Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 533
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 139(12): 1892-1902, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34890454

RESUMO

Rebalancing the hemostatic system by targeting endogenous anticoagulant pathways, like the protein C (PC) system, is being tested as a means of improving hemostasis in patients with hemophilia. Recent intravital studies of hemostasis demonstrated that, in some vascular contexts, thrombin activity is sequestered in the extravascular compartment. These findings raise important questions about the context-dependent contribution of activated PC (APC) to the hemostatic response, because PC activation occurs on the surface of endothelial cells. We used a combination of pharmacologic, genetic, imaging, and computational approaches to examine the relationships among thrombin spatial distribution, PC activation, and APC anticoagulant function. We found that inhibition of APC activity, in mice either harboring the factor V Leiden mutation or infused with an APC-blocking antibody, significantly enhanced fibrin formation and platelet activation in a microvascular injury model, consistent with the role of APC as an anticoagulant. In contrast, inhibition of APC activity had no effect on hemostasis after penetrating injury of the mouse jugular vein. Computational studies showed that differences in blood velocity, injury size, and vessel geometry determine the localization of thrombin generation and, consequently, the extent of PC activation. Computational predictions were tested in vivo and showed that when thrombin generation occurred intravascularly, without penetration of the vessel wall, inhibition of APC significantly increased fibrin formation in the jugular vein. Together, these studies show the importance of thrombin spatial distribution in determining PC activation during hemostasis and thrombosis.


Assuntos
Hemostáticos , Trombose , Animais , Anticoagulantes/farmacologia , Células Endoteliais/metabolismo , Fibrina/metabolismo , Hemostasia , Humanos , Camundongos , Proteína C/farmacologia , Trombina/metabolismo , Trombose/metabolismo
2.
Wound Repair Regen ; 32(1): 90-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38155595

RESUMO

Various preclinical and clinical studies have demonstrated the robust wound healing capacity of the natural anticoagulant activated protein C (APC). A bioengineered APC variant designated 3K3A-APC retains APC's cytoprotective cell signalling actions with <10% anticoagulant activity. This study was aimed to provide preclinical evidence that 3K3A-APC is efficacious and safe as a wound healing agent. 3K3A-APC, like wild-type APC, demonstrated positive effects on proliferation of human skin cells (keratinocytes, endothelial cells and fibroblasts). Similarly it also increased matrix metollaproteinase-2 activation in keratinocytes and fibroblasts. Topical 3K3A-APC treatment at 10 or 30 µg both accelerated mouse wound healing when culled on Day 11. And at 10 µg, it was superior to APC and had half the dermal wound gape compared to control. Further testing was conducted in excisional porcine wounds due to their congruence to human skin. Here, 3K3A-APC advanced macroscopic healing in a dose-dependent manner (100, 250 and 500 µg) when culled on Day 21. This was histologically corroborated by greater collagen maturity, suggesting more advanced remodelling. A non-interference arm of this study found no evidence that topical 3K3A-APC caused either any significant systemic side-effects or any significant leakage into the circulation. However the female pigs exhibited transient and mild local reactions after treatments in week three, which did not impact healing. Overall these preclinical studies support the hypothesis that 3K3A-APC merits future human wound studies.


Assuntos
Células Endoteliais , Proteína C , Feminino , Humanos , Animais , Camundongos , Suínos , Proteína C/farmacologia , Proteína C/metabolismo , Proteína C/uso terapêutico , Células Endoteliais/metabolismo , Cicatrização , Fibrinolíticos/uso terapêutico , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico
3.
Circ Res ; 128(4): 513-529, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33353373

RESUMO

RATIONALE: While thrombin is the key protease in thrombus formation, other coagulation proteases, such as fXa (factor Xa) or aPC (activated protein C), independently modulate intracellular signaling via partially distinct receptors. OBJECTIVES: To study the differential effects of fXa or fIIa (factor IIa) inhibition on gene expression and inflammation in myocardial ischemia-reperfusion injury. METHODS AND RESULTS: Mice were treated with a direct fIIa inhibitor (fIIai) or direct fXa inhibitor (fXai) at doses that induced comparable anticoagulant effects ex vivo and in vivo (tail-bleeding assay and FeCl3-induced thrombosis). Myocardial ischemia-reperfusion injury was induced via left anterior descending ligation. We determined infarct size and in vivo aPC generation, analyzed gene expression by RNA sequencing, and performed immunoblotting and ELISA. The signaling-only 3K3A-aPC variant and inhibitory antibodies that blocked all or only the anticoagulant function of aPC were used to determine the role of aPC. Doses of fIIai and fXai that induced comparable anticoagulant effects resulted in a comparable reduction in infarct size. However, unbiased gene expression analyses revealed marked differences, including pathways related to sterile inflammation and inflammasome regulation. fXai but not fIIai inhibited sterile inflammation by reducing the expression of proinflammatory cytokines (IL [interleukin]-1ß, IL-6, and TNFα [tumor necrosis factor alpha]), as well as NF-κB (nuclear factor kappa B) and inflammasome activation. This anti-inflammatory effect was associated with reduced myocardial fibrosis 28 days post-myocardial ischemia-reperfusion injury. Mechanistically, in vivo aPC generation was higher with fXai than with fIIai. Inhibition of the anticoagulant and signaling properties of aPC abolished the anti-inflammatory effect associated with fXai, while inhibiting only the anticoagulant function of aPC had no effect. Combining 3K3A-aPC with fIIai reduced the inflammatory response, mimicking the fXai-associated effect. CONCLUSIONS: We showed that specific inhibition of coagulation via direct oral anticoagulants had differential effects on gene expression and inflammation, despite comparable anticoagulant effects and infarct sizes. Targeting individual coagulation proteases induces specific cellular responses unrelated to their anticoagulant effect.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inibidores do Fator Xa/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína C/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Inibidores do Fator Xa/farmacologia , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteína C/farmacologia
4.
Tohoku J Exp Med ; 259(3): 209-219, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36543245

RESUMO

The Holliday Junction-Recognition Protein (HJURP) was upregulated in several tumors, which was associated with poor outcome. This study investigated the effects of the HJURP-mediated c-Jun N-terminal kinase (JNK)/ signal transducer and activator of transcription 3 (STAT3) pathway on bladder urothelial carcinoma (BLUC). Online databases were used to analyze HJURP expression in BLUC and the correlation of HJURP to JNK1 [mitogen-activated protein kinase 8 (MAPK8)], JNK2 (MAPK9), STAT3, marker of proliferation Ki-67 (MKI67), proliferating cell nuclear antigen (PCNA), cyclin dependent kinase 2 (CDK2), CDK4 and CDK6. HJURP expression was detected in BLUC cells and human normal primary bladder epithelial cells (BdECs). BLUC cells were treated with HJURP lentivirus activation /shRNA lentivirus particles or JNK inhibitor SP600125. HJURP was upregulated in BLUC tissues and correlated with poor prognosis of patients (all P < 0.05). HJURP in tumor positively correlated with MAPK8 (R = 0.30), MAPK9 (R = 0.30), STAT3 (R = 0.15), MKI67 (R = 0.60), PCNA (R = 0.46), CDK2 (R = 0.39), CDK4 (R = 0.24) and CDK6 (R = 0.21). The JNK inhibitor SP600125 decreased p-JNK/JNK and p-STAT3/STAT3 in BLUC cells, which was reversed by HJURP overexpression (P < 0.05). The HJURP-mediated JNK/STAT3 pathway promoted BLUC cell proliferation and inhibited cell apoptosis (P < 0.05). HJURP reversed the arrested G0/G1 phase of BLUC cells by SP600125. HJURP acted as an oncogene to regulate BLUC cell proliferation, apoptosis and the cell cycle by mediating the JNK/STAT3 pathway. Therefore, HJURP targeting might be an attractive novel therapeutic target for early diagnosis and treatment in BLUC.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/farmacologia , DNA Cruciforme , Proteína C/metabolismo , Proteína C/farmacologia , Bexiga Urinária , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Ciclo Celular , Proliferação de Células , Apoptose
5.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445820

RESUMO

3K3A-Activated Protein C (APC) is a recombinant variant of the physiological anticoagulant APC with cytoprotective properties and reduced bleeding risks. We studied the potential use of 3K3A-APC as a multi-target therapeutic option for choroidal neovascularization (CNV), a common cause of vision loss in age-related macular degeneration. CNV was induced by laser photocoagulation in a murine model, and 3K3A-APC was intravitreally injected. The impact of 3K3A-APC treatment on myeloid and microglia cell activation and recruitment and on NLRP3 inflammasome, IL-1ß, and VEGF levels was assessed using cryosection, retinal flat-mount immunohistochemistry and vascular imaging. Additionally, we evaluated the use of fluorescein angiography as a surrogate marker for in vivo evaluation of the efficacy of 3K3A-APC treatment against leaking CNV lesions. Our results demonstrated that 3K3A-APC treatment significantly reduced the accumulation and activation of myeloid cells and microglia in the CNV area and decreased the NLRP3 and IL-1ß levels at the CNV site and the surrounding retina. Furthermore, 3K3A-APC treatment resulted in leakage regression and CNV growth suppression. These findings indicate that the anti-inflammatory activities of 3K3A-APC contribute to CNV inhibition. Our study suggests the potential use of 3K3A-APC as a novel multi-target treatment for CNV.


Assuntos
Neovascularização de Coroide , Proteína C , Camundongos , Animais , Proteína C/farmacologia , Proteína C/uso terapêutico , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator A de Crescimento do Endotélio Vascular , Retina/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
Infect Immun ; 90(10): e0037622, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36121221

RESUMO

Acinetobacter baumannii is a formidable opportunistic pathogen that is notoriously difficult to eradicate from hospital settings. This resilience is often attributed to a proclivity for biofilm formation, which facilitates a higher tolerance toward external stress, desiccation, and antimicrobials. Despite this, little is known regarding the mechanisms orchestrating A. baumannii biofilm formation. Here, we performed RNA sequencing (RNA-seq) on biofilm and planktonic populations for the multidrug-resistant isolate AB5075 and identified 438 genes with altered expression. To assess the potential role of genes upregulated within biofilms, we tested the biofilm-forming capacity of their respective mutants from an A. baumannii transposon library. In so doing, we uncovered 24 genes whose disruption led to reduced biofilm formation. One such element, cold shock protein C (cspC), had a highly mucoid colony phenotype, enhanced tolerance to polysaccharide degradation, altered antibiotic tolerance, and diminished adherence to abiotic surfaces. RNA-seq of the cspC mutant revealed 201 genes with altered expression, including the downregulation of pili and fimbria genes and the upregulation of multidrug efflux pumps. Using transcriptional arrest assays, it appears that CspC mediates its effects, at least in part, through RNA chaperone activity, influencing the half-life of several important transcripts. Finally, we show that CspC is required for survival during challenge by the human immune system and is key for A. baumannii dissemination and/or colonization during systemic infection. Collectively, our work identifies a cadre of new biofilm-associated genes within A. baumannii and provides unique insight into the global regulatory network of this emerging human pathogen.


Assuntos
Acinetobacter baumannii , Humanos , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Biofilmes , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Polissacarídeos/metabolismo , Proteína C/metabolismo , Proteína C/farmacologia , RNA/metabolismo , Virulência/genética
7.
Nutr Cancer ; 74(1): 278-287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33533291

RESUMO

Thymoquinone (TQ) combined with Cisplatin may augment its anticancer effect on hepatocellular carcinoma (HCC), through oxidative stress mitigation and endoplasmic reticulum (ER) protein modulation. Fifty adult male Wistar albino rats were assigned into five equal experimental groups (n = 10); 1) Control, 2) diethylnitrosamine/carbon tetrachloride-induced liver tumorigenesis model (HCC), 3) Cisplatin (2 mg.kg-1ip) treated rats, 4) Thymoquinone treated group (20 mg.kg-1oral), and 5) group treated with both drugs as in Groups 3 and 4. Treatment regimens started following model confirmation and continued for 4 weeks. In the HCC model, we detected elevated ER chaperone glucose-regulated protein-78 (GRP78) and reduced C/EBP-homologous protein (CHOP)-mediated apoptosis that was accompanied by the elevated alpha-fetoprotein (AFP) marker and deteriorated liver functions. Our original results indicated that Thymoquinone potentiated the pro-apoptotic effect of cisplatin by modulating GRP78/CHOP signaling. Cisplatin/TQ reduced the elevated GRP78 and induced CHOP-mediated apoptosis in the diseased liver tissues compared to the HCC and Cisplatin treated groups. Cisplatin/TQ combination normalized AFP levels and improved liver functions compared to both HCC and cisplatin groups alone. In conclusion, Thymoquinone enhanced the efficacy of Cisplatin in HCC treatment by modulating the GRP78/CHOP/caspase-3 pathway. Thymoquinone is recommended to achieve greater therapeutic benefits and reduce the cisplatin hepatotoxicity in HCC management.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Apoptose , Benzoquinonas , Carcinogênese , Carcinoma Hepatocelular/patologia , Cisplatino/farmacologia , Estresse do Retículo Endoplasmático , Glucose/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Estresse Oxidativo , Proteína C/metabolismo , Proteína C/farmacologia , Ratos , Ratos Wistar
8.
Chem Biodivers ; 19(10): e202200494, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36198620

RESUMO

Biofilm-producing Staphylococcus aureus (SA) strains are frequently found in medical environments, from surgical/ wound sites, medical devices. These biofilms reduce the efficacy of applied antibiotics during the treatment of several infections, such as cystic fibrosis, endocarditis, or urinary tract infections. Thus, the development of potential therapeutic agents to destroy the extra protective biofilm layers or to inhibit the biofilm-producing enzymes is urgently needed. Advanced and cost-effective bioinformatics tools are advantageous in locating and speeding up the selection of antibiofilm candidates. Based on the potential drug characteristics, we have selected one-hundred thirty-three antibacterial peptides derived from insects to assess for their antibiofilm potency via molecular docking against five putative biofilm formation and regulated target enzymes: the staphylococcal accessory regulator A or SarA (PDB ID: 2FRH), 4,4'-diapophytoene synthase or CrtM (PDB ID: 2ZCQ), clumping factor A or ClfA (PDB ID: 1N67) and serine-aspartate repeat protein C or SdrC (PDB ID: 6LXH) and sortase A or SrtA (PDB ID: 1T2W) of SA bacterium. In this study, molecular docking was performed using HPEPDOCK and HDOCK servers, and molecular interactions were examined using BIOVIA Discovery Studio Visualizer-2019. The docking score (kcal/mol) range of five promising antibiofilm peptides against five targets was recorded as follows: diptericin A (-215.52 to -303.31), defensin (-201.11 to -301.92), imcroporin (-212.08 to -287.64), mucroporin (-228.72 to -286.76), apidaecin II (-203.90 to -280.20). Among these five, imcroporin and mucroporin were 13 % each, while defensin contained only 1 % of positive net charged residues (Arg+Lys) projected through ProtParam and NetWheels tools. Similarly, imcroporin, mucroporin and apidaecin II were 50 %, while defensin carried 21.05 % of hydrophobic residues predicted by the tool PEPTIDE. 2.0. Most of the peptides exhibited potential characteristics to inhibit S. aureus-biofilm formation via disrupting the cell membrane and cytoplasmic integrity. In summary, the proposed hypothesis can be considered a cost-effective platform for selecting the most promising bioactive drug candidates within a limited timeframe with a greater chance of success in experimental and clinical studies.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Simulação de Acoplamento Molecular , Proteína C/farmacologia , Proteína C/uso terapêutico , Ácido Aspártico/farmacologia , Ácido Aspártico/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Biofilmes , Antibacterianos/farmacologia , Defensinas/farmacologia , Defensinas/uso terapêutico , Insetos , Serina/farmacologia , Serina/uso terapêutico , Testes de Sensibilidade Microbiana
9.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430674

RESUMO

3K3A-Activated Protein C (APC) is a recombinant variant of the physiological anticoagulant APC with pleiotropic cytoprotective properties albeit without the bleeding risks. The anti-inflammatory activities of 3K3A-APC were demonstrated in multiple preclinical injury models, including various neurological disorders. We determined the ability of 3K3A-APC to inhibit ocular inflammation in a murine model of lipopolysaccharide (LPS)-induced uveitis. Leukocyte recruitment, microglia activation, NLRP3 inflammasome and IL-1ß levels were assessed using flow cytometry, retinal cryosection histology, retinal flatmount immunohistochemistry and vascular imaging, with and without 3K3A-APC treatment. LPS triggered robust inflammatory cell recruitment in the posterior chamber. The 3K3A-APC treatment significantly decreased leukocyte numbers and inhibited leukocyte extravasation from blood vessels into the retinal parenchyma to a level similar to controls. Resident microglia, which underwent an inflammatory transition following LPS injection, remained quiescent in eyes treated with 3K3A-APC. An inflammation-associated increase in retinal thickness, observed in LPS-injected eyes, was diminished by 3K3A-APC treatment, suggesting its clinical relevancy. Finally, 3K3A-APC treatment inhibited inflammasome activation, determined by lower levels of NLRP3 and its downstream effector IL-1ß. Our results highlight the anti-inflammatory properties of 3K3A-APC in ocular inflammation and suggest its potential use as a novel treatment for retinal diseases associated with inflammation.


Assuntos
Oftalmopatias , Inflamassomos , Proteína C , Animais , Camundongos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína C/farmacologia , Proteína C/uso terapêutico , Oftalmopatias/tratamento farmacológico , Oftalmopatias/patologia
10.
Stroke ; 51(7): 2236-2239, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568648

RESUMO

BACKGROUND AND PURPOSE: A recombinant engineered variant of APC (activated protein C), 3K3A-APC, lacks anticoagulant properties (<10%) while preserving APCs anti-inflammatory, anti-apoptotic, and neuroprotective functions and is very promising in clinical trials for ischemic stroke. Therapeutic intervention with single bolus administration of the third-generation tPA (tissue-type plasminogen activator), tenecteplase, is anticipated to be widely adopted for treatment of acute ischemic stroke. 3K3A-APC is well-tolerated in stroke patients dosed with alteplase, and in vitro studies show 3K3A-APC does not interfere with alteplase-induced clot lysis. The purpose of this in vitro study was to assess the influence of 3K3A-APC on tenecteplase-induced clot lysis. METHODS: Tenecteplase-mediated lysis of thrombin generated plasma clots of human normal pooled plasma was monitored in the presence of varying doses of 3K3A-APC. The effects on fibrinolysis by tenecteplase and alteplase were compared. RESULTS: The presence of 3K3A-APC shortened the time for clot lysis induced by tenecteplase at very low levels but not at higher therapeutic concentrations of tenecteplase. Comparisons of alteplase-mediated clot lysis to tenecteplase clot lysis showed that both thrombolytic agents behaved similarly in the presence of 3K3A-APC. CONCLUSIONS: These results indicate that 3K3A-APC does not interfere with tenecteplase's clot lysis function.


Assuntos
Fibrinólise/efeitos dos fármacos , Fibrinolíticos/farmacologia , Proteína C/farmacologia , Proteínas Recombinantes/farmacologia , Tenecteplase/farmacologia , Humanos , Técnicas In Vitro , Trombose
11.
Rheumatology (Oxford) ; 58(10): 1850-1860, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649471

RESUMO

OBJECTIVES: To investigate whether activated protein C (APC), a physiological anticoagulant can inhibit the inflammatory/invasive properties of immune cells and rheumatoid arthritis synovial fibroblasts (RASFs) in vitro and prevent inflammatory arthritis in murine antigen-induced arthritis (AIA) and CIA models. METHODS: RASFs isolated from synovial tissues of patients with RA, human peripheral blood mononuclear cells (PBMCs) and mouse thymus cells were treated with APC or TNF-α/IL-17 and the following assays were performed: RASF proliferation and invasion by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell invasion assays, respectively; cytokines and signalling molecules using ELISA or western blot; Th1 and Th17 phenotypes in human PBMCs or mouse thymus cells by flow cytometry. The in vivo effect of APC was evaluated in AIA and CIA models. RESULTS: In vitro, APC inhibited IL-1ß, IL-17 and TNF-α production, IL-17-stimulated cell proliferation and invasion and p21 and nuclear factor κB activation in RASFs. In mouse thymus cells and human PBMCs, APC suppressed Th1 and Th17 phenotypes. In vivo, APC inhibited pannus formation, cartilage destruction and arthritis incidence/severity in both CIA and AIA models. In CIA, serum levels of IL-1ß, IL-6, IL-17, TNF-α and soluble endothelial protein C receptor were significantly reduced by APC treatment. Blocking endothelial protein C receptor, the specific receptor for APC, abolished the early or preventative effect of APC in AIA. CONCLUSION: APC prevents the onset and development of arthritis in CIA and AIA models via suppressing inflammation, Th1/Th17 phenotypes and RASF invasion, which is likely mediated via endothelial protein C receptor.


Assuntos
Artrite Reumatoide/prevenção & controle , Fibroblastos/efeitos dos fármacos , Proteína C/farmacologia , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Inflamação , Interleucina-17/farmacologia , Leucócitos Mononucleares , Camundongos , Fenótipo , Membrana Sinovial/citologia , Timo/citologia , Fator de Necrose Tumoral alfa/farmacologia
12.
Blood ; 130(24): 2664-2677, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-28882883

RESUMO

Cytoprotection by activated protein C (aPC) after ischemia-reperfusion injury (IRI) is associated with apoptosis inhibition. However, IRI is hallmarked by inflammation, and hence, cell-death forms disjunct from immunologically silent apoptosis are, in theory, more likely to be relevant. Because pyroptosis (ie, cell death resulting from inflammasome activation) is typically observed in IRI, we speculated that aPC ameliorates IRI by inhibiting inflammasome activation. Here we analyzed the impact of aPC on inflammasome activity in myocardial and renal IRIs. aPC treatment before or after myocardial IRI reduced infarct size and Nlrp3 inflammasome activation in mice. Kinetic in vivo analyses revealed that Nlrp3 inflammasome activation preceded myocardial injury and apoptosis, corroborating a pathogenic role of the Nlrp3 inflammasome. The constitutively active Nlrp3A350V mutation abolished the protective effect of aPC, demonstrating that Nlrp3 suppression is required for aPC-mediated protection from IRI. In vitro aPC inhibited inflammasome activation in macrophages, cardiomyocytes, and cardiac fibroblasts via proteinase-activated receptor 1 (PAR-1) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Accordingly, inhibiting PAR-1 signaling, but not the anticoagulant properties of aPC, abolished the ability of aPC to restrict Nlrp3 inflammasome activity and tissue damage in myocardial IRI. Targeting biased PAR-1 signaling via parmodulin-2 restricted mTORC1 and Nlrp3 inflammasome activation and limited myocardial IRI as efficiently as aPC. The relevance of aPC-mediated Nlrp3 inflammasome suppression after IRI was corroborated in renal IRI, where the tissue protective effect of aPC was likewise dependent on Nlrp3 inflammasome suppression. These studies reveal that aPC protects from IRI by restricting mTORC1-dependent inflammasome activation and that mimicking biased aPC PAR-1 signaling using parmodulins may be a feasible therapeutic approach to combat IRI.


Assuntos
Inflamassomos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína C/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Animais Recém-Nascidos , Anticoagulantes/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Immunoblotting , Inflamassomos/metabolismo , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Substâncias Protetoras/farmacologia , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Traumatismo por Reperfusão/metabolismo
13.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791425

RESUMO

Independent of its well-known anticoagulation effects, activated protein C (APC) exhibits pleiotropic cytoprotective properties. These include anti-inflammatory actions, anti-apoptosis, and endothelial and epithelial barrier stabilisation. Such beneficial effects have made APC an attractive target of research in a plethora of physiological and pathophysiological processes. Of note, the past decade or so has seen the emergence of its roles in cutaneous wound healing-a complex process involving inflammation, proliferation and remodelling. This review will highlight APC's functions and mechanisms, and detail its pre-clinical and clinical studies on cutaneous wound healing.


Assuntos
Proteína C/metabolismo , Pele/metabolismo , Pele/patologia , Cicatrização , Animais , Biomarcadores , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Engenharia Genética , Humanos , Proteína C/administração & dosagem , Proteína C/farmacologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Pele/efeitos dos fármacos , Úlcera Cutânea/tratamento farmacológico , Úlcera Cutânea/etiologia , Úlcera Cutânea/metabolismo , Úlcera Cutânea/patologia , Pesquisa Translacional Biomédica , Cicatrização/efeitos dos fármacos
14.
Br J Haematol ; 183(2): 257-266, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125997

RESUMO

Activated protein C (APC) inactivates activated factor V (FVa) and moderates FVIIIa by restricting FV cofactor function. Emicizumab is a humanized anti-FIXa/FX bispecific monoclonal antibody that mimicks FVIIIa cofactor function. In recent clinical trials in haemophilia A patients, once-weekly subcutaneous administration of emicizumab was remarkably effective in preventing bleeding events, but the mechanisms controlling the regulation of emicizumab-mediated haemostasis remain to be explored. We investigated the role of APC-mediated reactions in these circumstances. APC dose-dependently depressed thrombin generation (TG) initiated by emicizumab in FVIII-deficient plasmas, and in normal plasmas preincubated with an anti-FVIII antibody (FVIII-depleted). FVIIIa-independent FXa generation with emicizumab was not affected by the presence of APC, protein S and FV. The results suggested that APC-induced down-regulation of emicizumab-dependent TG was accomplished by direct inactivation of FVa. The addition of APC to emicizumab mixed with FVIII-depleted FV-deficient plasma in the presence of various concentrations of exogenous FV demonstrated similar attenuation of TG, irrespective of specific FV concentrations. Emicizumab-related TG in FVIII-depleted FVLeiden plasma was decreased by APC more than that observed with native FVLeiden plasma. The findings indicated that emicizumab-driven haemostasis was down regulated by APC-mediated FVa inactivation in plasma from haemophilia A patients without or with FV defects.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Hemofilia A/sangue , Hemostasia/efeitos dos fármacos , Hemostáticos/farmacologia , Proteína C/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Fator VIIIa/metabolismo , Fator Va/metabolismo , Humanos , Proteína C/administração & dosagem , Trombina/biossíntese
15.
Cell Mol Life Sci ; 74(10): 1895-1906, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28005151

RESUMO

Activated protein C (APC) is a natural anticoagulant with strong anti-inflammatory, anti-apoptotic, and barrier stabilizing properties. These cytoprotective properties of APC are thought to be exerted through its pathway involving the binding of APC to endothelial protein C receptor and cleavage of protease-activated receptors. In this study, we found that APC enhanced endothelial barrier integrity via a novel pathway, by binding directly to and activating Tie2, a transmembrane endothelial tyrosine kinase receptor. Binding assays demonstrated that APC competed with the only known ligands of Tie2, the angiopoietins (Angs). APC bound directly to Tie2 (Kd ~3 nM), with markedly stronger binding affinity than Ang2. After binding, APC rapidly activated Tie2 to enhance endothelial barrier function as shown by Evan's blue dye transfer across confluent cell monolayers and in vivo studies. Blocking Tie2 restricted endothelial barrier integrity. This study highlights a novel mechanism by which APC binds directly to Tie2 to enhance endothelial barrier integrity, which helps to explain APC's protective effects in vascular leakage-related pathologies.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteína C/farmacologia , Receptor TIE-2/metabolismo , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
J Cell Mol Med ; 21(11): 2759-2772, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28524456

RESUMO

Islet transplantation is associated with early ischaemia/reperfusion, localized coagulation and redox-sensitive endothelial dysfunction. In animal models, islet cytoprotection by activated protein C (aPC) restores islet vascularization and protects graft function, suggesting that aPC triggers various lineages. aPC also prompts the release of endothelial MP that bear EPCR, its specific receptor. Microparticles (MP) are plasma membrane procoagulant vesicles, surrogate markers of stress and cellular effectors. We measured the cytoprotective effects of aPC on endothelial and insulin-secreting Rin-m5f ß-cells and its role in autocrine and paracrine MP-mediated cell crosstalk under conditions of oxidative stress. MP from aPC-treated primary endothelial (EC) or ß-cells were applied to H2 O2 -treated Rin-m5f. aPC activity was measured by enzymatic assay and ROS species by dihydroethidium. The capture of PKH26-stained MP and the expression of EPCR were probed by fluorescence microscopy and apoptosis by flow cytometry. aPC treatment enhanced both annexin A1 (ANXA1) and PAR-1 expression in EC and to a lesser extent in ß-cells. MP from aPC-treated EC (eMaPC ) exhibited high EPCR and annexin A1 content, protected ß-cells, restored insulin secretion and were captured by 80% of ß cells in a phosphatidylserine and ANXA1-dependent mechanism. eMP activated EPCR/PAR-1 and ANXA1/FPR2-dependent pathways and up-regulated the expression of EPCR, and of FPR2/ALX, the ANXA1 receptor. Cytoprotection was confirmed in H2 O2 -treated rat islets with increased viability (62% versus 48% H2 O2 ), reduced apoptosis and preserved insulin secretion in response to glucose elevation (16 versus 5 ng/ml insulin per 10 islets). MP may prove a promising therapeutic tool in the protection of transplanted islets.


Assuntos
Anexina A1/genética , Micropartículas Derivadas de Células/química , Células Secretoras de Insulina/efeitos dos fármacos , Proteína C/farmacologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Endotelina/genética , Receptores de Lipoxinas/genética , Animais , Anexina A1/metabolismo , Linhagem Celular , Micropartículas Derivadas de Células/metabolismo , Vasos Coronários/química , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Células Endoteliais/química , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Cultura Primária de Células , Substâncias Protetoras/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Receptores de Endotelina/metabolismo , Receptores de Lipoxinas/metabolismo , Transdução de Sinais , Suínos , Técnicas de Cultura de Tecidos
17.
Stroke ; 47(12): 2979-2985, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27803392

RESUMO

BACKGROUND AND PURPOSE: The advent of intra-arterial neurothrombectomy (IAT) for acute ischemic stroke opens a potentially transformative opportunity to improve neuroprotection studies. Combining a putative neuroprotectant with recanalization could produce more powerful trials but could introduce heterogeneity and adverse event possibilities. We sought to demonstrate feasibility of IAT in neuroprotectant trials by defining IAT selection criteria for an ongoing neuroprotectant clinical trial. METHODS: The study drug, 3K3A-APC, is a pleiotropic cytoprotectant and may reduce thrombolysis-associated hemorrhage. The NeuroNEXT trial NN104 (RHAPSODY) is designed to establish a maximally tolerated dose of 3K3A-APC. Each trial site provided their IAT selection criteria. An expert panel reviewed site criteria and published evidence. Finally, the trial leadership designed IAT selection criteria. RESULTS: Derived selection criteria reflected consistency among the sites and comparability to published IAT trials. A protocol amendment allowing IAT (and relaxed age, National Institutes of Health Stroke Scale, and time limits) in the RHAPSODY trial was implemented on June 15, 2015. Recruitment before and after the amendment improved from 8 enrolled patients (601 screened, 1.3%) to 51 patients (821 screened, 6.2%; odds ratio [95% confidence limit] of 4.9 [2.3-10.4]; P<0.001). Gross recruitment was 0.11 patients per site month versus 0.43 patients per site per month, respectively, before and after the amendment. CONCLUSIONS: It is feasible to include IAT in a neuroprotectant trial for acute ischemic stroke. Criteria are presented for including such patients in a manner that is consistent with published evidence for IAT while still preserving the ability to test the role of the putative neuroprotectant. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02222714.


Assuntos
Isquemia Encefálica/terapia , Protocolos Clínicos , Ensaios Clínicos como Assunto/normas , Fármacos Neuroprotetores/farmacologia , Seleção de Pacientes , Proteína C/farmacologia , Proteínas Recombinantes/farmacologia , Acidente Vascular Cerebral/terapia , Isquemia Encefálica/tratamento farmacológico , Método Duplo-Cego , Humanos , Trombólise Mecânica , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/efeitos adversos , Proteína C/administração & dosagem , Proteína C/efeitos adversos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica
18.
Biochem Biophys Res Commun ; 480(4): 622-628, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27794481

RESUMO

Previous epidemiological studies have shown that methylglyoxal (MGO) levels are highly regulated in diabetic cardiovascular diseases. We have also previously reported that MGO mediates ER stress and apoptosis in cardiomyocytes. Furthermore, activated protein C (APC) has recently been shown to play a protective role against ER stress, as well as a cardioprotective role against ischemia and reperfusion injury by augmenting the AMP-activated protein kinase (AMPK) signaling pathway. Therefore, we hypothesized that APC protects against MGO-induced cardiomyocyte apoptosis through the inhibition of ER stress. Our results showed that APC inhibited MGO-induced cardiomyocyte apoptosis and ER stress-related gene expression. Additionally, APC inhibited MGO-induced Ca2+ mobilization and the generation of reactive oxygen species. In contrast, inhibitors of AMPK signaling abolished the cytoprotective effects of APC. Collectively, these data depict a pivotal role for AMPK signaling in inhibiting ER stress responses via the activation of APC during MGO-induced cardiomyocyte apoptosis. Thus, APC may be a potential novel therapeutic target for the management of diabetic cardiovascular complications such as diabetic cardiomyopathy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Miócitos Cardíacos/fisiologia , Proteína C/farmacologia , Aldeído Pirúvico/farmacologia , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
Proc Natl Acad Sci U S A ; 110(2): 648-53, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267072

RESUMO

The coagulation protease activated protein C (aPC) confers cytoprotective effects in various in vitro and in vivo disease models, including diabetic nephropathy. The nephroprotective effect may be related to antioxidant effects of aPC. However, the mechanism through which aPC may convey these antioxidant effects and the functional relevance of these properties remain unknown. Here, we show that endogenous and exogenous aPC prevents glomerular accumulation of oxidative stress markers and of the redox-regulating protein p66(Shc) in experimental diabetic nephropathy. These effects were predominately observed in podocytes. In vitro, aPC inhibited glucose-induced expression of p66(Shc) mRNA and protein in podocytes (via PAR-1 and PAR-3) and various endothelial cell lines, but not in glomerular endothelial cells. Treatment with aPC reversed glucose-induced hypomethylation and hyperacetylation of the p66(Shc) promoter in podocytes. The hyperacetylating agent sodium butyrate abolished the suppressive effect of aPC on p66(Shc) expression both in vitro and in vivo. Moreover, sodium butyrate abolished the beneficial effects of aPC in experimental diabetic nephropathy. Inhibition of p66(Shc) expression and mitochondrial translocation by aPC normalized mitochondrial ROS production and the mitochondrial membrane potential in glucose-treated podocytes. Genetic ablation of p66(Shc) compensated for the loss of protein C activation in vivo, normalizing markers of diabetic nephropathy and oxidative stress. These studies identify a unique mechanism underlying the cytoprotective effect of aPC. Activated PC epigenetically controls expression of the redox-regulating protein p66(Shc), thus linking the extracellular protease aPC to mitochondrial function in diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Repressão Epigenética/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteína C/farmacologia , Proteínas Adaptadoras da Sinalização Shc/antagonistas & inibidores , Análise de Variância , Animais , Butiratos/farmacologia , Imunoprecipitação da Cromatina , Metilação de DNA/efeitos dos fármacos , Primers do DNA/genética , Nefropatias Diabéticas/etiologia , Técnicas de Silenciamento de Genes , Immunoblotting , Imuno-Histoquímica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Podócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Estatísticas não Paramétricas , Frações Subcelulares
20.
Eur Respir J ; 46(6): 1636-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26381519

RESUMO

Asthma patients show evidence of a procoagulant state in their airways, accompanied by an impaired function of the anticoagulant protein C system. We aimed to study the effect of recombinant human activated protein C (rhAPC) in allergic asthma patients.We conducted a randomised, double-blind, placebo-controlled, proof-of-concept study in house dust mite (HDM) allergic asthma patients. Patients were randomised to receive intravenous rhAPC (24 µg·kg(-1)·h(-1); n=12) or placebo (n=12) for 11 h. 4 h after the start of infusion, a first bronchoscopy was performed to challenge one lung segment with saline (control) and a contralateral segment with a combination of HDM extract and lipopolysaccharide (HDM+LPS), thereby mimicking environmental house dust exposure. A second bronchoscopy was conducted 8 h after intrabronchial challenge to obtain bronchoalveolar lavage fluid (BALF).rhAPC did not influence HDM+LPS induced procoagulant changes in the lung. In contrast, rhAPC reduced BALF leukocyte counts by 43% relative to placebo, caused by an inhibitory effect on neutrophil influx (64% reduction), while leaving eosinophil influx unaltered. rhAPC also reduced neutrophil degranulation products in the airways.Intravenous rhAPC attenuates HDM+LPS-induced neutrophil migration and protein release in allergic asthma patients by an effect that does not rely on coagulation inhibition.


Assuntos
Asma/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Dermatophagoides pteronyssinus/imunologia , Neutrófilos/efeitos dos fármacos , Proteína C/farmacologia , Hipersensibilidade Respiratória/tratamento farmacológico , Extratos de Tecidos/farmacologia , Administração Intravenosa , Adulto , Alérgenos/farmacologia , Animais , Anticoagulantes/farmacologia , Asma/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Broncoscopia , Movimento Celular/imunologia , Método Duplo-Cego , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Neutrófilos/imunologia , Proteínas Recombinantes/farmacologia , Hipersensibilidade Respiratória/imunologia , Extratos de Tecidos/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA