Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473906

RESUMO

Many metastatic cancers with poor prognoses correlate to downregulated CD82, but exceptions exist. Understanding the context of this correlation is essential to CD82 as a prognostic biomarker and therapeutic target. Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancer. We aimed to uncover the function and mechanism of CD82 in OSCC. We investigated CD82 in human OSCC cell lines, tissues, and healthy controls using the CRISPR-Cas9 gene knockout, transcriptomics, proteomics, etc. CD82 expression is elevated in CAL 27 cells. Knockout CD82 altered over 300 genes and proteins and inhibited cell migration. Furthermore, CD82 expression correlates with S100 proteins in CAL 27, CD82KO, SCC-25, and S-G cells and some OSCC tissues. The 37-50 kDa CD82 protein in CAL 27 cells is upregulated, glycosylated, and truncated. CD82 correlates with S100 proteins and may regulate their expression and cell migration. The truncated CD82 explains the invasive metastasis and poor outcome of the CAL 27 donor. OSCC with upregulated truncated CD82 and S100A7 may represent a distinct subtype with a poor prognosis. Differing alternatives from wild-type CD82 may elucidate the contradictory functions and pave the way for CD82 as a prognostic biomarker and therapeutic target.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/metabolismo , Proteína Kangai-1/metabolismo , Tetraspaninas/metabolismo , Proteínas S100 , Biomarcadores , Proteína A7 Ligante de Cálcio S100
2.
Biochem Biophys Res Commun ; 629: 121-127, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116374

RESUMO

CD82, a tetraspanin superfamily member, has been identified to be glycosylated at three specific residues (Asn129, Asn157, and Asn198). However, CD82 post-translational modification and its effect on colorectal cancer (CRC) metastasis remain unclear. Here, we constructed various deficient mutants of CD82 N-glycosylation in SW620 cells and demonstrated that the Asn157 site is necessary for CD82 glycosylation in CRC cells migration and LN-dependent adhesion in vitro. Furthermore, we found that CD82 N-glycosylation at the Asn157 site leads to lower expression levels of vimentin and claudin-1 but higher expression levels of E-cadherin, which are the EMT markers; also, there are lower expression levels of phospho-GSK3ß and less ß-catenin transportation to the nucleus. These findings suggest that CD82 N-glycosylation at the Asn157 site inhibits EMT by down-regulating the Wnt/ß-catenin pathway. Moreover, we reported that CD82 with N-glycosylation at a single site of the Asn157 reduces lung metastases in vivo. The results indicate that N-glycosylation of CD82 at the Asn157 site regulates CRC metastasis and adhesion. These observations suggest that the N-glycosylation of CD82 might be a potential therapeutic target for CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Claudina-1/metabolismo , Neoplasias do Colo/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicosilação , Humanos , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Vimentina/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
3.
Glycoconj J ; 39(5): 653-661, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536494

RESUMO

At cell surface gangliosides might associate with signal transducers proteins, grown factor receptors, integrins, small G-proteins and tetraspanins establishing microdomains, which play important role in cell adhesion, cell activation, motility, and growth. Previously, we reported that GM2 and GM3 form a heterodimer that interacts with the tetraspanin CD82, controlling epithelial cell mobility by inhibiting integrin-hepatocyte growth factor-induced cMet tyrosine kinase signaling. By using molecular dynamics simulations to study the molecular basis of GM2/GM3 interaction we demonstrate, here, that intracellular levels of Ca2+ mediate GM2/GM3 complexation via electrostatic interaction with their carboxyl groups, while hydrogen bonds between the ceramide groups likely aid stabilizing the complex. The presence of GM2/GM3 complex alters localization of CD82 on cell surface and therefore downstream signalization. These data contribute for the knowledge of how glycosylation may control signal transduction and phenotypic changes.


Assuntos
Gangliosídeo G(M3) , Proteína Kangai-1 , Adesão Celular , Movimento Celular , Proteína Kangai-1/metabolismo , Transdução de Sinais
4.
Acta Biochim Biophys Sin (Shanghai) ; 54(3): 400-408, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35538033

RESUMO

Tetraspanin CD82 often participates in regulating the function of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-Met). Palmitoylation is a post-translational modification that contributes to tetraspanin web formation and affects tetraspanin-dependent cell signaling. However, the molecular mechanisms by which CD82 palmitoylation affects the localization and stability of EGFR and c-Met have not yet been elucidated. This study focuses on the expression and distribution of EGFR and c-Met in breast cancer as well as the related metabolic pathways and molecular mechanisms associated with different CD82 palmitoylation site mutations. The results show that CD82 with a palmitoylation mutation at Cys5+Cys74 can promote the internalization of EGFR. EGFR is internalized and strengthened by direct binding to CD82 with the tubulin assistance and located at the recycling endosome. After studying the recycling pathway marker proteins Rab11a and FIP2, we found that formation of the EGFR/CD82/Rab11a/FIP2 complex promotes the internalization and metabolism of EGFR through the recycling pathway and results in the re-expression of EGFR and CD82 on the cell membrane.


Assuntos
Proteína Kangai-1 , Lipoilação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Mutação , Fosforilação
5.
Biochem Biophys Res Commun ; 557: 110-116, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33862453

RESUMO

The peptide mimicking small extracellular loop of CD82/KAI1 has been reported to inhibit tumor cell migration and metastasis. This provides an evidence that small extracellular loop domain should be important for the function of CD82/KAI1. In this paper, to investigate the structure basis for the function of EC1 mimic peptide, we systematically analyzed the effects of each amino acid residue in EC1 mimic peptide on its bioactivity. We found that the interfering with the folding of secondary structure with proline, a potent breaker of secondary structure, completely abolished the migration and metastasis-inhibitory activity of EC1 mimic peptide. This means that the bioactivity of EC1 mimic peptide was conformation-dependent. Next, we substitute with proline for amino acid residues in the small extracellular ring region of CD82/KAI1 by the site-specific mutations to disrupting secondary structure and detected its effect on the function of CD82/KAI1. The results showed that the disturbing the secondary structure of small extracellular ring completely abolished the migration and metastasis-inhibitory activity of CD82/KAI1. These results further provide direct evidence that the small extracellular ring is an important function region of CD82/KAI1.


Assuntos
Neoplasias da Mama/metabolismo , Proteína Kangai-1/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Linhagem Celular Tumoral , Movimento Celular , Feminino , Genes Supressores de Tumor , Humanos , Proteína Kangai-1/química , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Prolina/química , Prolina/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Reproduction ; 162(3): 227-236, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34280124

RESUMO

A successful pregnancy requires sufficient decidualization of endometrial stromal cells (ESCs). CD82, a metastasis suppressor, is a critical regulator for trophoblast invasion but the effect in decidualization was largely unknown. Here we reported that there was a high level of CD82 in DSC by the immunohistochemistry staining and flow cytometer analysis. Stimulation with prostaglandin E2 (PGE2) elevated the expression of CD82 in ESCs. In contrast, celecoxib, a selective COX-2 inhibitor, significantly downregulated the expression of CD82 in decidual stromal cells (DSCs). Bioinformatics analysis and further research showed that recombinant human interleukin (IL)-1ß protein (rhIL-1ß) upregulated CD82 in ESCs. Of note, blocking IL-1ß signaling with anti-human IL-1ß neutralizing antibody could reverse the stimulatory effect of PGE2 on CD82 in ESCs. Silencing CD82 resulted in the decease of the decidualization markers PRL and IGFBP1 mRNA levels in DSCs. More importantly, we observed rhIL-1ß also upregulated the expression of COX-2, and the upregulation of PRL and IGFBP1 induced by rhIL-1ß could be abolished by celecoxib in ESCs or CD82 deficiency in DSCs. This study suggests that CD82 should be a novel promotor for decidualization under a positive regulation of the COX-2/PGE2/IL-1ß positive feedback loop.


Assuntos
Decídua , Proteína Kangai-1 , Células Estromais , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Decídua/metabolismo , Feminino , Humanos , Interleucina-1beta/metabolismo , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Gravidez , Células Estromais/metabolismo , Trofoblastos/metabolismo
7.
J Immunol ; 202(11): 3256-3266, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31010852

RESUMO

Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate ß-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1ß) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.


Assuntos
Candida albicans/fisiologia , Candidíase/metabolismo , Membrana Celular/metabolismo , Proteína Kangai-1/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Fagossomos/metabolismo , Animais , Candidíase/imunologia , Linhagem Celular , Predisposição Genética para Doença , Humanos , Imunidade Celular , Interleucina-1beta/metabolismo , Proteína Kangai-1/genética , Lectinas Tipo C/genética , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
8.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445169

RESUMO

Tetraspanins are a family of transmembrane proteins that form a network of protein-protein interactions within the plasma membrane. Within this network, tetraspanin are thought to control the lateral segregation of their partners at the plasma membrane through mechanisms involving specific lipids. Here, we used a single molecule tracking approach to study the membrane behavior of tetraspanins in mammary epithelial cells and demonstrate that despite a common overall behavior, each tetraspanin (CD9, CD81 and CD82) has a specific signature in terms of dynamics. Furthermore, we demonstrated that tetraspanin dynamics on the cell surface are dependent on gangliosides. More specifically, we found that CD82 expression increases the dynamics of CD81 and alters its localization at the plasma membrane, this has no effect on the behavior of CD9. Our results provide new information on the ability of CD82 and gangliosides to differentially modulate the dynamics and organization of tetraspanins at the plasma membrane and highlight that its lipid and protein composition is involved in the dynamical architecture of the tetraspanin web. We predict that CD82 may act as a regulator of the lateral segregation of specific tetraspanins at the plasma membrane while gangliosides could play a crucial role in establishing tetraspanin-enriched areas.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Gangliosídeos/metabolismo , Proteína Kangai-1/metabolismo , Tetraspanina 28/metabolismo , Membrana Celular/química , Células Cultivadas , Células Epiteliais/química , Células Epiteliais/citologia , Gangliosídeos/análise , Humanos , Proteína Kangai-1/análise , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Tetraspanina 28/análise
9.
Biochem Biophys Res Commun ; 533(3): 338-345, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958256

RESUMO

We have previously demonstrated that the peptide mimicking small extracellular ring domain of CD82 (CD82EC1-mP) could inhibit tumor cell motility and metastasis. However, its acting mechanism is not understood. Here, we reported that the cell motility-inhibitory function of CD82EC1-mP was involved in the downregulation of epithelial-mesenchymal transition (EMT). Both vimentin and E-cadherin are EMT makers. We found that CD82EC1-mP could inhibit the expression of vimentin, but promot the expression of E-cadherin, suggesting that CD82EC1-mP suppressed EMT. Hippo/YAP and Wnt/ß-catenin are both key signal pathways that regulate the EMT process. The futher studies showed that CD82EC1-mP couled activate GSK3ß, promote the phosphorylation of ß-catenin, and inhibit the ß-catenin nuclear location. Moreover, CD82EC1-mP couled activate Hipoo kinase cascade, promote the phosphorylation of YAP, and inhibit the YAP nuclear location. These results suggested that CD82EC1-mP inhibited invation and matestasis via inhibiting EMT through downregulating Wnt pathway and upregulating Hippo pathway.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Proteína Kangai-1/genética , Peptídeos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Via de Sinalização Wnt/efeitos dos fármacos , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Antineoplásicos/síntese química , Caderinas/agonistas , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Hep G2 , Via de Sinalização Hippo , Humanos , Proteína Kangai-1/antagonistas & inibidores , Proteína Kangai-1/química , Proteína Kangai-1/metabolismo , Mimetismo Molecular , Células PC-3 , Peptídeos/síntese química , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vimentina/antagonistas & inibidores , Vimentina/genética , Vimentina/metabolismo , Proteínas de Sinalização YAP , beta Catenina/genética , beta Catenina/metabolismo
10.
Cancer Sci ; 110(8): 2507-2519, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215741

RESUMO

Abnormal tumor microenvironment and the epithelial-mesenchymal transition (EMT) are important features of tumor metastasis. However, it remains unknown how signals can form complicated networks to regulate the sustainability of the EMT process. The aim of our study is to explore the possible interaction between tumor-associated macrophages and tumor cells in the EMT process mediated by microRNA (miR)-362-3p. In this study, we found that by releasing TGF-ß, M2 macrophages mediate binding of Smad2/3 to miR-362-3p promoter, leading to overexpression of miR-362-3p. MicroRNA-362-3p maintains EMT by regulating CD82, one of the most important members of the family of tetraspanins. Our finding suggests that miR-362-3p can serve as a core factor mediating cross-talk between the TGF-ß pathway in tumor-associated macrophages and tetraspanins in tumor cells, and thus facilitates the EMT process.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal/fisiologia , Proteína Kangai-1/metabolismo , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Macrófagos/patologia , Camundongos , Camundongos Nus , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Tetraspaninas/metabolismo
11.
Prostate ; 79(12): 1400-1411, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31212375

RESUMO

BACKGROUND: The epithelial-to-mesenchymal transition (EMT) is closely associated with cancer invasion and metastasis. Since the transforming growth factor ß (TGF-ß) and Wnt signals induce EMT in various epithelial cell types, we examined whether and how the CD82/KAI1 metastasis suppressor affects the TGF-ß and Wnt signal-dependent EMT in human prostate cancer cells. METHODS: The invasiveness of cancer cells was evaluated by examining their ability to pass through the basement membrane matrigel. The subcellular localizations of Smad4 and ß-catenin proteins were respectively examined by confocal microscopy following immunofluorescence antibody staining and immunoblotting analysis following subcellular fractionation. The transcriptional activities of the TGF-ß1 -responsive TRE and Wnt-responsive Tcf/Lef promoters were determined by a luciferase reporter assay following transfection of the recombinant reporter vector into the cell. RESULTS: TGF-ß1 and Wnt3a treatments of human prostate cancer cells without CD82 expression resulted in not only increased invasiveness but also EMT involving the development of motile structures, downregulation of E-cadherin, and upregulation of the mesenchymal proteins. However, in the cells with high levels of CD82, the TGF-ß1 and Wnt3a stimulations neither elevated invasiveness nor induced EMT. Furthermore, the TGF-ß1 signaling events occurring in the CD82-deficient cells, such as phosphorylation of Smad2, nuclear translocation of Smad4, and transactivation of the TRE promoter, did not take place in the high CD82-expressing cells. Further, high CD82 expression interfered with the Wnt signal-dependent alterations in the phosphorylation pattern of glycogen synthase kinase 3ß (GSK-3ß) in prostate cancer cells, which allowed GSK-3ß to continue phosphorylating ß-catenin, thereby attenuating the Wnt signaling effects on the nuclear translocation of ß-catenin and subsequent transactivation of the Tcf/Lef promoter. CONCLUSIONS: The results of the present study suggest that CD82/KAI1 functions in suppressing TGF-ß1 - and Wnt-induced EMT in prostate cancer cells by inhibiting the TGF-ß1 /Smad and Wnt/ß-catenin pathways. Therefore, loss or decrease of CD82 expression is likely to render prostate cancer cells prone to respond to the TGF-ß1 and Wnt signals with EMT, resulting in the development of a motile and invasive mesenchymal phenotype related to the initiation of the metastatic cascade.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Proteína Kangai-1/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Próstata/metabolismo , Proteína Smad2/metabolismo , Via de Sinalização Wnt
12.
Breast Cancer Res Treat ; 173(1): 87-91, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30306427

RESUMO

PURPOSE: KAI1 (also called CD82) is a metastasis suppressor gene known to be downregulated in breast cancer and other solid tumors. The downregulation of KAI1 or loss of its function is usually associated with bad prognosis. The mechanism behind KAI1 loss of function is complex. In this study, we investigated "alternative splicing" as a possible mechanism that underlies KAI1 loss of function in breast cancer patients from a tertiary hospital in Saudi Arabia. METHODS: Expression of KAI1 was studied in FFPE breast cancer and control tissue sections by IHC using two different antibodies targeting different domains of the protein. The TS82B antibody targets the extracellular loop, which constitutes most of the protein, while the second EPR4112 antibody targets the C-terminal intracellular domain of the protein. RESULTS: Out of 90 breast cancer samples, 67% showed loss of KAI1 expression. The remaining 33% showed KAI1 expression with (TS82B) antibody; however, the protein was detected in only 11% of cancers when using the antibody (EPR4112) indicating a truncation of the protein at the C-terminus (truncated-KAI1) in 22% of the studied cancer samples. A significant correlation was found between truncated-KAI1 expression and advanced cancer stage (association with lymph node metastasis, P value 0.008). CONCLUSION: Alternative splicing is an important mechanism underlying KAI1 loss of function in breast cancer, and it is associated with bad prognosis (advanced cancer stage).


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Adulto , Idoso , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Mutação com Perda de Função , Pessoa de Meia-Idade , Arábia Saudita
13.
Mol Carcinog ; 58(5): 674-685, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30604894

RESUMO

CD82, a member of the tetraspanin superfamily, has been proposed to exert its activity via tetra-transmembrane protein enriched microdomains (TEMs) in exosomes. The present study aimed to explore the potential of the exosome protein CD82 in diagnosing breast cancers of all stages and various histological subtypes in patients. The results strongly suggest that CD82 expression in breast cancer tissue was significantly lower than that in healthy and benign breast disease tissues. There was a significant negative correlation between CD82 expression in tissues and CD82 content in exosomes, which indicated that CD82 expression was redistributed from tissues to the blood with the development and metastasis of breast cancer.


Assuntos
Adenocarcinoma Mucinoso/diagnóstico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Lobular/diagnóstico , Exossomos/metabolismo , Proteína Kangai-1/metabolismo , Adenocarcinoma Mucinoso/metabolismo , Adulto , Idoso , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/metabolismo , Estudos de Casos e Controles , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Medicina de Precisão , Prognóstico
14.
J Transl Med ; 17(1): 352, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655604

RESUMO

BACKGROUND: Accumulating evidence indicates that CD36 initiates metastasis and correlates with an unfavorable prognosis in cancers. However, there are few reports regarding the roles of CD36 in initiation and metastasis of cervical cancer. METHODS: Using immunohistochemistry, we analyzed 133 cervical cancer samples for CD36 protein expression levels, and then investigated the correlation between changes in its expression and clinicopathologic parameters. The effect of CD36 expression on the epithelial-mesenchymal transition (EMT) in cervical cancer cells was evaluated by Western immunoblotting analysis. In vitro invasion and in vivo metastasis assays were also used to evaluate the role of CD36 in cervical cancer metastasis. RESULTS: In the present study, we confirmed that CD36 was highly expressed in cervical cancer samples relative to normal cervical tissues. Moreover, overexpression of CD36 promoted invasiveness and metastasis of cervical cancer cells in vitro and in vivo, while CD36 knockdown suppressed proliferation, migration, and invasiveness. We demonstrated that TGF-ß treatment attenuated E-cadherin expression and enhanced the expression levels of CD36, vimentin, slug, snail, and twist in si-SiHa, si-HeLa, and C33a-CD36 cells, suggesting that TGF-ß synergized with CD36 on EMT via active CD36 expression. We also observed that the expression levels of TGF-ß in si-SiHa cells and si-HeLa cells were down-regulated, whereas the expression levels of TGF-ß were up-regulated in C33a-CD36 cells. These results imply that CD36 and TGF-ß interact with each other to promote the EMT in cervical cancer. CONCLUSIONS: Our findings suggest that CD36 is likely to be an effective target for guiding individualized clinical therapy of cervical cancer.


Assuntos
Antígenos CD36/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Animais , Apoptose , Antígenos CD36/antagonistas & inibidores , Antígenos CD36/genética , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Feminino , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Imuno-Histoquímica , Proteína Kangai-1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Pesquisa Translacional Biomédica , Neoplasias do Colo do Útero/genética
15.
Hepatobiliary Pancreat Dis Int ; 18(5): 471-477, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30948327

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) plays an important role in pancreatic cancer (PC). In the present study, we investigated the effects of KAI1 gene overexpression on the EMT of human PC cell lines, MIA PaCa-2 and PACN-1. METHODS: Plasmids overexpressing KAI1 and pCMV were transfected into MIA PaCa-2 and PACN-1 cells, respectively. After selection of differently transfected cells by G418, KAI1 protein levels were examined by Western blotting, and transfected cells were renamed as MIA PaCa-2-K, MIA PaCa-2-p, PACN-1-K and PACN-1-p. Wound healing and Transwell migration assays were then performed comparing the two groups of cells. EMT-related markers were analyzed by Western blotting. RESULTS: The percentage of wound closure significantly decreased in MIA PaCa-2-K cells compared with MIA PaCa-2-p and MIA PaCa-2 cells after 24, 48 and 72 h (P < 0.05). In PACN-1-K cells, the percentage of wound closure significantly decreased as well (P < 0.05). Numbers of invading MIA PaCa-2, MIA PaCa-2-p and MIA PaCa-2-K cells were determined as 48.0 ±â€¯15.4, 50.0 ±â€¯12.4, and 12.0 ±â€¯3.8, respectively. The corresponding numbers of invading PACN-1, PACN-1-p and PACN-1-K cells were 29.0 ±â€¯10.6, 31.0 ±â€¯11.4, and 8.0 ±â€¯4.2, respectively. KAI1 overexpression induced a significant upregulation of E-cadherin and also significant downregulation of Snail, vimentin, matrix metalloproteinase 2 (MMP2) and MMP9 (all P < 0.05) in PC cells. CONCLUSIONS: KAI1 reversed EMT-related marker expression and inhibited migration and invasion of PC cells. Thus, KAI1 might represent a novel potential therapeutic target for PC.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteína Kangai-1/genética , Neoplasias Pancreáticas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Expressão Gênica , Humanos , Proteína Kangai-1/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fatores de Transcrição da Família Snail/metabolismo , Transfecção , Vimentina/metabolismo , Cicatrização/genética
16.
Ann Rheum Dis ; 77(11): 1619-1626, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29980577

RESUMO

Tetraspanins function as membrane adaptors altering cell-cell fusion, antigen presentation, receptor-mediated signal transduction and cell motility via interaction with membrane proteins including other tetraspanins and adhesion molecules such as integrins. CD82 is expressed in several malignant cells and well described as tumour metastasis suppressor. Rheumatoid arthritis (RA) is based on persistent synovial inflammation and joint destruction driven to a large extent by transformed-appearing activated synovial fibroblasts (SF) with an increased migratory potential. OBJECTIVE: CD82 is upregulated in RA synovial fibroblasts (RASF) compared with osteoarthritis (OA) SF as well as within RA compared with OA synovial lining layer (LL) and the role of CD82 in RASF was evaluated. METHODS: CD82 and integrin immunofluorescence was performed. Lentiviral CD82 overexpression and siRNA-mediated knockdown was confirmed (realtime-PCR, Western blot, immunocytochemistry). RASF migration (Boyden chamber, scrape assay), attachment towards plastic/Matrigel, RASF-binding to endothelial cells (EC) and CD82 expression during long-term invasion in the SCID-mouse-model were evaluated. RESULTS: CD82 was induced by proinflammatory stimuli in SF. In RA-synovium, CD82 was expressed in RASF close to blood vessels, LL, sites of cartilage invasion and colocalised with distinct integrins involved in tumour metastasis suppression but also in RA-synovium by RASF. CD82 overexpression led to reduced RASF migration, cell-matrix and RASF-EC adhesion. Reduced CD82 expression (observed in the sublining) increased RASF migration and matrix adhesion whereas RASF-EC-interaction was reduced. In SCID mice, the presence of CD82 on cartilage-invading RASF was confirmed. CONCLUSION: CD82 could contribute to RASF migration to sites of inflammation and tissue damage, where CD82 keeps aggressive RASF on site.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/fisiologia , Proteína Kangai-1/fisiologia , Animais , Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Camundongos SCID , RNA Interferente Pequeno/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
17.
Cell Commun Signal ; 16(1): 41, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005669

RESUMO

BACKGROUND: PPFIA1 is located at the 11q13 region commonly amplified in cancer. The protein liprin-α1 encoded by PPF1A1 contributes to the adhesive and invasive structures of cytoskeletal elements and is located at the invadosomes in cancer cells. However, the precise mechanism of liprin-α1 function in cancer progression has remained elusive. METHODS: Invasion regulating activity of liprin-α1 was examined by analyzing the functions of squamous cell carcinoma of head and neck (HNSCC) cell lines in three-dimensional collagen I after RNAi mediated gene knockdown. Transcriptome profiling and Gene Set Enrichment Analysis from HNSCC and breast cancer cells were used to identify expression changes relevant to specific cellular localizations, biological processes and signaling pathways after PPFIA1 knockdown. The significance of the results was assessed by relevant statistical methods (Wald and Benjamini-Hochberg). Localization of proteins associated to liprin-α1 was studied by immunofluorescence in 2D and 3D conditions. The association of PPFIA1 amplification to HNSCC patient survival was explored using The Cancer Genome Atlas data. RESULTS: In this study, we show that liprin-α1 regulates biological processes related to membrane microdomains in breast carcinoma, as well as protein trafficking, cell-cell and cell-substrate contacts in HNSCC cell lines cultured in three-dimensional matrix. Importantly, we show that in all these cancer cells liprin-α1 knockdown leads to the upregulation of transmembrane protein CD82, which is a suppressor of metastasis in several solid tumors. CONCLUSIONS: Our results provide novel information regarding the function of liprin-α1 in biological processes essential in cancer progression. The results reveal liprin-α1 as a novel regulator of CD82, linking liprin-α1 to the cancer cell invasion and metastasis pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoesqueleto/metabolismo , Proteína Kangai-1/metabolismo , Microdomínios da Membrana/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Adesividade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Metástase Neoplásica , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
18.
Prostate ; 77(4): 350-360, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27813113

RESUMO

BACKGROUND: Repression of the KAI1 metastasis suppressor gene is closely associated with malignancy and poor prognosis in many human cancer types including prostate cancer. Since gene repression in human cancers frequently results from epigenetic alterations by DNA methylation and histone modifications, we examined whether the KAI1 gene becomes silenced through these epigenetic mechanisms in prostate cancer. METHODS: KAI1 mRNA and protein levels were determined by RT-PCR and immunoblotting analyses, respectively. Methylation status of the KAI1 promoter DNA in prostate cancer cell lines and tissues was evaluated by methylation-specific PCR analysis of bisulfite-modified genomic DNAs. Methylated CpG sites in the KAI1 promoter were identified by sequencing the PCR clones of the bisulfite-modified KAI1 promoter DNA. KAI1 protein levels in human prostate cancer tissue samples were examined by immunofluorescence staining of the tissues with an anti-KAI1 antibody. RESULTS: Among the three human prostate cancer cell lines examined, PC3 and DU145 cells exhibited markedly decreased levels of KAI1 mRNA and protein as compared to LNCaP cells, even though the exogenous KAI1 promoter not being methylated was normally functional in all these cell lines. Treatment of the low KAI1-expressing cell lines with a demethylating agent, 5'-aza-2'-deoxycytidine, significantly elevated KAI1 expression levels, implicating the involvement of DNA methylation in KAI1 downregulation. Methylation of CpG islands within the KAI1 promoter region was observed in the low KAI1-expressing cells, but not in the high KAI1-expressing cells. Also, methyl CpG-binding proteins such as MBD2 and MeCP2 were complexed to the KAI1 promoter in the low KAI1-expressing cells. Bisulfite sequencing analysis identified the intensively methylated CpG residues in the KAI1 promoter clones derived from prostate cancer cells and tissues with no or low KAI1 expression. As in prostate cancer cell lines, prostate cancer tissues from patients also displayed a negative association between KAI1 expression levels and methylation status of the KAI1 promoter. CONCLUSIONS: The present data suggest that the KAI1 gene might be repressed by epigenetic alterations through the promoter CpG-site methylation during prostate cancer progression. This epigenetic mechanism could provide a clue for understanding how the KAI1 gene was silenced in metastatic prostate cancers. Prostate 77: 350-360, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Ilhas de CpG/fisiologia , Repressão Epigenética/fisiologia , Genes Supressores de Tumor/fisiologia , Proteína Kangai-1/metabolismo , Regiões Promotoras Genéticas/fisiologia , Neoplasias da Próstata/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Proteína Kangai-1/genética , Masculino , Neoplasias da Próstata/genética
19.
World J Surg Oncol ; 15(1): 211, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187211

RESUMO

BACKGROUND: Lymphatic metastasis contributes to the poor prognosis of laryngeal squamous cell carcinoma (LSCC). This study aimed to investigate the roles of two metastasis suppressor genes, KAI1 and nm23, in lymphangiogenesis and lymph metastasis of LSCC. METHODS: A total of 45 LSCC patients were enrolled in this study. The positive expression rates of KAI1 and nm23 protein were detected via immunohistochemistry in 45 LSCC and 22 normal laryngeal mucosa adjacent to LSCC. Micro-lymphatic vessel density (MLVD) was detected via immunohistochemistry with the specific antibody D2-40. Associations between KAI1 and nm23 expression and clinical characteristics of LSCC were then evaluated. RESULTS: The positive expression rates of KAI1 and nm23 were significantly lower in LSCC than normal laryngeal mucosa (P < 0.05). Significantly lower positive rates of KAI1 and nm23 were found in LSCC with lymphatic metastasis than those without lymphatic metastasis (P < 0.05), whereas MLVD was negatively correlated with the expression of KAI1 and nm23 (P < 0.05). However, no significant associations were found between KAI1 and nm23 expression and clinical characteristics of LSCC (sex, age, disease position, differentiation, and T-stage). CONCLUSIONS: Both KAI1 and nm23 can inhibit lymphangiogenesis and lymphatic metastasis in LSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Proteína Kangai-1/metabolismo , Neoplasias Laríngeas/patologia , Linfangiogênese , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Mucosa Laríngea/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço
20.
Am J Otolaryngol ; 38(5): 511-517, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28583320

RESUMO

OBJECTIVES: The purpose of this study is to characterize the effect of KAI1 overexpression on the biological behavior of nasopharyngeal carcinoma (NPC) cells. BACKGROUND: Nasopharyngeal carcinoma is a highly malignant tumor with a high rate of incidence in China. Currently, there are no ideal therapeutic options for patients with NPC, but a targeted therapy would have great potential for treating it. Therefore, there is an urgent need for novel therapeutic targets to provide new options for treating NPC. The KAI1 gene was originally identified as a metastasis suppressor gene for advanced human cancer. In NPC cell lines and tissues, the expression of KAI1 decreased as the metastatic potential of cells increased, but its potential as a therapeutic target has not been elucidated. METHODS: Non-transformed nasopharyngeal epithelium cell NP69 and NPC cell line C666-1 were cultured and KAI1 expression in these cells was detected by qRT-PCR and Western blot. After the transfection of KAI1-pCDNA3.1 to NP69 and C666-1, the KAI1 expression in these cells was detected by qRT-PCR and Western blot, the proliferation was performed by MTS, the cell cycle and apoptosis were performed by flow cytometry, the migration and invasion were examined by transwell. RESULTS: Our results showed that KAI1 was significantly upregulated in C666-1 cells compared to that in NP69 cells. In addition, KAI1 overexpression significantly inhibited the proliferation, cell cycle, migration, and invasion, and promoted apoptosis of C666-1 cells, but had no significant effect on NP69 cells. CONCLUSION: Our findings suggest that KAI1 overexpression promotes apoptosis and inhibits proliferation, cell cycle, migration, and invasion in NPC cells. We hypothesize that KAI1 overexpression could be a potential therapeutic target for NPC.


Assuntos
Carcinoma/metabolismo , Carcinoma/patologia , Proteína Kangai-1/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Apoptose , Técnicas de Cultura de Células , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Carcinoma Nasofaríngeo , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA