Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 42(4): 679-91, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25902482

RESUMO

Mutations in MECP2, encoding the epigenetic regulator methyl-CpG-binding protein 2, are the predominant cause of Rett syndrome, a disease characterized by both neurological symptoms and systemic abnormalities. Microglial dysfunction is thought to contribute to disease pathogenesis, and here we found microglia become activated and subsequently lost with disease progression in Mecp2-null mice. Mecp2 was found to be expressed in peripheral macrophage and monocyte populations, several of which also became depleted in Mecp2-null mice. RNA-seq revealed increased expression of glucocorticoid- and hypoxia-induced transcripts in Mecp2-deficient microglia and peritoneal macrophages. Furthermore, Mecp2 was found to regulate inflammatory gene transcription in response to TNF stimulation. Postnatal re-expression of Mecp2 using Cx3cr1(creER) increased the lifespan of otherwise Mecp2-null mice. These data suggest that Mecp2 regulates microglia and macrophage responsiveness to environmental stimuli to promote homeostasis. Dysfunction of tissue-resident macrophages might contribute to the systemic pathologies observed in Rett syndrome.


Assuntos
Ilhas de CpG/imunologia , Epigênese Genética , Macrófagos Peritoneais/imunologia , Proteína 2 de Ligação a Metil-CpG/imunologia , Microglia/imunologia , Síndrome de Rett/imunologia , Animais , Receptor 1 de Quimiocina CX3C , Metilação de DNA , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase/imunologia , Humanos , Integrases/genética , Integrases/imunologia , Longevidade/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/patologia , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/patologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Síndrome de Rett/genética , Síndrome de Rett/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686597

RESUMO

Complex body movements require complex dynamics and coordination among neurons in motor cortex. Conversely, a long-standing theoretical notion supposes that if many neurons in motor cortex become excessively synchronized, they may lack the necessary complexity for healthy motor coding. However, direct experimental support for this idea is rare and underlying mechanisms are unclear. Here we recorded three-dimensional body movements and spiking activity of many single neurons in motor cortex of rats with enhanced synaptic inhibition and a transgenic rat model of Rett syndrome (RTT). For both cases, we found a collapse of complexity in the motor system. Reduced complexity was apparent in lower-dimensional, stereotyped brain-body interactions, neural synchrony, and simpler behavior. Our results demonstrate how imbalanced inhibition can cause excessive synchrony among movement-related neurons and, consequently, a stereotyped motor code. Excessive inhibition and synchrony may underlie abnormal motor function in RTT.


Assuntos
Encéfalo/fisiopatologia , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/fisiologia , Atividade Motora/genética , Atividade Motora/fisiologia , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Modelos Neurológicos , Córtex Motor/fisiopatologia , Neurônios Motores/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Comportamento Estereotipado/fisiologia
3.
Hum Mol Genet ; 30(22): 2161-2176, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34230964

RESUMO

Severe respiratory impairment is a prominent feature of Rett syndrome, an X-linked disorder caused by mutations in methyl CpG-binding protein 2 (MECP2). Despite MECP2's ubiquitous expression, respiratory anomalies are attributed to neuronal dysfunction. Here, we show that neutral lipids accumulate in mouse Mecp2-mutant lungs, whereas surfactant phospholipids decrease. Conditional deletion of Mecp2 from lipid-producing alveolar epithelial 2 (AE2) cells causes aberrant lung lipids and respiratory symptoms, whereas deletion of Mecp2 from hindbrain neurons results in distinct respiratory abnormalities. Single-cell RNA sequencing of AE2 cells suggests lipid production and storage increase at the expense of phospholipid synthesis. Lipid production enzymes are confirmed as direct targets of MECP2-directed nuclear receptor co-repressor 1/2 transcriptional repression. Remarkably, lipid-lowering fluvastatin improves respiratory anomalies in Mecp2-mutant mice. These data implicate autonomous pulmonary loss of MECP2 in respiratory symptoms for the first time and have immediate impacts on patient care.


Assuntos
Metabolismo dos Lipídeos , Pulmão/metabolismo , Pulmão/fisiopatologia , Proteína 2 de Ligação a Metil-CpG/deficiência , Síndrome de Rett/etiologia , Síndrome de Rett/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fluvastatina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/genética , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Mutação , Correpressor 1 de Receptor Nuclear , Fenótipo , Ligação Proteica , Surfactantes Pulmonares/metabolismo , Síndrome de Rett/diagnóstico , Síndrome de Rett/tratamento farmacológico
4.
Nature ; 550(7676): 398-401, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29019980

RESUMO

Heterozygous mutations in the X-linked MECP2 gene cause the neurological disorder Rett syndrome. The methyl-CpG-binding protein 2 (MeCP2) protein is an epigenetic reader whose binding to chromatin primarily depends on 5-methylcytosine. Functionally, MeCP2 has been implicated in several cellular processes on the basis of its reported interaction with more than 40 binding partners, including transcriptional co-repressors (for example, the NCoR/SMRT complex), transcriptional activators, RNA, chromatin remodellers, microRNA-processing proteins and splicing factors. Accordingly, MeCP2 has been cast as a multi-functional hub that integrates diverse processes that are essential in mature neurons. At odds with the concept of broad functionality, missense mutations that cause Rett syndrome are concentrated in two discrete clusters coinciding with interaction sites for partner macromolecules: the methyl-CpG binding domain and the NCoR/SMRT interaction domain. Here we test the hypothesis that the single dominant function of MeCP2 is to physically connect DNA with the NCoR/SMRT complex, by removing almost all amino-acid sequences except the methyl-CpG binding and NCoR/SMRT interaction domains. We find that mice expressing truncated MeCP2 lacking both the N- and C-terminal regions (approximately half of the native protein) are phenotypically near-normal; and those expressing a minimal MeCP2 additionally lacking a central domain survive for over one year with only mild symptoms. This minimal protein is able to prevent or reverse neurological symptoms when introduced into MeCP2-deficient mice by genetic activation or virus-mediated delivery to the brain. Thus, despite evolutionary conservation of the entire MeCP2 protein sequence, the DNA and co-repressor binding domains alone are sufficient to avoid Rett syndrome-like defects and may therefore have therapeutic utility.


Assuntos
Teste de Complementação Genética , Terapia Genética/métodos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/terapia , Deleção de Sequência , Células 3T3 , Animais , Encéfalo/metabolismo , DNA/metabolismo , Células HeLa , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Mutação de Sentido Incorreto , Fenótipo , Domínios Proteicos/genética , Estabilidade Proteica , Síndrome de Rett/patologia , Síndrome de Rett/fisiopatologia , Transdução Genética
5.
Proc Natl Acad Sci U S A ; 116(32): 16086-16094, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31320591

RESUMO

Exosomes are thought to be released by all cells in the body and to be involved in intercellular communication. We tested whether neural exosomes can regulate the development of neural circuits. We show that exosome treatment increases proliferation in developing neural cultures and in vivo in dentate gyrus of P4 mouse brain. We compared the protein cargo and signaling bioactivity of exosomes released by hiPSC-derived neural cultures lacking MECP2, a model of the neurodevelopmental disorder Rett syndrome, with exosomes released by isogenic rescue control neural cultures. Quantitative proteomic analysis indicates that control exosomes contain multiple functional signaling networks known to be important for neuronal circuit development. Treating MECP2-knockdown human primary neural cultures with control exosomes rescues deficits in neuronal proliferation, differentiation, synaptogenesis, and synchronized firing, whereas exosomes from MECP2-deficient hiPSC neural cultures lack this capability. These data indicate that exosomes carry signaling information required to regulate neural circuit development.


Assuntos
Exossomos/metabolismo , Rede Nervosa/metabolismo , Neurogênese , Potenciais de Ação , Animais , Contagem de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Giro Denteado/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Transdução de Sinais , Esferoides Celulares/citologia , Sinapses/metabolismo
6.
Neurobiol Dis ; 149: 105235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33383186

RESUMO

Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent genetic cause of intellectual disability in girls, and there is currently no cure for the disease. We have previously shown that gene therapy using a self-complementary AAV9 viral vector expressing a codon-optimized Mecp2 version (AAV9-MCO) significantly improved symptoms and increased survival in male Mecp2-deficient mice. Here, we pursued our studies and investigated the safety and efficacy of long-term gene therapy in the genetically relevant RTT mouse model: the heterozygous (HET) Mecp2 deficient female mouse. These mice were injected with the AAV9-MCO vector through the tail vein and an array of behavioral tests was performed. At 16- and 30-weeks post-injection, this treatment was able to rescue apneas and improved the spontaneous locomotor deficits and circadian locomotor activity in Mecp2 HET mice treated with AAV9-MCO at a dose of 5 × 1011 vg/mouse. To examine whether a higher dose of vector could result in increased improvements, we injected Mecp2 HET mice with a higher MCO vector dose (1012 vg/mouse), which resulted in some severe, sometimes lethal, side effects. In order to confirm these effects, a new cohort of Mecp2 HET mice were administered increasing doses of MCO vector (1011, 5 × 1011 and 1012 vg/mouse). Again, two weeks after vector administration, some Mecp2 HET mice were found dead while others displayed severe side effects and had to be euthanized. These deleterious effects were not observed in Mecp2 HET mice injected with a high dose of AAV9-GFP and were directly proportionate to vector dosage (0, 23 or 54% mortality at an AAV9-MCO dose of 1011, 5 × 1011, 1012 vg/mouse, respectively), and no such lethality was observed in wild-type (WT) mice. In the Mecp2 HET mice treated with the high and medium AAV9-MCO doses, blood chemistry analysis and post-mortem histology showed liver damage with drastically elevated levels of liver transaminases and disorganized liver architecture. Apoptosis was confirmed by the presence of TUNEL- and cleaved-caspase 3-positive cells in the Mecp2 HET mice treated with the higher doses of AAV9-MCO. We then studied the involvement of the unfolded protein response (UPR) in triggering apoptosis since it can be activated by AAV vectors. Increased expression of the C/EBP homologous protein (CHOP), one of UPR downstream effectors, was confirmed in Mecp2 HET mice after vector administration. The toxic reaction seen in some treated mice indicates that, although gene therapy for RTT improved breathing deficits observed in Mecp2 HET mice, further studies are needed to better understand the underlying mechanisms and caution must be exercised before similar attempts are undertaken in female Rett patients.


Assuntos
Adenoviridae , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Proteína 2 de Ligação a Metil-CpG/deficiência , Síndrome de Rett/metabolismo , Síndrome de Rett/terapia , Adenoviridae/genética , Administração Intravenosa , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Síndrome de Rett/genética
7.
Hum Mol Genet ; 28(2): 245-257, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30277526

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations or deletions in Methyl-CpG-binding Protein 2 (MeCP2), a brain-enriched transcriptional regulator. MeCP2 is highly expressed during neuronal maturation and its deficiency results in impaired dendritic morphogenesis and reduced dendritic spine numbers in developing neurons. However, whether MeCP2 deficiency impacts the integration of new neurons has not been directly assessed. In this study, we developed a modified rabies virus-mediated monosynaptic retrograde tracing method to interrogate presynaptic integration of MeCP2-deficient new neurons born in the adult hippocampus, a region with lifelong neurogenesis and plasticity. We found that selective deletion of MeCP2 in adult-born new neurons impaired their long-range connectivity to the cortex, whereas their connectivity within the local hippocampal circuits or with subcortical regions was not significantly affected. We further showed that knockdown of MeCP2 in primary hippocampal neurons also resulted in reduced network integration. Interestingly, (1-3) insulin-like growth factor-1 (IGF-1), a small peptide under clinical trial testing for RTT, rescued neuronal integration deficits of MeCP2-deficient neurons in vitro but not in vivo. In addition, (1-3) IGF-1 treatment corrected aberrant excitability and network synchrony of MeCP2-deficient hippocampal neurons. Our results indicate that MeCP2 is essential for immature neurons to establish appropriate network connectivity.


Assuntos
Proteína 2 de Ligação a Metil-CpG/fisiologia , Rede Nervosa , Neurogênese , Neurônios/citologia , Animais , Células Cultivadas , Dendritos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Rastreamento Neuroanatômico , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Retroviridae
8.
Nature ; 522(7554): 89-93, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25762136

RESUMO

Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that has been proposed to function as a transcriptional repressor, but despite numerous mouse studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 protein regulates transcription. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain.


Assuntos
Metilação de DNA/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação/genética , Síndrome de Rett/genética , Animais , Sequência de Bases , Encéfalo/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo
9.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069993

RESUMO

Rett syndrome (RTT) is a rare neurodevelopmental disorder that is usually caused by mutations of the MECP2 gene. Patients with RTT suffer from severe deficits in motor, perceptual and cognitive domains. Electroencephalogram (EEG) has provided useful information to clinicians and scientists, from the very first descriptions of RTT, and yet no reliable neurophysiological biomarkers related to the pathophysiology of the disorder or symptom severity have been identified to date. To identify consistently observed and potentially informative EEG characteristics of RTT pathophysiology, and ascertain areas most worthy of further systematic investigation, here we review the literature for EEG abnormalities reported in patients with RTT and in its disease models. While pointing to some promising potential EEG biomarkers of RTT, our review identify areas of need to realize the potential of EEG including (1) quantitative investigation of promising clinical-EEG observations in RTT, e.g., shift of mu rhythm frequency and EEG during sleep; (2) closer alignment of approaches between patients with RTT and its animal models to strengthen the translational significance of the work (e.g., EEG measurements and behavioral states); (3) establishment of large-scale consortium research, to provide adequate Ns to investigate age and genotype effects.


Assuntos
Eletroencefalografia , Síndrome de Rett/diagnóstico , Síndrome de Rett/fisiopatologia , Animais , Biomarcadores , Modelos Animais de Doenças , Progressão da Doença , Fenômenos Eletrofisiológicos , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/fisiologia , Camundongos , Mutação , Fenótipo , Ratos , Síndrome de Rett/genética , Pesquisa Translacional Biomédica
10.
Gastroenterology ; 157(5): 1398-1412.e9, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352003

RESUMO

BACKGROUND & AIMS: Methyl-CpG binding protein 2, MECP2, which binds to methylated regions of DNA to regulate transcription, is expressed by hepatic stellate cells (HSCs) and is required for development of liver fibrosis in mice. We investigated the effects of MECP2 deletion from HSCs on their transcriptome and of phosphorylation of MECP2 on HSC phenotype and liver fibrosis. METHODS: We isolated HSCs from Mecp2-/y mice and wild-type (control) mice. HSCs were activated in culture and used in array analyses of messenger RNAs and long noncoding RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analyses identified pathways regulated by MECP2. We studied mice that expressed a mutated form of Mecp2 that encodes the S80A substitution, MECP2S80, causing loss of MECP2 phosphorylation at serine 80. Liver fibrosis was induced in these mice by administration of carbon tetrachloride, and liver tissues and HSCs were collected and analyzed. RESULTS: MECP2 deletion altered expression of 284 messenger RNAs and 244 long noncoding RNAs, including those that regulate DNA replication; are members of the minichromosome maintenance protein complex family; or encode CDC7, HAS2, DNA2 (a DNA helicase), or RPA2 (a protein that binds single-stranded DNA). We found that MECP2 regulates the DNA repair Fanconi anemia pathway in HSCs. Phosphorylation of MECP2S80 and its putative kinase, HAS2, were induced during transdifferentiation of HSCs. HSCs from MECP2S80 mice had reduced proliferation, and livers from these mice had reduced fibrosis after carbon tetrachloride administration. CONCLUSIONS: In studies of mice with disruption of Mecp2 or that expressed a form of MECP2 that is not phosphorylated at S80, we found phosphorylation of MECP2 to be required for HSC proliferation and induction of fibrosis. In HSCs, MECP2 regulates expression of genes required for DNA replication and repair. Strategies to inhibit MECP2 phosphorylation at S80 might be developed for treatment of liver fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática Experimental/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Acetaminofen , Animais , Tetracloreto de Carbono , Proliferação de Células , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Reparo do DNA , Replicação do DNA , Células Estreladas do Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Serina , Transdução de Sinais
11.
Cereb Cortex ; 28(5): 1846-1856, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351579

RESUMO

During differentiation, neurons progressively restrict their fate repressing the expression of specific genes. Here we describe the involvement in such developmental steps of the methyl-CpG binding protein 2 (MeCP2), an epigenetic factor that participates to chromatin folding and transcriptional regulation. We previously reported that, due to transcriptional impairments, the maturation of Mecp2 null neurons is delayed. To evaluate whether this could stem from altered progenitors proliferation and differentiation, we investigated whether lack of Mecp2 affects these features both in vitro and in vivo. We show that in Mecp2 null embryonic cortexes the expression of genes defining the identity of proliferating neuroprogenitors is enriched and that their permanence in the G1 phase is prolonged. Moreover, the number of cells transitioning from a stage of maturation to a more mature one is increased in Mecp2 null embryonic cortices, in line with the central role of G1 for cell identity refinement. We thus suggest that, possibly due to the lack of proper transcriptional control normally exerted by Mecp2, fate refinement is impaired in developing null cells. We propose that the maturation delay affecting the developing Mecp2 null cortex originates, at least in part, from deranged mechanisms of cell fate refinement.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína 2 de Ligação a Metil-CpG/deficiência , Neurônios/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bromodesoxiuridina , Células Cultivadas , Ciclina D1/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/toxicidade , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Feminino , Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Gravidez , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro
12.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387202

RESUMO

Rett syndrome (RTT) is a rare, X-linked neurodevelopmental disorder typically affecting females, resulting in a range of symptoms including autistic features, intellectual impairment, motor deterioration, and autonomic abnormalities. RTT is primarily caused by the genetic mutation of the Mecp2 gene. Initially considered a neuronal disease, recent research shows that glial dysfunction contributes to the RTT disease phenotype. In the following manuscript, we review the evidence regarding glial dysfunction and its effects on disease etiology.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteína 2 de Ligação a Metil-CpG/deficiência , Neuroglia/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Animais , Astrócitos/metabolismo , Metabolismo Energético , Estudos de Associação Genética/métodos , Humanos , Oligodendroglia/metabolismo , Fenótipo , Síndrome de Rett/diagnóstico
13.
Int J Mol Sci ; 20(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635390

RESUMO

The deletion of Mecp2, the gene encoding methyl-CpG-binding protein 2, causes severe breathing defects and developmental anomalies in mammals. In Mecp2-null mice, impaired GABAergic neurotransmission is demonstrated at the early stage of life. GABAergic dysfunction in neurons in the rostral ventrolateral medulla (RVLM) is considered as a primary cause of breathing abnormality in Mecp2-null mice, but its molecular mechanism is unclear. Here, we report that mRNA expression levels of Gad1, which encodes glutamate decarboxylase 67 (GAD67), in the RVLM of Mecp2-null (Mecp2-/y, B6.129P2(C)-Mecp2tm1.1Bird/J) mice is closely related to the methylation status of its promoter, and valproate (VPA) can upregulate transcription from Gad1 through epigenetic mechanisms. The administration of VPA (300 mg/kg/day) together with L-carnitine (30 mg/kg/day) from day 8 to day 14 after birth increased Gad1 mRNA expression in the RVLM and reduced apnea counts in Mecp2-/y mice on postnatal day 15. Cytosine methylation levels in the Gad1 promoter were higher in the RVLM of Mecp2-/y mice compared to wild-type mice born to C57BL/6J females, while VPA treatment decreased the methylation levels in Mecp2-/y mice. Chromatin immunoprecipitation assay revealed that the VPA treatment reduced the binding of methyl-CpG binding domain protein 1 (MBD1) to the Gad1 promoter in Mecp2-/y mice. These results suggest that VPA improves breathing of Mecp2-/y mice by reducing the Gad1 promoter methylation, which potentially leads to the enhancement of GABAergic neurotransmission in the RVLM.


Assuntos
Apneia/etiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína 2 de Ligação a Metil-CpG/deficiência , Regiões Promotoras Genéticas , Ativação Transcricional/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Apneia/tratamento farmacológico , Apneia/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Modelos Biológicos , RNA Mensageiro/genética
14.
Hum Mol Genet ; 25(15): 3303-3320, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27329765

RESUMO

Since the identification of MECP2 as the causative gene in the majority of Rett Syndrome (RTT) cases, transgenic mouse models have played a critical role in our understanding of this disease. The use of additional mammalian RTT models offers the promise of further elucidating critical early mechanisms of disease as well as providing new avenues for translational studies. We have identified significant abnormalities in growth as well as motor and behavioural function in a novel zinc-finger nuclease model of RTT utilizing both male and female rats throughout development. Male rats lacking MeCP2 (Mecp2ZFN/y) were noticeably symptomatic as early as postnatal day 21, with most dying by postnatal day 55, while females lacking one copy of Mecp2 (Mecp2ZFN/+) displayed a more protracted disease course. Brain weights of Mecp2ZFN/y and Mecp2ZFN/+ rats were significantly reduced by postnatal day 14 and 21, respectively. Early motor and breathing abnormalities were apparent in Mecp2ZFN/y rats, whereas Mecp2ZFN/+ rats displayed functional irregularities later in development. The large size of this species will provide profound advantages in the identification of early disease mechanisms and the development of appropriately timed therapeutics. The current study establishes a foundational basis for the continued utilization of this rat model in future RTT research.


Assuntos
Comportamento Animal , Proteína 2 de Ligação a Metil-CpG/deficiência , Síndrome de Rett , Caracteres Sexuais , Animais , Feminino , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Síndrome de Rett/fisiopatologia
15.
Hum Mol Genet ; 25(22): 4983-4995, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159985

RESUMO

Sudden unexpected death occurs in one quarter of deaths in Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). People with RTT show a variety of autonomic nervous system (ANS) abnormalities and mouse models show similar problems including QTc interval prolongation and hypothermia. To explore the role of cardiac problems in sudden death in RTT, we characterized cardiac rhythm in mice lacking Mecp2 function. Male and female mutant mice exhibited spontaneous cardiac rhythm abnormalities including bradycardic events, sinus pauses, atrioventricular block, premature ventricular contractions, non-sustained ventricular arrhythmias, and increased heart rate variability. Death was associated with spontaneous cardiac arrhythmias and complete conduction block. Atropine treatment reduced cardiac arrhythmias in mutant mice, implicating overactive parasympathetic tone. To explore the role of MeCP2 within the parasympathetic neurons, we selectively removed MeCP2 function from cholinergic neurons (MeCP2 ChAT KO), which recapitulated the cardiac rhythm abnormalities, hypothermia, and early death seen in RTT male mice. Conversely, restoring MeCP2 only in cholinergic neurons rescued these phenotypes. Thus, MeCP2 in cholinergic neurons is necessary and sufficient for autonomic cardiac control, thermoregulation, and survival, and targeting the overactive parasympathetic system may be a useful therapeutic strategy to prevent sudden unexpected death in RTT.


Assuntos
Arritmias Cardíacas/metabolismo , Neurônios Colinérgicos/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Atropina/metabolismo , Neurônios Colinérgicos/patologia , Morte Súbita Cardíaca/patologia , Modelos Animais de Doenças , Feminino , Coração/fisiopatologia , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso Parassimpático/patologia , Fenótipo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia
16.
Biochem Biophys Res Commun ; 498(4): 898-904, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29534967

RESUMO

Rett syndrome is an X-linked neurodevelopmental disorder associated with psychomotor impairments, autonomic dysfunctions and autism. Patients with Rett syndrome have loss-of-function mutations in MECP2, the gene encoding methyl-CpG-binding protein 2 (MeCP2). Abnormal biogenic amine signaling and mitochondrial function have been found in patients with Rett syndrome; however, few studies have analyzed the association between these factors. This study investigated the functional relationships between mitochondria and the neuronal differentiation of the MeCP2-deficient stem cells from the exfoliated deciduous teeth of a child with Rett syndrome. An enrolled subject in this study was a 5-year-old girl carrying a large deletion that included the methyl-CpG-binding domain, transcriptional repression domain, and nuclear localization signal of MECP2. Using the single-cell isolation technique, we found that the two populations of MeCP2-expressing and MeCP2-deficient stem cells kept their MECP2 expression profiles throughout the stages of cell proliferation and neuronal differentiation in vitro. Neurite outgrowth and branching were attenuated in MeCP2-deficient dopaminergic neurons. MeCP2-deficient cells showed reduced mitochondrial membrane potential, ATP production, restricted mitochondrial distribution in neurites, and lower expression of a central mitochondrial fission factor, dynamin-related protein 1 than MeCP2-expressing cells. These data indicated that MeCP2-deficiency dysregulates the expression of mitochondrial factors required for the maturation of dopaminergic neurons. This study also provides insight into the pathogenic mechanism underlying dysfunction of the intracerebral dopaminergic signaling pathway in Rett syndrome.


Assuntos
Neurônios Dopaminérgicos/patologia , Proteína 2 de Ligação a Metil-CpG/deficiência , Mitocôndrias/patologia , Síndrome de Rett , Células-Tronco/patologia , Técnicas de Cultura de Células , Diferenciação Celular , Pré-Escolar , Polpa Dentária/patologia , Neurônios Dopaminérgicos/ultraestrutura , Feminino , Humanos , Proteínas de Membrana , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Mitocondriais , Neuritos/patologia , Dente Decíduo/patologia
17.
BMC Gastroenterol ; 18(1): 57, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720131

RESUMO

BACKGROUND: Rett syndrome (RTT) is a neurological disorder mainly caused by mutations in MeCP2 gene. It has been shown that MeCP2 impairments can lead to cytokine dysregulation due to MeCP2 regulatory role in T-helper and T-reg mediated responses, thus contributing to the pro-inflammatory status associated with RTT. Furthermore, RTT subjects suffer from an intestinal dysbiosis characterized by an abnormal expansion of the Candida population, a known factor responsible for the hyper-activation of pro-inflammatory immune responses. Therefore, we asked whether the intestinal fungal population of RTT subjects might contribute the sub-inflammatory status triggered by MeCP2 deficiency. METHODS: We evaluated the cultivable gut mycobiota from a cohort of 50 RTT patients and 29 healthy controls characterizing the faecal fungal isolates for their virulence-related traits, antifungal resistance and immune reactivity in order to elucidate the role of fungi in RTT's intestinal dysbiosis and gastrointestinal physiology. RESULTS: Candida parapsilosis, the most abundant yeast species in RTT subjects, showed distinct genotypic profiles if compared to healthy controls' isolates as measured by hierarchical clustering analysis from RAPD genotyping. Their phenotypical analysis revealed that RTT's isolates produced more biofilm and were significantly more resistant to azole antifungals compared to the isolates from the healthy controls. In addition, the high levels of IL-1ß and IL-10 produced by peripheral blood mononuclear cells and the mixed Th1/Th17 cells population induced by RTT C. parapsilosis isolates suggest the capacity of these intestinal fungi to persist within the host, being potentially involved in chronic, pro-inflammatory responses. CONCLUSIONS: Here we demonstrated that intestinal C. parapsilosis isolates from RTT subjects hold phenotypic traits that might favour the previously observed low-grade intestinal inflammatory status associated with RTT. Therefore, the presence of putative virulent, pro-inflammatory C. parapsilosis strains in RTT could represent an additional factor in RTT's gastrointestinal pathophysiology, whose mechanisms are not yet clearly understood.


Assuntos
Candida parapsilosis/isolamento & purificação , Candida parapsilosis/patogenicidade , Candidíase/microbiologia , Gastroenterite/microbiologia , Síndrome de Rett/microbiologia , Antifúngicos/uso terapêutico , Candida albicans/genética , Candida albicans/isolamento & purificação , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Candidíase/tratamento farmacológico , Candidíase/imunologia , Citocinas/sangue , Farmacorresistência Fúngica , Gastroenterite/tratamento farmacológico , Gastroenterite/imunologia , Microbioma Gastrointestinal , Variação Genética , Genótipo , Humanos , Interleucina-10/sangue , Leucócitos Mononucleares/metabolismo , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Síndrome de Rett/genética , Síndrome de Rett/imunologia , Virulência
18.
Nature ; 484(7392): 105-9, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22425995

RESUMO

Rett syndrome is an X-linked autism spectrum disorder. The disease is characterized in most cases by mutation of the MECP2 gene, which encodes a methyl-CpG-binding protein. Although MECP2 is expressed in many tissues, the disease is generally attributed to a primary neuronal dysfunction. However, as shown recently, glia, specifically astrocytes, also contribute to Rett pathophysiology. Here we examine the role of another form of glia, microglia, in a murine model of Rett syndrome. Transplantation of wild-type bone marrow into irradiation-conditioned Mecp2-null hosts resulted in engraftment of brain parenchyma by bone-marrow-derived myeloid cells of microglial phenotype, and arrest of disease development. However, when cranial irradiation was blocked by lead shield, and microglial engraftment was prevented, disease was not arrested. Similarly, targeted expression of MECP2 in myeloid cells, driven by Lysm(cre) on an Mecp2-null background, markedly attenuated disease symptoms. Thus, through multiple approaches, wild-type Mecp2-expressing microglia within the context of an Mecp2-null male mouse arrested numerous facets of disease pathology: lifespan was increased, breathing patterns were normalized, apnoeas were reduced, body weight was increased to near that of wild type, and locomotor activity was improved. Mecp2(+/-) females also showed significant improvements as a result of wild-type microglial engraftment. These benefits mediated by wild-type microglia, however, were diminished when phagocytic activity was inhibited pharmacologically by using annexin V to block phosphatydilserine residues on apoptotic targets, thus preventing recognition and engulfment by tissue-resident phagocytes. These results suggest the importance of microglial phagocytic activity in Rett syndrome. Our data implicate microglia as major players in the pathophysiology of this devastating disorder, and suggest that bone marrow transplantation might offer a feasible therapeutic approach for it.


Assuntos
Progressão da Doença , Proteína 2 de Ligação a Metil-CpG/metabolismo , Microglia/citologia , Microglia/fisiologia , Síndrome de Rett/patologia , Animais , Anexina A5/administração & dosagem , Anexina A5/metabolismo , Anexina A5/farmacologia , Apoptose/efeitos dos fármacos , Peso Corporal/fisiologia , Transplante de Medula Óssea , Encéfalo/citologia , Modelos Animais de Doenças , Feminino , Fator de Crescimento Insulin-Like I/metabolismo , Locomoção , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Microglia/transplante , Fagocitose/efeitos dos fármacos , Fosfatidilserinas/metabolismo , Respiração/efeitos dos fármacos , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Síndrome de Rett/terapia , Teste de Desempenho do Rota-Rod
19.
Mol Cell ; 37(4): 451-2, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20188662

RESUMO

In this issue of Molecular Cell, work from Skene, Bird, and colleagues reexamines MeCP2 function in the brain by characterizing the abundance and distribution of MeCP2 protein in mouse neurons and its role in regulating chromatin structure (Skene et al., 2010).


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Neurônios/citologia , Ligação Proteica , Multimerização Proteica
20.
Mol Cell ; 37(4): 457-68, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20188665

RESUMO

MeCP2 is a nuclear protein with an affinity for methylated DNA that can recruit histone deacetylases. Deficiency or excess of MeCP2 causes severe neurological problems, suggesting that the number of molecules per cell must be precisely regulated. We quantified MeCP2 in neuronal nuclei and found that it is nearly as abundant as the histone octamer. Despite this high abundance, MeCP2 associates preferentially with methylated regions, and high-throughput sequencing showed that its genome-wide binding tracks methyl-CpG density. MeCP2 deficiency results in global changes in neuronal chromatin structure, including elevated histone acetylation and a doubling of histone H1. Neither change is detectable in glia, where MeCP2 occurs at lower levels. The mutant brain also shows elevated transcription of repetitive elements. Our data argue that MeCP2 may not act as a gene-specific transcriptional repressor in neurons, but might instead dampen transcriptional noise genome-wide in a DNA methylation-dependent manner.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/metabolismo , Multimerização Proteica , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Ilhas de CpG , Metilação de DNA , Genoma , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Nucleossomos/metabolismo , Ligação Proteica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA