate the effect of maternal inflammation on offspring susceptibility to cerebral I/R injury and the mechanisms by which it exerts its effects. Pregnant SD rats were intraperitoneally injected with LPS (300 µg/kg/day) at gestational days 11, 14, and 18. Pups were subjected to MCAO/R on postnatal day 60. Primary neurons were obtained from postnatal day 0 SD rats and subjected to OGD/R. Neurological deficits, brain injury, neuronal viability, neuronal damage, and neuronal apoptosis were assessed. Oxidative stress and inflammation were evaluated, and the expression levels of COX-2/PGD2/DP pathway-related proteins and apoptotic proteins were detected. Maternal LPS exposure significantly increased the levels of oxidative stress and inflammation, significantly activated the COX-2/PGD2/DP2 pathway, and increased proapoptotic protein expression. However, maternal LPS exposure significantly decreased the antiapoptotic protein expression, which subsequently increased neurological deficits and cerebral I/R injury in offspring rats. The corresponding results were observed in primary neurons. Moreover, these effects of maternal LPS exposure were reversed by a COX-2 inhibitor and DP1 agonist but exacerbated by a DP2 agonist. In conclusion, maternal inflammatory exposure may increase offspring susceptibility to cerebral I/R injury. Moreover, the underlying mechanism might be related to the activation of the COX-2/PGD2/DP2 pathway. These findings provide a theoretical foundation for the development of therapeutic drugs for cerebral I/R injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Isquemia Encefálica/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo , Feminino , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Gravidez , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Transdução de Sinais
11.
Chem Res Toxicol ; 24(8): 1231-41, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21728338

RESUMO

15-Deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a representative J-series cyclopentenone prostaglandin bearing an electrophilic α,ß-unsaturated carbonyl group. In the present study, treatment of human breast cancer MCF-7 cells with 15d-PGJ(2) caused the up-regulation of the glutamate cysteine ligase catalytic (GCLC) subunit, the rate-limiting enzyme in glutathione (GSH) synthesis. 15d-PGJ(2) treatment caused nuclear translocation and transactivation of Nrf2, a redox-sensitive transcription factor responsible for induced expression of antioxidant and other cytoprotective genes. siRNA knockdown of Nrf2 abrogated 15d-PGJ(2)-induced GCLC expression. Following 15d-PGJ(2) treatment, the intracellular GSH level was initially diminished but eventually enhanced even above the basal level. The reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) abolished the 15d-PGJ2-induced Nrf2 activation and GCLC expression. Pharmacologic inhibition or siRNA knockdown of Akt, the target of phosphoinositide 3-kinase (PI3-K), attenuated 15d-PGJ(2)-induced Nrf2 activation and GCLC expression, and NAC treatment inhibited phosphorylation of Akt, and subsequently Nrf2 activation and GCLC upregulation. 9,10-Dihydro-15-PGJ2, a nonelectrophilic analogue of 15d-PGJ(2) that lacks the ability to form a conjugate with GSH, failed to induce activation of Akt and Nrf2 as well as ROS generation. These findings, taken all together, suggest that intracellular accumulation of ROS formed as a consequence of initial depletion of GSH can activate Akt, which in turn induces Nrf2 activation and subsequently the expression of GCLC, leading to the restoration of GSH. Interestingly, the extracellular GSH level was increased, concomitantly with the depletion of the intracellular GSH following 15d-PGJ(2) treatment. However, 15d-PGJ(2) was unable to influence both intra- and extra-cellular GSH levels when multidrug resistance-associated protein 1 (MRP1), the efflux pump for GSH conjugates, was blocked by its antagonist, MK571. Moreover, 15d-PGJ(2)-induced GCLC expression was attenuated by the MK571 and also by siRNA knockdown of MRP1, suggesting that MRP1 contributes to 15d-PGJ(2)-mediated up-regulation of GCLC by pumping out the 15d-PGJ(2)-GSH conjugate. It is speculated that 15d-PGJ(2), once effluxed through MRP, liberates from the GSH conjugate, and the free 15d-PGJ(2) re-enters the cell and forms the GSH conjugate again. In conclusion, MRP1 mediates Nrf2-dependent up-regulation of GCLC in 15d-PGJ(2)-treated MCF-7 cells, possibly via a putative recycling loop of 15d-PGJ(2)-GSH conjugation.


Assuntos
Neoplasias da Mama/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Prostaglandina D2/análogos & derivados , Acetilcisteína/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Glutationa/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fosfatidilinositol 3-Quinases/metabolismo , Propionatos/farmacologia , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima
12.
Brain Behav Immun ; 25 Suppl 1: S137-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21376806

RESUMO

Fetal alcohol spectrum disorders (FASD) result from ethanol exposure to the developing fetus and are the most common cause of mental retardation in the United States. These disorders are characterized by a variety of neurodevelopmental and neurodegenerative anomalies which result in significant lifetime disabilities. Thus, novel therapies are required to limit the devastating consequences of FASD. Neuropathology associated with FASD can occur throughout the central nervous system (CNS), but is particularly well characterized in the developing cerebellum. Rodent models of FASD have previously demonstrated that both Purkinje cells and granule cells, which are the two major types of neurons in the cerebellum, are highly susceptible to the toxic effects of ethanol. The current studies demonstrate that ethanol decreases the viability of cultured cerebellar granule cells and microglial cells. Interestingly, microglia have dual functionality in the CNS. They provide trophic and protective support to neurons. However, they may also become pathologically activated and produce inflammatory molecules toxic to parenchymal cells including neurons. The findings in this study demonstrate that the peroxisome proliferator-activated receptor-γ agonists 15-deoxy-Δ12,15 prostaglandin J2 and pioglitazone protect cultured granule cells and microglia from the toxic effects of ethanol. Furthermore, investigations using a newly developed mouse model of FASD and stereological cell counting methods in the cerebellum elucidate that ethanol administration to neonates is toxic to both Purkinje cell neurons as well as microglia, and that in vivo administration of PPAR-γ agonists protects these cells. In composite, these studies suggest that PPAR-γ agonists may be effective in limiting ethanol-induced toxicity to the developing CNS.


Assuntos
Encéfalo/efeitos dos fármacos , Etanol/farmacologia , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , PPAR gama/agonistas , Análise de Variância , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , PPAR gama/farmacologia , PPAR gama/uso terapêutico , Pioglitazona , Gravidez , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico
13.
Am J Physiol Gastrointest Liver Physiol ; 298(3): G410-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20056897

RESUMO

Acute obstructive cholangitis is a common disease with a high mortality rate. Ligands for peroxisome proliferator-activated receptor-gamma (PPARgamma), such as 15-deoxy-Delta(12,14)-prostaglandin J(2) (15D-PGJ(2)), have been proposed as a new class of anti-inflammatory compounds. This study investigated the effect of 15D-PGJ(2) treatment on lipopolysaccharide (LPS)-induced acute obstructive cholangitis. The rats were randomly assigned to five groups: sham operation (Sham; simple laparotomy), sham operation with intraperitoneal saline infusion (Sham+Saline), sham operation with intraperitoneal LPS infusion (Sham+LPS), bile duct ligation (BDL) with saline infusion into the bile duct (BDL+Saline), and BDL with LPS infusion into the bile duct (BDL+LPS). Biochemical assays of blood samples, histology of the liver, portal venous pressure, hyaluronic acid clearance, and expression of inflammation-associated genes in the liver were evaluated. Furthermore, the Sham+LPS and the BDL+LPS group were divided into two groups (with and without 15D-PGJ(2) treatment), and their survival rates were compared. Biochemical assays of blood samples, portal venous pressure, hyaluronic acid clearance, and expression of inflammation-associated genes in the liver were all significantly higher in the BDL+LPS group compared with those in the BDL+Saline group, indicating the presence of increased liver damage in the first group. However, preoperative administration of 15D-PGJ(2) significantly improved these outcomes. Furthermore, the survival rate after establishment of cholangitis was significantly improved by the administration of 15D-PGJ(2) in the BDL+LPS group. These results clearly demonstrate that 15D-PGJ(2) inhibits the inflammatory response and endothelial cell damage seen in acute obstructive cholangitis and could contribute to improve the outcome of this pathology.


Assuntos
Colangite/prevenção & controle , Colestase Extra-Hepática/complicações , Endotélio Vascular/efeitos dos fármacos , Falência Hepática Aguda/prevenção & controle , Prostaglandina D2/análogos & derivados , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Ductos Biliares/cirurgia , Bilirrubina/sangue , Colangite/sangue , Colangite/induzido quimicamente , Colangite/complicações , Colangite/patologia , Colestase Extra-Hepática/sangue , Colestase Extra-Hepática/patologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Ácido Hialurônico/sangue , Ácido Hialurônico/metabolismo , Interleucina-6/genética , Ligadura , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Circulação Hepática/fisiologia , Falência Hepática Aguda/etiologia , Masculino , NF-kappa B/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/genética , PPAR gama/genética , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Ratos , Ratos Wistar , Análise de Sobrevida , Fator de Necrose Tumoral alfa/genética
14.
Blood ; 112(10): 4051-60, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18755987

RESUMO

Thrombocytopenia is a critical problem that occurs in many hematologic diseases, as well as after cancer therapy and radiation exposure. Platelet transfusion is the most commonly used therapy but has limitations of alloimmunization, availability, and expense. Thus, the development of safe, small, molecules to enhance platelet production would be advantageous for the treatment of thrombocytopenia. Herein, we report that an important lipid mediator and a peroxisome proliferator-activated receptor gamma (PPARgamma) ligand called 15-deoxy-Delta(12,14) prostaglandin J(2) (15d-PGJ(2)), increases Meg-01 maturation and platelet production. 15d-PGJ(2) also promotes platelet formation from culture-derived mouse and human megakaryocytes and accelerates platelet recovery after in vivo radiation-induced bone marrow injury. Interestingly, the platelet-enhancing effects of 15d-PGJ(2) in Meg-01 cells are independent of PPARgamma, but dependent on reactive oxygen species (ROS) accumulation; treatment with antioxidants such as glutathione ethyl ester (GSH-EE); or N-acetylcysteine (NAC) attenuate 15d-PGJ(2)-induced platelet production. Collectively, these data support the concept that megakaryocyte redox status plays an important role in platelet generation and that small electrophilic molecules may have clinical efficacy for improving platelet numbers in thrombocytopenic patients.


Assuntos
Antineoplásicos/farmacologia , Plaquetas/metabolismo , Megacariócitos/metabolismo , Prostaglandina D2/análogos & derivados , Trombocitopenia/metabolismo , Acetilcisteína/farmacologia , Animais , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Medula Óssea/metabolismo , Linhagem Celular , Feminino , Glutationa/análogos & derivados , Glutationa/farmacologia , Humanos , Masculino , Camundongos , PPAR gama/metabolismo , Transfusão de Plaquetas , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/terapia , Espécies Reativas de Oxigênio/metabolismo , Trombocitopenia/terapia
15.
Mem Inst Oswaldo Cruz ; 105(2): 137-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20428671

RESUMO

The acute phase of Trypanosoma cruzi infection is associated with a strong inflammatory reaction in the heart characterised by a massive infiltration of immune cells that is dependent on the T. cruzi strain and the host response. 15d-PGJ(2) belongs to a new class of anti-inflammatory compounds with possible clinical applications. We evaluated the effects of 15d-PGJ(2) administered during the acute phase of T. cruzi infection in mice. Mice were infected with the Colombian strain of T. cruzi and subsequently treated with 15d-PGJ2 repeatedly for seven days. The inflammatory infiltrate was examined by histologic analysis. Slides were immunohistochemically stained to count the number and the relative size of parasite nests. Infection-induced changes in serum cytokine levels were measured by ELISA. The results demonstrated that treatment with 15d-PGJ(2) reduced the inflammatory infiltrate in the skeletal muscle at the site of infection and decreased the number of lymphocytes and neutrophils in the blood. In addition, we found that 15d-PGJ(2) led to a decrease in the relative volume density of amastigote nests in cardiac muscle. T. cruzi-infected animals treated with 15d-PGJ(2) displayed a statistically significant increase in IL-10 levels with no change in IFN-gamma levels. Taken together, we demonstrate that treatment with 15d-PGJ(2) in the acute phase of Chagas disease led to a controlled immune response with decreased numbers of amastigote nests, as measured by the volume density.


Assuntos
Doença de Chagas/tratamento farmacológico , Interferon gama/imunologia , Interleucina-10/imunologia , PPAR gama/agonistas , Prostaglandina D2/análogos & derivados , Animais , Doença de Chagas/imunologia , Doença de Chagas/patologia , Ensaio de Imunoadsorção Enzimática , Imunidade Celular , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/uso terapêutico , Prostaglandina D2/uso terapêutico
16.
Med Hypotheses ; 143: 110080, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32683221

RESUMO

Coronaviruses including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2, also known as 2019-nCoV especially in China) replicate and divide in host cells. During this they are partly hidden from the innate immune responses although inflammatory consequences of viral replication still occur. We propose that anti-inflammatory antiviral prostaglandins may not only restrict viral replication but also prevent inflammatory responses in the lungs and other vital organs that are known to be part of the immuno-pathogenesis of coronavirus disease-19 (COVID-19). The combination of anti-inflammatory antiviral prostaglandins with interferons may lead to the clearance of viruses inside growth-restricted infected cells. However, further experimental studies and clinical trials should be conducted to evaluate the safety and efficacy of these possible therapies.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Prostaglandina D2/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/etiologia , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Modelos Biológicos , Pandemias , Pneumonia Viral/etiologia , SARS-CoV-2 , Pesquisa Translacional Biomédica , Tratamento Farmacológico da COVID-19
17.
Pulm Pharmacol Ther ; 22(4): 318-25, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19489131

RESUMO

Multiple factors contribute to the pathogenesis and prognosis of chronic obstructive pulmonary disease(COPD), still requiring new therapeutic strategies and medications for the disease. The aim of the present study is to investigate the model of lipopolysaccharide (LPS)-induced chronic lung injury and hyperinflation and test therapeutic effects of peroxisome proliferator-activated receptor (PPAR)-gamma agonist. Wister rats were challenged with intra-tracheal instillation of LPS at concentrations of 0.006, 0.060, 0.600, and 6.000 mg/ml per kg, twice a week, for 1, 2, 4 and 6 weeks. PPAR activator, 15-deoxy-Delta12,14-prostaglandin J2 (15D-PGJ2), or vehicle (PBS) was administered orally and daily at the dose of 1 and 10 mg/ml per kg in animals challenged with LPS or PBS at the dose of 0.060 mg/ml per kg body weight twice a week for 4 weeks. We found that intra-tracheal exposure of LPS resulted in a dose-dependent pattern of chronic lung hyperinflation and hypertrophy, increased alveolar enlargement, reduced vascular endothelial growth factor (VEGF) and elevated tissue inhibitor of metalloproteinases (TIMP)-1 levels in bronchoalveolar lavage (BAL) fluid, and early changes of leukocyte influx and interferon (IFN)-gamma levels in bronchoalveolar lavage (BAL) fluid. PPAR-gamma agonist ameliorated these changes related with the dose used.LPS-induced lung disease model shows some similarities with human disease, and PPAR-gamma agonist maybe an alternative for COPD therapy.


Assuntos
Lipopolissacarídeos , Pneumopatias/induzido quimicamente , Pneumopatias/tratamento farmacológico , PPAR gama/agonistas , Prostaglandina D2/análogos & derivados , Animais , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Interferon gama/metabolismo , Contagem de Leucócitos , Pulmão/patologia , Pneumopatias/patologia , Medidas de Volume Pulmonar , Pneumonia/patologia , Prostaglandina D2/uso terapêutico , Alvéolos Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Ratos , Ratos Wistar , Inibidor Tecidual de Metaloproteinase-1/metabolismo
18.
Dig Dis Sci ; 54(2): 292-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18594976

RESUMO

Peroxisome proliferator activator receptor (PPAR) ligands prevent liver fibrosis, while the role of all-trans retinoic acid (ATRA) and its metabolite 9-cis retinoic acid (9-cis RA) is less clear. We have investigated the ability of the combination of PPAR gamma ligand rosiglitazone (RSG) and of ATRA to prevent liver fibrosis. In vivo treatment with RSG or ATRA reduced fibrotic nodules, spleen weight, and hydroxyproline levels in rat model of thioacetamide-induced liver fibrosis. The combination of ATRA + RSG caused the strongest inhibition, accompanied by decreased expression of collagen I, alpha-smooth muscle actin, TGF beta 1, and TNFalpha. In vitro studies showed that PPAR gamma ligand 15-deoxy-Delta 12,14-prostaglandin J(2)[PJ(2)] and RXR ligand 9-cis RA or PJ(2) and ATRA inhibited proliferation of hepatic stellate cells HSC-T6. 9-cis RA inhibited c-jun levels and also inhibited expression of its receptor RXR alpha in HSC-T6 cells. The combination of PPAR-gamma and RAR agonists demonstrated an additive effect in the inhibition of TAA-induced hepatic fibrosis, due to inhibition of HSC proliferation and reduction of profibrotic TGF beta 1 and proinflammatory TNFalpha.


Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , PPAR gama/agonistas , Receptores X de Retinoides/agonistas , Tiazolidinedionas/farmacologia , Tretinoína/farmacologia , Alitretinoína , Animais , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Sinergismo Farmacológico , Cirrose Hepática Experimental/induzido quimicamente , Masculino , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores X de Retinoides/metabolismo , Rosiglitazona , Tiazolidinedionas/uso terapêutico , Tioacetamida/toxicidade , Tretinoína/uso terapêutico
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(5): 609-618, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30684679

RESUMO

Pain is one of the cardinal signs of inflammation and is present in many inflammatory conditions. Therefore, anti-inflammatory drugs such as NSAIDs also have analgesic properties. We previously showed that prostaglandin D2-glycerol ester (PGD2-G), endogenously produced by cyclooxygenase-2 from the endocannabinoid 2-arachidonoylglycerol, has anti-inflammatory effects in vitro and in vivo that are partly mediated by DP1 receptor activation. In this work, we investigated its effect in a model of carrageenan-induced inflammatory pain. PGD2-G decreased hyperalgesia and edema, leading to a faster recovery. Moreover, PGD2-G decreased carrageenan-induced inflammatory markers in the paw as well as inflammatory cell recruitment. The effects of PGD2-G were independent from metabolite formation (PGD2 and 15d-PGJ2-G) or DP1 receptor activation in this model. Indeed PGD2 delayed recovery from hyperalgesia while 15d-PGJ2-G worsened the edema. However, while PGD2-G decreased hyperalgesia in this model of inflammatory pain, it had no effect when tested in the capsaicin-induced pain model. While the targets mediating the effects of this bioactive lipid in inflammatory pain remain to be elucidated, our findings further support the interest of anti-inflammatory lipid mediators in the management of inflammatory pain.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Prostaglandina D2/uso terapêutico , Animais , Carragenina , Esterificação , Hiperalgesia/induzido quimicamente , Inflamação/induzido quimicamente , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA