Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 65(6): 1081-1095.e5, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28286024

RESUMO

We investigated the relationship among ERK signaling, histone modifications, and transcription factor activity, focusing on the ERK-regulated ternary complex factor family of SRF partner proteins. In MEFs, activation of ERK by TPA stimulation induced a common pattern of H3K9acS10ph, H4K16ac, H3K27ac, H3K9acK14ac, and H3K4me3 at hundreds of transcription start site (TSS) regions and remote regulatory sites. The magnitude of the increase in histone modification correlated well with changes in transcription. H3K9acS10ph preceded the other modifications. Most induced changes were TCF dependent, but TCF-independent TSSs exhibited the same hierarchy, indicating that it reflects gene activation per se. Studies with TCF Elk-1 mutants showed that TCF-dependent ERK-induced histone modifications required Elk-1 to be phosphorylated and competent to activate transcription. Analysis of direct TCF-SRF target genes and chromatin modifiers confirmed this and showed that H3S10ph required only Elk-1 phosphorylation. Induction of histone modifications following ERK stimulation is thus directed by transcription factor activation and transcription.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Histonas/metabolismo , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Cromatina/efeitos dos fármacos , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Ativação Enzimática , Camundongos , Camundongos Knockout , Mutação , Fosforilação , Interferência de RNA , Fator de Resposta Sérica/genética , Transdução de Sinais , Fatores de Transcrição TCF/genética , Acetato de Tetradecanoilforbol/farmacologia , Sítio de Iniciação de Transcrição , Transcrição Gênica/efeitos dos fármacos , Transfecção , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
2.
Mol Med ; 30(1): 53, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649840

RESUMO

OBJECTIVE: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS: Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS: In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION: Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Células Endoteliais , Lipopolissacarídeos , Receptores de IgG , Síndrome do Desconforto Respiratório , Proteínas Elk-1 do Domínio ets , Animais , Masculino , Ratos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/etiologia , Células Endoteliais/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Pulmão/patologia , Pulmão/metabolismo , Ratos Wistar , Receptores de IgG/metabolismo , Receptores de IgG/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/genética , Células Th17/metabolismo , Células Th17/imunologia , Transcrição Gênica
3.
BMC Cancer ; 24(1): 385, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532312

RESUMO

Gliomas are the most common primary intracranial tumor worldwide. The maintenance of telomeres serves as an important biomarker of some subtypes of glioma. In order to investigate the biological role of RTEL1 in glioma. Relative telomere length (RTL) and RTEL1 mRNA was explored and regression analysis was performed to further examine the relationship of the RTL and the expression of RTEL1 with clinicopathological characteristics of glioma patients. We observed that high expression of RTEL1 is positively correlated with telomere length in glioma tissue, and serve as a poor prognostic factor in TERT wild-type patients. Further in vitro studies demonstrate that RTEL1 promoted proliferation, formation, migration and invasion ability of glioma cells. In addition, in vivo studies also revealed the oncogene role of RTEL1 in glioma. Further study using RNA sequence and phospho-specific antibody microarray assays identified JNK/ELK1 signaling was up-regulated by RTEL1 in glioma cells through ROS. In conclusion, our results suggested that RTEL1 promotes glioma tumorigenesis through JNK/ELK1 cascade and indicate that RTEL1 may be a prognostic biomarker in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/patologia , Neoplasias Encefálicas/genética , Transformação Celular Neoplásica/genética , Oncogenes , Biomarcadores , Proliferação de Células , Proteínas Elk-1 do Domínio ets/genética , DNA Helicases/genética
4.
Mol Cell ; 64(6): 1048-1061, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27867007

RESUMO

The ERK-regulated ternary complex factors (TCFs) act with the transcription factor serum response factor (SRF) to activate mitogen-induced transcription. However, the extent of their involvement in the immediate-early transcriptional response, and their wider functional significance, has remained unclear. We show that, in MEFs, TCF inactivation significantly inhibits over 60% of TPA-inducible gene transcription and impairs cell proliferation. Using integrated SRF ChIP-seq and Hi-C data, we identified over 700 TCF-dependent SRF direct target genes involved in signaling, transcription, and proliferation. These also include a significant number of cytoskeletal gene targets for the Rho-regulated myocardin-related transcription factor (MRTF) SRF cofactor family. The TCFs act as general antagonists of MRTF-dependent SRF target gene expression, competing directly with the MRTFs for access to SRF. As a result, TCF-deficient MEFs exhibit hypercontractile and pro-invasive behavior. Thus, competition between TCFs and MRTFs for SRF determines the balance between antagonistic proliferative and contractile programs of gene expression.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica , Fator de Resposta Sérica/genética , Fatores de Complexo Ternário/genética , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Perfilação da Expressão Gênica , Teste de Complementação Genética , Humanos , Camundongos , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Fatores de Complexo Ternário/antagonistas & inibidores , Fatores de Complexo Ternário/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
5.
PLoS Genet ; 17(1): e1008540, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513133

RESUMO

Androgen deprivation therapy (ADT) is a mainstay of prostate cancer treatment, given the dependence of prostate cells on androgen and the androgen receptor (AR). However, tumors become ADT-resistant, and there is a need to understand the mechanism. One possible mechanism is the upregulation of AR co-regulators, although only a handful have been definitively linked to disease. We previously identified the Mediator subunit MED19 as an AR co-regulator, and reported that MED19 depletion inhibits AR transcriptional activity and growth of androgen-insensitive LNCaP-abl cells. Therefore, we proposed that MED19 upregulation would promote AR activity and drive androgen-independent growth. Here, we show that stable overexpression of MED19 in androgen-dependent LNCaP cells promotes growth under conditions of androgen deprivation. To delineate the mechanism, we determined the MED19 and AR transcriptomes and cistromes in control and MED19-overexpressing LNCaP cells. We also examined genome-wide H3K27 acetylation. MED19 overexpression selectively alters AR occupancy, H3K27 acetylation, and gene expression. Under conditions of androgen deprivation, genes regulated by MED19 correspond to genes regulated by ELK1, a transcription factor that binds the AR N-terminus to induce select AR target gene expression and proliferation, and genomic sites occupied by MED19 and AR are enriched for motifs associated with ELK1. Strikingly, MED19 upregulates expression of monoamine oxidase A (MAOA), a factor that promotes prostate cancer growth. MAOA depletion reduces androgen-independent growth. MED19 and AR occupy the MAOA promoter, with MED19 overexpression enhancing AR occupancy and H3K27 acetylation. Furthermore, MED19 overexpression increases ELK1 occupancy at the MAOA promoter, and ELK1 depletion reduces MAOA expression and androgen-independent growth. This suggests that MED19 cooperates with ELK1 to regulate AR occupancy and H3K27 acetylation at MAOA, upregulating its expression and driving androgen independence in prostate cancer cells. This study provides important insight into the mechanisms of prostate cancer cell growth under low androgen, and underscores the importance of the MED19-MAOA axis in this process.


Assuntos
Complexo Mediador/genética , Monoaminoxidase/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Acetilação , Antagonistas de Androgênios/farmacologia , Androgênios/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Regiões Promotoras Genéticas/efeitos dos fármacos , Próstata/efeitos dos fármacos , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Elk-1 do Domínio ets/genética
6.
Mol Pharmacol ; 103(4): 211-220, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720643

RESUMO

The androgen receptor (AR) is a crucial coactivator of ELK1 for prostate cancer (PCa) growth, associating with ELK1 through two peptide segments (358-457 and 514-557) within the amino-terminal domain (NTD) of AR. The small-molecule antagonist 5-hydroxy-2-(3-hydroxyphenyl)chromen-4-one (KCI807) binds to AR, blocking ELK1 binding and inhibiting PCa growth. We investigated the mode of interaction of KCI807 with AR using systematic mutagenesis coupled with ELK1 coactivation assays, testing polypeptide binding and Raman spectroscopy. In full-length AR, deletion of neither ELK1 binding segment affected sensitivity of residual ELK1 coactivation to KCI807. Although the NTD is sufficient for association of AR with ELK1, interaction of the isolated NTD with ELK1 was insensitive to KCI807. In contrast, coactivation of ELK1 by the AR-V7 splice variant, comprising the NTD and the DNA binding domain (DBD), was sensitive to KCI807. Deletions and point mutations within DBD segment 558-595, adjacent to the NTD, interfered with coactivation of ELK1, and residual ELK1 coactivation by the mutants was insensitive to KCI807. In a glutathione S-transferase pull-down assay, KCI807 inhibited ELK1 binding to an AR polypeptide that included the two ELK1 binding segments and the DBD but did not affect ELK1 binding to a similar AR segment that lacked the sequence downstream of residue 566. Raman spectroscopy detected KCI807-induced conformational change in the DBD. The data point to a putative KCI807 binding pocket within the crystal structure of the DBD and indicate that either mutations or binding of KCI807 at this site will induce conformational changes that disrupt ELK1 binding to the NTD. SIGNIFICANCE STATEMENT: The small-molecule antagonist KCI807 disrupts association of the androgen receptor (AR) with ELK1, serving as a prototype for the development of small molecules for a novel type of therapeutic intervention in drug-resistant prostate cancer. This study provides basic information needed for rational KCI807-based drug design by identifying a putative binding pocket in the DNA binding domain of AR through which KCI807 modulates the amino-terminal domain to inhibit ELK1 binding.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Domínios Proteicos , Peptídeos/uso terapêutico , Neoplasias da Próstata/metabolismo , DNA , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/uso terapêutico
7.
Mol Carcinog ; 62(12): 1947-1959, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642304

RESUMO

Cyclin-dependent kinase subunit 2 (CKS2) has been reported to promote various malignancies. This study investigated the functional role of CKS2 in pancreatic cancer (PC). An analysis of abnormally expressed genes and their prognostic value for PC was performed by using the Gene Expression Profiling Interactive Analysis (GEPIA) database and performing immunohistochemical staining on 64 samples of tumor tissue. CCK-8 assays, EdU staining, colony formation assays, flow cytometry, and a xenograft tumor model were used to analyze the biological function of CKS2 in PC. Our results revealed that CKS2 was expressed at significantly higher levels in PC tissues than in adjacent normal tissues, and a high level of CKS2 expression was associated with a poor prognosis for patients with PC. Moreover, functional assays revealed that CKS2 knockdown suppressed cell proliferation, induced cell cycle S phase, G2/M phase arrest, and apoptosis in vitro, and also reduced tumor growth in vivo. In addition, CKS2 knockdown increased the levels of Bax, caspase-3, P53, P21, and GADD45α expression, but decreased Bcl-2, Cyclin B1, CDK1, Cyclin A, and Cdc25C expression. CKS2 overexpression produced the opposite effects of CKS2 knockdown. Furthermore, we found that ELK1 protein regulated transcription of the CKS2 gene. In conclusion, our findings suggest that CKS2 expression is regulated by ELK1, which could possibly serve as prognostic indicator and therapeutic target for PC.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias Pancreáticas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinases relacionadas a CDC2 e CDC28/genética , Quinases relacionadas a CDC2 e CDC28/metabolismo , Proliferação de Células/genética , Fase G2 , Apoptose/genética , Neoplasias Pancreáticas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/farmacologia
8.
Biochem J ; 479(14): 1519-1531, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35781489

RESUMO

Prostate cancer (PCa) growth requires tethering of the androgen receptor (AR) to chromatin by the ETS domain transcription factor ELK1 to coactivate critical cell proliferation genes. Disruption of the ELK1-AR complex is a validated potential means of therapeutic intervention in PCa. AR associates with ELK1 by coopting its two ERK docking sites, through the amino-terminal domain (A/B domain) of AR. Using a mammalian two-hybrid assay, we have now functionally mapped amino acids within the peptide segments 358-457 and 514-557 in the A/B domain as required for association with ELK1. The mapping data were validated by GST (glutathione S-transferase)-pulldown and BRET (bioluminescence resonance energy transfer) assays. Comparison of the relative contributions of the interacting motifs/segments in ELK1 and AR to coactivation of ELK1 by AR suggested a parallel mode of binding of AR and ELK1 polypeptides. Growth of PCa cells was partially inhibited by deletion of the upstream segment in AR and nearly fully inhibited by deletion of the downstream segment. Our studies have identified two peptide segments in AR that mediate the functional association of AR with its two docking sites in ELK1. Identification of the ELK1 recognition sites in AR should enable further structural studies of the ELK1-AR interaction and rational design of small molecule drugs to disrupt this interaction.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Mamíferos/metabolismo , Peptídeos/genética , Peptídeos/uso terapêutico , Neoplasias da Próstata/genética , Receptores Androgênicos/química , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/uso terapêutico
9.
J Obstet Gynaecol Res ; 49(8): 2175-2184, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37339943

RESUMO

BACKGROUND: KIFC1 exerts an important function in centrosome aggregation in breast cancer (BC) cells and a variety of other cancer cells, but its potential mechanisms in BC pathogenesis are yet fully elucidated. The aim of this study was to investigate the effects of KIFC1 on BC progression and its underlying mechanisms. METHODS: Expression of ELK1 and KIFC1 in BC was analyzed by The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction. Cell proliferative capacity was examined by CCK-8 and colony formation assays, respectively. Glutathione (GSH)/glutathione disulfide (GSSG) ratio and GSH level were measured using the kit. Expression of GSH metabolism-related enzymes (G6PD, GCLM, and GCLC) was detected by western blot. Intracellular reactive oxygen species (ROS) levels were measured by the ROS Assay Kit. The transcription factor ELK1 upstream of KIFC1 was identified by hTFtarget, KnockTFv2 database and Pearson correlation. Their interaction was validated by dual-luciferase reporter assay and chromatin immunoprecipitation. RESULTS: This study demonstrated the upregulation of ELK1 and KIFC1 in BC and found that ELK1 could bind to the KIFC1 promoter to promote KIFC1 transcription. KIFC1 overexpression increased cell proliferation and intracellular GSH levels, while decreasing intracellular ROS levels. The addition of the GSH metabolism inhibitor BSO attenuated the promotion of BC cell proliferation induced by KIFC1 overexpression. In addition, KIFC1 overexpression reversed the inhibitory effect of knockdown of ELK1 on BC cell proliferation. CONCLUSION: ELK1 was a transcriptional factor of KIFC1. ELK1/KIFC1 axis reduced ROS level by increasing GSH synthesis, thus facilitating BC cell proliferation. Current observations suggest that ELK1/ KIFC1 may be a potential therapeutic target for BC treatment.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/farmacologia
10.
J Biol Chem ; 296: 100214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428929

RESUMO

The mitogen-responsive, ETS-domain transcription factor ELK-1 stimulates the expression of immediate early genes at the onset of the cell cycle and participates in early developmental programming. ELK-1 is subject to multiple levels of posttranslational control, including phosphorylation, SUMOylation, and ubiquitination. Recently, removal of monoubiquitin from the ELK-1 ETS domain by the Ubiquitin Specific Protease USP17 was shown to augment ELK-1 transcriptional activity and promote cell proliferation. Here we have used coimmunoprecipitation experiments, protein turnover and ubiquitination assays, RNA-interference and gene expression analyses to examine the possibility that USP17 acts antagonistically with the F-box protein FBXO25, an E3 ubiquitin ligase previously shown to promote ELK-1 ubiquitination and degradation. Our data confirm that FBXO25 and ELK-1 interact in HEK293T cells and that FBXO25 is active toward Hand1 and HAX1, two of its other candidate substrates. However, our data indicate that FBXO25 neither promotes ubiquitination of ELK-1 nor impacts on its transcriptional activity and suggest that an E3 ubiquitin ligase other than FBXO25 regulates ELK-1 ubiquitination and function.


Assuntos
Endopeptidases/metabolismo , Proteínas F-Box/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Proliferação de Células , Endopeptidases/genética , Proteínas F-Box/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Fosforilação , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sumoilação , Transfecção , Ubiquitinação , Proteínas Elk-1 do Domínio ets/genética
11.
Mamm Genome ; 33(4): 642-653, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35994105

RESUMO

BACKGROUND: Sepsis-induced acute kidney injury (AKI) is a common in clinic. Circular RNAs (circRNAs) play significant roles in ameliorating AKI. The purpose of this study was aimed to identify the role of circ_0074371 and the potential action mechanism in sepsis-induced AKI. METHODS: AKI patients and healthy individual serum samples were collected and the relative expression of circ_0074371 was measured by real-time polymerase chain reaction (RT-PCR). HK2 cells were treated with different dose (0, 2.5, 5 and 10 µg/ml) lipopolysaccharide (LPS) to establish the AKI cell model. The cell viability and apoptosis of HK2 cells were detected using cell counting kit-8 (CCK-8) and flow cytometry, respectively. The contents of malondialdehyde (MDA), and superoxide dismutase (SOD) were evaluated using the relative commercial kits. The IL-1ß and TNF-α levels in cell culture supernatants were measured by ELISA. The interaction relationship between miR-330-5p and circ_0074371 or ELK1 was predicted by Targetscan database and further confirmed by the dual-luciferase reporter assay system. RESULTS: The circ_0074371 expression was up-regulated in sepsis patients and LPS-induced HK2 cells. Silencing circ_0074371 promoted HK2 cells viability and inhibited the HK2 cells apoptosis. miR-330-5p inhibitor weakened circ_0074371 inhibitor-induced cell viability, apoptosis and oxidative stress. Further mechanism analysis showed that circ_0074371 acted as a sponge for miR-330-5p to increase ELK1 expression level. Importantly, miR-330-5p downregulation or ELK1 upregulation reversed the action of circ_0074371 knockdown on LPS-induced HK2 cells. CONCLUSION: Knockdown of circ_0074371 ameliorated LPS-induced HK2 cells apoptosis, inflammation and oxidative stress via regulating miR-330-5p/ELK1, opening a new window into the pathogenesis AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , Sepse , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/fisiologia , Lipopolissacarídeos/toxicidade , Apoptose/genética , Injúria Renal Aguda/genética , Sepse/complicações , Sepse/genética , Proteínas Elk-1 do Domínio ets/genética
12.
BMC Cancer ; 22(1): 881, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962333

RESUMO

BACKGROUND: Glutathione Peroxidase 4 (GPX4) is a key protein that inhibits ferroptosis. However, its biological regulation and mechanism in endometrial cancer (EC) have not been reported in detail. METHODS: The expression of GPX4 in EC tissues was determined by TCGA databases, qRT-PCR, Western blot, and immunohistochemistry (IHC). The effects of GPX4 on EC cell proliferation, migration, apoptosis, and tumorigenesis were studied in vivo and in vitro. In addition, ETS Transcription Factor ELK1 (ELK1) was identified by bioinformatics methods, dual-luciferase reporter assay, and chromatin immunoprecipitation (ChIP). Pearson correlation analysis was used to evaluate the association between ELK1 and GPX4 expression. RESULTS: The expression of GPX4 was significantly up-regulated in EC tissues and cell lines. Silencing GPX4 significantly inhibited the proliferation, migration ability, induced apoptosis, and arrested the cell cycle of Ishikawa and KLE cells. Knockdown of GPX4 accumulated intracellular ferrous iron and ROS, disrupted MMP, and increased MDA levels. The xenograft tumor model also showed that GPX4 knockdown markedly reduced tumor growth in mice. Mechanically, ELK1 could bind to the promoter of GPX4 to promote its transcription. In addition, the expression of ELK1 in EC was positively correlated with GPX4. Rescue experiments confirmed that GPX4 knockdown could reverse the strengthens of cell proliferation and migration ability and the lower level of Fe2+ and MDA caused by upregulating ELK1. CONCLUSION: The results of the present study suggest that ELK1 / GPX4 axis plays an important role in the progress of EC by promoting the malignant biological behavior and inducing ferroptosis of EC cells, which provides evidence for investigating the potential therapeutic strategies of endometrial cancer.


Assuntos
Neoplasias do Endométrio , Ferroptose , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Endométrio/patologia , Feminino , Ferroptose/genética , Humanos , Camundongos , Ativação Transcricional , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
13.
Cell Mol Biol (Noisy-le-grand) ; 68(7): 107-116, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36495510

RESUMO

Circular RNAs (circRNAs) are characterized as a class of new noncoding RNAs and function in tumorigenesis of colorectal cancer (CRC). In our study, the molecule mechanism of circ_0022340 in CRC was investigated. For this aim, quantitative real-time polymerase chain reaction (RT-qPCR) was used to test gene expression in CRC cells. Cell function assays including 5-ethynyl-20-deoxyuridine (EdU), colony formation and transwell investigated the proliferation and migration capacity in CRC cells. Luciferase reporter and RNA immunoprecipitation (RIP)assays determined the interaction between circRNA, miRNA and mRNA. Western blot was used to test protein expression. An immunohistochemistry assay was used to assess the tumor growth in vivo. Results showed that Circ_0022340 was highly expressed in CRC cells. Circ_0022340 was formed from exon 5 to 6 of the synaptotagmin 7 (SYT7). Silencing of circ_0022340 suppressed CRC cell proliferation and migration. Functionally, circ_0022340 recruited heterogeneous nuclear ribonucleoprotein C (HNRNPC) to stabilize EBF1 mRNA and thereby activated SYT7. Moreover, circ_0022340 targeted miR-382-5p to up-regulate ETS transcription factor ELK1 (ELK1). It is concluded that Circ_0022340 promoted colorectal cancer progression via recruiting HNRNPC to stabilize EBF1 mRNA and thereby activated SYT7 or miR-382-5p/ELK1 axis, which might provide a novel target for CRC treatment.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Sinaptotagminas , RNA Circular/genética , RNA Mensageiro , MicroRNAs/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Transativadores , Proteínas Elk-1 do Domínio ets/genética
14.
Proc Natl Acad Sci U S A ; 116(49): 24840-24851, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744868

RESUMO

Huntington's disease (HD) is a chronic neurodegenerative disorder characterized by a late clinical onset despite ubiquitous expression of the mutant Huntingtin gene (HTT) from birth. Transcriptional dysregulation is a pivotal feature of HD. Yet, the genes that are altered in the prodromal period and their regulators, which present opportunities for therapeutic intervention, remain to be elucidated. Using transcriptional and chromatin profiling, we found aberrant transcription and changes in histone H3K27acetylation in the striatum of R6/1 mice during the presymptomatic disease stages. Integrating these data, we identified the Elk-1 transcription factor as a candidate regulator of prodromal changes in HD. Exogenous expression of Elk-1 exerted beneficial effects in a primary striatal cell culture model of HD, and adeno-associated virus-mediated Elk-1 overexpression alleviated transcriptional dysregulation in R6/1 mice. Collectively, our work demonstrates that aberrant gene expression precedes overt disease onset in HD, identifies the Elk-1 transcription factor as a key regulator linked to early epigenetic and transcriptional changes in HD, and presents evidence for Elk-1 as a target for alleviating molecular pathology in HD.


Assuntos
Epigenômica , Doença de Huntington/genética , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Corpo Estriado/metabolismo , Dependovirus , Modelos Animais de Doenças , Histonas/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas Nucleares/metabolismo
15.
J Cell Mol Med ; 25(22): 10724-10735, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34704358

RESUMO

Obesity-associated type 2 diabetes (T2D) is on the rise in the United States due to the obesity epidemic, and 60% of T2D patients develop diabetic retinopathy (DR) in their lifetime. Chronic inflammation is a hallmark of obesity and T2D and a well-accepted major contributor to DR, and retinal photoreceptors are a major source of intraocular inflammation and directly contribute to vascular abnormalities in diabetes. However, how diabetic insults cause photoreceptor inflammation is not well known. In this study, we used a high-fat diet (HFD)-induced T2D mouse model and cultured photoreceptors treated with palmitic acid (PA) to decipher major players that mediate high-fat-induced photoreceptor inflammation. We found that PA-elicited microRNA-150 (miR-150) decreases with a consistent upregulation of ETS-domain transcription factor 1 (Elk1), a downstream target of miR-150, in PA-elicited photoreceptor inflammation. We compared wild-type (WT) and miR-150 null (miR-150-/- ) mice fed with an HFD and found that deletion of miR-150 exacerbated HFD-induced photoreceptor inflammation in conjunction with upregulated ELK1. We further delineated the critical cellular localization of phosphorylated ELK1 at serine 383 (pELK1S383 ) and found that decreased miR-150 exacerbated the T2D-induced inflammation in photoreceptors by upregulating ELK1 and pELK1S383 , and knockdown of ELK1 alleviated PA-elicited photoreceptor inflammation.


Assuntos
Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , MicroRNAs/genética , Células Fotorreceptoras/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Animais , Biomarcadores , Linhagem Celular , Diabetes Mellitus Tipo 2 , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Obesidade , Células Fotorreceptoras/patologia , Interferência de RNA
16.
J Biol Chem ; 295(47): 16058-16071, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32938713

RESUMO

Malignant melanoma, the most aggressive form of skin cancer, is characterized by high prevalence of BRAF/NRAS mutations and hyperactivation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), mitogen-activated protein kinases (MAPK), leading to uncontrolled melanoma growth. Efficacy of current targeted therapies against mutant BRAF or MEK1/2 have been hindered by existence of innate or development of acquired resistance. Therefore, a better understanding of the mechanisms controlled by MAPK pathway driving melanogenesis will help develop new treatment approaches targeting this oncogenic cascade. Here, we identify E3 ubiquitin ligase PARK2 as a direct target of ELK1, a known transcriptional effector of MAPK signaling in melanoma cells. We show that pharmacological inhibition of BRAF-V600E or ERK1/2 in melanoma cells increases PARK2 expression. PARK2 overexpression reduces melanoma cell growth in vitro and in vivo and induces apoptosis. Conversely, its genetic silencing increases melanoma cell proliferation and reduces cell death. Further, we demonstrate that ELK1 is required by the BRAF-ERK1/2 pathway to repress PARK2 expression and promoter activity in melanoma cells. Clinically, PARK2 is highly expressed in WT BRAF and NRAS melanomas, but it is expressed at low levels in melanomas carrying BRAF/NRAS mutations. Overall, our data provide new insights into the tumor suppressive role of PARK2 in malignant melanoma and uncover a novel mechanism for the negative regulation of PARK2 via the ERK1/2-ELK1 axis. These findings suggest that reactivation of PARK2 may be a promising therapeutic approach to counteract melanoma growth.


Assuntos
Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Elk-1 do Domínio ets/genética
17.
Biochem Biophys Res Commun ; 552: 157-163, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33744764

RESUMO

ß-Thalassemia is an autosomal recessive genetic disease caused by defects in the production of adult hemoglobin (HbA, α2ß2), which leads to an imbalance between α- and non-α-globin chains. Reactivation of γ-globin expression is an effective strategy to treat ß-thalassemia patients. Previously, it was demonstrated that hemoglobin subunit beta pseudogene 1 (HBBP1) is associated with elevated fetal hemoglobin (HbF, α2γ2) in ß-thalassemia patients. However, the mechanism underlying HBBP1-mediated HbF production is unknown. In this study, using bioinformatics analysis, we found that HBBP1 is involved in γ-globin production, and then preliminarily confirmed this finding in K562 cells. When HBBP1 was overexpressed, γ-globin expression was increased at the transcript and protein levels in HUDEP-2 cells. Next, we found that ETS transcription factor ELK1 (ELK1) binds to the HBBP1 proximal promoter and significantly promotes its activity. Moreover, the synthesis of γ-globin was enhanced when ELK1 was overexpressed in HUDEP-2 cells. Surprisingly, ELK1 also directly bound to and activated the γ-globin proximal promoter. Furthermore, we found that HBBP1 and ELK1 can interact with each other in HUDEP-2 cells. Collectively, these findings suggest that HBBP1 can induce γ-globin by enhancing ELK1 expression, providing some clues for γ-globin reactivation in ß-thalassemia.


Assuntos
Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Talassemia beta/genética , Proteínas Elk-1 do Domínio ets/genética , gama-Globinas/genética , Diferenciação Celular/genética , Linhagem Celular , Células Precursoras Eritroides/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Células K562 , Interferência de RNA , Talassemia beta/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , gama-Globinas/metabolismo
18.
Biochem Biophys Res Commun ; 548: 112-119, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33640603

RESUMO

Long noncoding RNAs (lncRNAs) have been identified as functional modulators in human tumors. The purpose of our study was to determine the expressing trend, clinical significance and functions of lncRNA LINC02381(LINC02381) in osteosarcoma. We observed that the expression of LINC02381 and cell division cycle-associated protein 4 (CDCA4) were distinctly increased in osteosarcoma specimens and cells, while miR-503-5p expression was decreased. Additionally, ETS transcription factor ELK1 (ELK1) could bind directly to the LINC02381 promoter region and activate its transcription. Clinical assays revealed that high LINC02381 was associated with advanced clinical progress and poor clinical outcome. Functionally, knockdown of LINC02381 suppressed the proliferation, migration and invasion of osteosarcoma cells. What's more, LINC02381 could down-regulate CDCA4 via sponging miR-503-5p, and there existed a negative correlation between LINC02381 expression and miR-503-5p expression in 92 osteosarcoma samples. Rescue experiments proved the carcinogenic role of LINC02381/miR-503-5p/CDCA4 axis in osteosarcoma progression. Overall, our data illustrated how LINC02381 played an oncogenic role in osteosarcoma and might offer a novel diagnostic and prognostic biomarker and potential therapeutic target for osteosarcoma.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Regulação para Cima/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Sequência de Bases , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Inativação Gênica , Humanos , MicroRNAs/genética , Metástase Neoplásica , Resultado do Tratamento , Proteínas Elk-1 do Domínio ets/genética
19.
IUBMB Life ; 73(1): 118-129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295145

RESUMO

Cervical cancer (CC) is the most familiar gynecological malignancy. With the poor prognosis of CC patients, this study explored the effect of microRNA (miR)-130b-5p targeting ELK1 expression on self-renewal ability and stemness of CC stem cells. The tissues of patients with CC or cervical benign lesions were collected. MiR-130b-5p and ELK1 expression was detected by reverse transcription quantitative polymerase chain reaction and western blot analysis. Human CC cell line Hela was cultured and the induced CC stem cells were introduced with miR-130b-5p mimic or silenced ELK1 to figure their roles in self-renewal ability, stemness, colony formation, proliferation, migration, invasion abilities, and apoptosis of CC stem cells. Tumor growth was detected in nude mice in vivo. The targeting relationship between miR-130b-5p and ELK1 was analyzed using bioinformatic prediction and dual luciferase reporter gene assay. Decreased miR-130b-5p and elevated ELK1 existed in CC tissues of patients. Up-regulated miR-130b-5p decreased ELK1 expression in CC stem cells. Elevated miR-130b-5p or silenced ELK1 inhibited self-renewal ability and stemness, colony formation, proliferation, migration and invasion abilities, promoted apoptosis of CC stem cells, as well as decreased the weight and volume of tumor in nude mice. ELK1 was found to be targeted by miR-130b-5p. Overexpression ELK1 effectively reversed the cellular phenotypic changes and tumor formation in vivo caused by up-regulation of miR-130b-5p. We conclude that up-regulated miR-130b-5p or silenced ELK1 inhibits CC stem cell growth.


Assuntos
Biomarcadores Tumorais/metabolismo , Autorrenovação Celular , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Neoplasias do Colo do Útero/patologia , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Elk-1 do Domínio ets/genética
20.
Mol Cell ; 50(6): 844-55, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23727019

RESUMO

The extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signal-transduction cascade is one of the key pathways regulating proliferation and differentiation in development and disease. ERK signaling is required for human embryonic stem cells' (hESCs') self-renewing property. Here, we studied the convergence of the ERK signaling cascade at the DNA by mapping genome-wide kinase-chromatin interactions for ERK2 in hESCs. We observed that ERK2 binding occurs near noncoding genes and histone, cell-cycle, metabolism, and pluripotency-associated genes. We find that the transcription factor ELK1 is essential in hESCs and that ERK2 co-occupies promoters bound by ELK1. Strikingly, promoters bound by ELK1 without ERK2 are occupied by Polycomb group proteins that repress genes involved in lineage commitment. In summary, we propose a model wherein extracellular-signaling-stimulated proliferation and intrinsic repression of differentiation are integrated to maintain the identity of hESCs.


Assuntos
Cromatina/enzimologia , Células-Tronco Embrionárias/enzimologia , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Sequência de Bases , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Sequência Consenso , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genoma Humano , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Transcrição Gênica , Transcriptoma , Proteínas Elk-1 do Domínio ets/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA