Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(29): 9843-9858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35532015

RESUMO

Hyperlipidemia, high levels of blood lipids including cholesterol and triglycerides, is a major risk factor for cardiovascular disease. Traditional treatments of hyperlipidemia often include lifestyle changes and pharmacotherapy. Recently, flaxseed has been approved as a nutrient that lowers blood lipids. Several metabolites of flaxseed lignan secoisolariciresinol diglucoside (SDG), have been identified that reduce blood lipids. SDG is present in flaxseed hull as an ester-linked copolymer with 3-hydroxy-3-methylglutaric acid (HMGA). However, purification processes involved in hydrolysis of the copolymer and enriching SDG are often expensive. The natural copolymer of SDG with HMGA (SDG polymer) is a source of bioactive compounds useful in prophylaxis of hypercholesterolemia. After consumption of the lignan copolymer, SDG and HMGA are released in the stomach and small intestines. SDG is metabolized to secoisolariciresinol, enterolactone and enterodiol, the bioactive forms of mammalian lignans. These metabolites are then distributed throughout the body where they accumulate in the liver, kidney, skin, other tissues, and organs. Successively, these metabolites reduce blood lipids including cholesterol, triglycerides, low density lipoprotein cholesterol, and lipid peroxidation products. In this review, the metabolism and efficacies of flaxseed-derived enriched SDG and SDG polymer will be discussed.


Assuntos
Linho , Proteínas HMGA , Hiperlipidemias , Lignanas , Animais , Humanos , Linho/metabolismo , Lipídeos , Triglicerídeos/metabolismo , Colesterol/metabolismo , Polímeros/metabolismo , Proteínas HMGA/metabolismo , Mamíferos/metabolismo
2.
Appl Environ Microbiol ; 88(18): e0128922, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36073941

RESUMO

Shewanella oneidensis is the best understood model microorganism for the study of diverse cytochromes (cytos) c that support its unparallel respiratory versatility. Although RNA chaperone Hfq has been implicated in regulation of cyto c production, little is known about the biological pathways that it affects in this bacterium. In this study, from a spontaneous mutant that secretes pyomelanin and has a lowered cyto c content, we identified Hfq to be the regulator that critically associates with both phenotypes in S. oneidensis. We found that expression of the key genes in biosynthesis and degradation of heme is differentially affected by Hfq at under- and overproduced levels, and through modulating heme levels, Hfq influences the cyto c content. Although Hfq in excess results in overproduction of the enzymes responsible for both generation and removal of homogentisic acid (HGA), the precursor of pyomelanin, it is compromised activity of HmgA that leads to excretion and polymerization of HGA to form pyomelanin. We further show that Hfq mediates HmgA activity by lowering intracellular iron content because HmgA is an iron-dependent enzyme. Overall, our work highlights the significance of Hfq-mediated posttranscriptional regulation in the physiology of S. oneidensis, unraveling unexpected mechanisms by which Hfq affects cyto c biosynthesis and pyomelanin production. IMPORTANCE In bacteria, Hfq has been implicated in regulation of diverse biological processes posttranslationally. In S. oneidensis, Hfq affects the content of cytos c that serve as the basis of its respiratory versatility and potential application in bioenergy and bioremediation. In this study, we found that Hfq differentially regulates heme biosynthesis and degradation, leading to altered cyto c contents. Hfq in excess causes a synthetic effect on HmgA, an enzyme responsible for pyomelanin formation. Overall, the data presented manifest that the biological processes in a given bacterium regulated by Hfq are highly complex, amounting to required coordination among multiple physiological aspects to allow cells to respond to environmental changes promptly.


Assuntos
Proteínas HMGA , Shewanella , Citocromos c/metabolismo , Proteínas HMGA/metabolismo , Heme/metabolismo , Ácido Homogentísico/metabolismo , Ferro/metabolismo , Melaninas , RNA/metabolismo , Shewanella/metabolismo
3.
Cell Mol Life Sci ; 78(3): 817-831, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32920697

RESUMO

The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas HMGA/metabolismo , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Proteínas HMGA/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
4.
Biochim Biophys Acta Rev Cancer ; 1869(2): 216-229, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29518471

RESUMO

Cancer heterogeneity is one of the factors that constitute an obstacle towards an efficient targeting of this multifaceted disease. Molecular information can help in classifying cancer subtypes and in providing clinicians with novel targeted therapeutic opportunities. In this regard, classification of breast cancer into intrinsic subtypes based on molecular profiling represents a valuable prototype. The High Mobility Group A (HMGA) chromatin architectural factors (HMGA1a, HMGA1b, and HMGA2) have a relevant and causal role in breast cancer onset and development, by influencing virtually all cancer hallmarks. The regulation of HMGA expression is under the control of major pathways involved in cell proliferation and survival, as well as in other cancer-related processes, thereby suggesting, for the HMGA members, a high degree of homology and overlapping activities. Despite of this evidence, HMGA proteins display also specific functions. In this review, we provide an overview of (i) the pathways involved in HMGA transcriptional and post-transcriptional regulation, (ii) the utilization of HMGA as molecular markers, and (iii) the biological role of HMGA in the context of breast cancer. We focus on the potential significance of HMGA in governing the onset and development of this tumour, as well as on the potential of these factors as novel specific targets for preventing and treating strategies. The emerging picture is a highly interconnected triad of proteins that could mutually influence each other, either in a competitive or cooperative manner, and that, in our opinion, should be considered as a unified and integrated protein system.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas HMGA/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Montagem e Desmontagem da Cromatina , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas HMGA/genética , Humanos , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica
5.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361060

RESUMO

Homeodomain-interacting protein kinase 2 (HIPK2) is a serine-threonine kinase that phosphorylates various transcriptional and chromatin regulators, thus modulating numerous important cellular processes, such as proliferation, apoptosis, DNA damage response, and oxidative stress. The role of HIPK2 in the pathogenesis of cancer and fibrosis is well established, and evidence of its involvement in the homeostasis of multiple organs has been recently emerging. We have previously demonstrated that Hipk2-null (Hipk2-KO) mice present cerebellar alterations associated with psychomotor abnormalities and that the double ablation of HIPK2 and its interactor HMGA1 causes perinatal death due to respiratory failure. To identify other alterations caused by the loss of HIPK2, we performed a systematic morphological analysis of Hipk2-KO mice. Post-mortem examinations and histological analysis revealed that Hipk2 ablation causes neuronal loss, neuronal morphological alterations, and satellitosis throughout the whole central nervous system (CNS); a myopathic phenotype characterized by variable fiber size, mitochondrial proliferation, sarcoplasmic inclusions, morphological alterations at neuromuscular junctions; and a cardiac phenotype characterized by fibrosis and cardiomyocyte hypertrophy. These data demonstrate the importance of HIPK2 in the physiology of skeletal and cardiac muscles and of different parts of the CNS, thus suggesting its potential relevance for different new aspects of human pathology.


Assuntos
Sistema Nervoso Central/patologia , Fibrose/patologia , Miocárdio/patologia , Neurônios/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Feminino , Fibrose/metabolismo , Proteínas HMGA/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Neurônios/metabolismo , Fenótipo , Fosforilação
6.
Cell Biol Int ; 44(4): 1009-1019, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31889385

RESUMO

Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high-mobility group AT-hook 1 (HMGA1) were confirmed to be targets of miR-15a-5p. SNHG1 promoted HMGA1 expression by sponging miR-15a-5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1-related pathway may be therapeutically harnessed to treat cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Proteínas HMGA/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia
7.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963852

RESUMO

HMGA (high mobility group A) (HMGA1 and HMGA2) are small non-histone proteins that can bind DNA and modify chromatin state, thus modulating the accessibility of regulatory factors to the DNA and contributing to the overall panorama of gene expression tuning. In general, they are abundantly expressed during embryogenesis, but are downregulated in the adult differentiated tissues. In the present review, we summarize some aspects of their role during development, also dealing with relevant studies that have shed light on their functioning in cell biology and with emerging possible involvement of HMGA1 and HMGA2 in evolutionary biology.


Assuntos
Proteínas HMGA/genética , Proteínas HMGA/metabolismo , Animais , Ciclo Celular , Montagem e Desmontagem da Cromatina , Desenvolvimento Embrionário , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Humanos
8.
Int J Mol Sci ; 21(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935816

RESUMO

HMGA1 and HMGA2 are chromatin architectural proteins that do not have transcriptional activity per se, but are able to modify chromatin structure by interacting with the transcriptional machinery and thus negatively or positively regulate the transcription of several genes. They have been extensively studied in cancer where they are often found to be overexpressed but their functions under physiologic conditions have still not been completely addressed. Hmga1 and Hmga2 are expressed during the early stages of mouse development, whereas they are not detectable in most adult tissues. Hmga overexpression or knockout studies in mouse have pointed to a key function in the development of the embryo and of various tissues. HMGA proteins are expressed in embryonic stem cells and in some adult stem cells and numerous experimental data have indicated that they play a fundamental role in the maintenance of stemness and in the regulation of differentiation. In this review, we discuss available experimental data on HMGA1 and HMGA2 functions in governing embryonic and adult stem cell fate. Moreover, based on the available evidence, we will aim to outline how HMGA expression is regulated in different contexts and how these two proteins contribute to the regulation of gene expression and chromatin architecture in stem cells.


Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Proteínas HMGA/genética , Células-Tronco Adultas/citologia , Animais , Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGA/metabolismo , Humanos
9.
Molecules ; 25(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327391

RESUMO

A stable intense resistance called "nonhost resistance" generates a complete multiple-gene resistance against plant pathogenic species that are not pathogens of pea such as the bean pathogen, Fusarium solani f. sp. phaseoli (Fsph). Chitosan is a natural nonhost resistance response gene activator of defense responses in peas. Chitosan may share with cancer-treatment compounds, netropsin and some anti-cancer drugs, a DNA minor groove target in plant host tissue. The chitosan heptamer and netropsin have the appropriate size and charge to reside in the DNA minor groove. The localization of a percentage of administered radio-labeled chitosan in the nucleus of plant tissue in vivo indicates its potential to transport to site(s) within the nuclear chromatin (1,2). Other minor groove-localizing compounds administered to pea tissue activate the same secondary plant pathway that terminates in the production of the anti-fungal isoflavonoid, pisatin an indicator of the generated resistance response. Some DNA minor groove compounds also induce defense genes designated as "pathogenesis-related" (PR) genes. Hypothetically, DNA targeting components alter host DNA in a manner enabling the transcription of defense genes previously silenced or minimally expressed. Defense-response-elicitors can directly (a) target host DNA at the site of transcription or (b) act by a series of cascading events beginning at the cell membrane and indirectly influence transcription. A single defense response, pisatin induction, induced by chitosan and compounds with known DNA minor groove attachment potential was followed herein. A hypothesis is formulated suggesting that this DNA target may be accountable for a portion of the defense response generated in nonhost resistance.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Quitosana/farmacologia , Substâncias Intercalantes/farmacologia , Netropsina/farmacologia , Pisum sativum/genética , Doenças das Plantas/genética , Pterocarpanos/farmacologia , Antineoplásicos Fitogênicos/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Quitosana/química , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Cromomicinas/química , Cromomicinas/farmacologia , DNA de Plantas/genética , DNA de Plantas/metabolismo , Resistência à Doença/genética , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas , Proteínas HMGA/genética , Proteínas HMGA/metabolismo , Substâncias Intercalantes/química , Netropsina/química , Pisum sativum/imunologia , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pterocarpanos/química , Transcrição Gênica
10.
Plant Physiol ; 177(1): 311-327, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29622687

RESUMO

Despite intensive searches, few proteins involved in telomere homeostasis have been identified in plants. Here, we used pull-down assays to identify potential telomeric interactors in the model plant species Arabidopsis (Arabidopsis thaliana). We identified the candidate protein GH1-HMGA1 (also known as HON4), an uncharacterized linker histone protein of the High Mobility Group Protein A (HMGA) family in plants. HMGAs are architectural transcription factors and have been suggested to function in DNA damage repair, but their precise biological roles remain unclear. Here, we show that GH1-HMGA1 is required for efficient DNA damage repair and telomere integrity in Arabidopsis. GH1-HMGA1 mutants exhibit developmental and growth defects, accompanied by ploidy defects, increased telomere dysfunction-induced foci, mitotic anaphase bridges, and degraded telomeres. Furthermore, mutants have a higher sensitivity to genotoxic agents such as mitomycin C and γ-irradiation. Our work also suggests that GH1-HMGA1 is involved directly in the repair process by allowing the completion of homologous recombination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas HMGA/metabolismo , Histonas/metabolismo , Telômero/metabolismo , Arabidopsis/crescimento & desenvolvimento , Cromatina/metabolismo , DNA Bacteriano/genética , Fluorescência , Recombinação Homóloga/genética , Mutação/genética , Ligação Proteica , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
11.
Cancer Invest ; 37(8): 339-354, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412717

RESUMO

Squamous cell carcinoma (SCC) of skin has no standard treatment regimen, resulting in recurrences/metastasis. Although, doxorubicin (Dox), an anthracycline antibiotic has demonstrated some degree of efficacy. Molecular imaging can help in assessment of treatment response and prognosis of SCCs. MRI data showed that spin-spin relaxation (T2) time was longer (138 ± 2 msec) in Dox treated Test-II and there is no significant difference in spin-lattice relaxation (T1) time with respective controls. These findings further corroborated with the histology, proliferation index, apoptotic index, and HMGA1 protein expression. Thus, MRI may be a useful tool for monitoring treatment response noninvasively for skin tumor prognosis.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Doxorrubicina/farmacologia , Imageamento por Ressonância Magnética , Imagem Molecular/métodos , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas HMGA/genética , Proteínas HMGA/metabolismo , Camundongos , Valor Preditivo dos Testes , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos
12.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167352

RESUMO

Plasticity is an essential condition for cancer cells to invade surrounding tissues. The nucleus is the most rigid cellular organelle and it undergoes substantial deformations to get through environmental constrictions. Nuclear stiffness mostly depends on the nuclear lamina and chromatin, which in turn might be affected by nuclear architectural proteins. Among these is the HMGA1 (High Mobility Group A1) protein, a factor that plays a causal role in neoplastic transformation and that is able to disentangle heterochromatic domains by H1 displacement. Here we made use of atomic force microscopy to analyze the stiffness of breast cancer cellular models in which we modulated HMGA1 expression to investigate its role in regulating nuclear plasticity. Since histone H1 is the main modulator of chromatin structure and HMGA1 is a well-established histone H1 competitor, we correlated HMGA1 expression and cellular stiffness with histone H1 expression level, post-translational modifications, and nuclear distribution. Our results showed that HMGA1 expression level correlates with nuclear stiffness, is associated to histone H1 phosphorylation status, and alters both histone H1 chromatin distribution and expression. These data suggest that HMGA1 might promote chromatin relaxation through a histone H1-mediated mechanism strongly impacting on the invasiveness of cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Núcleo Celular/metabolismo , Proteínas HMGA/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Feminino , Expressão Gênica , Proteínas HMGA/genética , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Fosforilação , Prognóstico , Ligação Proteica
13.
J Neurooncol ; 132(2): 199-206, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28255749

RESUMO

Nonfunctioning pituitary adenomas (NFPAs) are the most prevalent type of pituitary macro-adenoma. Clarifying the relationship between NFPA markers and disease progression or recurrence could provide a basis for administration of adjuvant treatments. The present study examined the expression levels of high-mobility group (HMG)A1, Ki-67, mouse double minute 2 homolog (MDM2), and retinoblastoma (RB)with respect to NFPA recurrence. Immunohistochemistry was carried out using antibodies to Ki-67, MDM2, HMGA-1, and RB on tissue microarray slides of a cohort of 35 paired NFPA samples of primary and recurrence/regrowth tumors. Based on postoperative magnetic resonance imaging data, tumors were classified as recurrence (n = 20) included primary and recurrent tumors or regrowth (n = 15) included primary and regrowth tumors, which are paired. Protein expression was classified as negative or positive according to the H-score method and was analyzed with respect to clinical and pathological findings. MDM2-positive cases accounted for11/20 primary and 19/20 s recurrent tumors (χ2 = 8.533, P = 0.003), and 9/15 primary tumors and 15/15 s regrowth tumors (χ2 = 7.5, P = 0.006). MGA1-positive cases represented 9/20 primary tumors and 16/20 s recurrent tumors (χ2 = 5.227, P = 0.022), and 4/15 primary tumors and 12/15 s regrowth tumors (χ2 = 8.571, P = 0.003). There was no statistically significant difference in Ki-67 expression between primary and second recurrent/regrowth tumors although theKi67 labeling index was higher in the latter groups. RB was highly expressed in all groups with no significant difference between them. HMGA1 and MDM2 were more highly expressed in recurrence/regrowth cases of NFPA than in primary NFPA. HMGA1 and MDM2 are biomarkers and potential drug targets for NFPA treatment.


Assuntos
Adenoma/metabolismo , Proteínas HMGA/metabolismo , Antígeno Ki-67/metabolismo , Neoplasias Hipofisárias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Retinoblastoma/metabolismo , Adenoma/diagnóstico por imagem , Adulto , Distribuição de Qui-Quadrado , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Neoplasias Hipofisárias/diagnóstico por imagem , Retinoblastoma/complicações , Estudos Retrospectivos , Adulto Jovem
14.
Insect Mol Biol ; 24(1): 71-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25256090

RESUMO

In the silk moth Bombyx mori, chorion genes of the same developmental specificity are organized in divergently transcribed α/ß gene pairs, sharing a common 5' flanking promoter region. This bidirectional promoter contains a complete set of cis-elements responsible for developmentally accurate gene expression. In the present paper, based on the observation that Bombyx chorion gene promoters contain cis-elements for the same transcription factors without concrete evidence on which of them are essential, we address the question as to how promoter architecture (number, orientation and position of common factor binding sites) facilitates developmentally accurate chorion gene regulation. To this end, we constructed several mutated promoter regions of an early-middle gene pair and cloned them upstream of a reporter gene to introduce these plasmid constructs into silk moth follicle epithelial cells via electroporation as an efficient and quick method for transient expression. This is the first time that an ex vivo method had been applied to test the impact of systematic cis-element mutations on a chorion gene promoter. Our results confirmed the importance of the HMGA factor and the role of the GATA factor as an early repressor, and led to a more detailed understanding of which C/EBP sites participate in the regulation of early-middle chorion gene expression.


Assuntos
Bombyx/genética , Córion/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas/fisiologia , Animais , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Eletroporação , Feminino , Fatores de Transcrição GATA/metabolismo , Proteínas HMGA/metabolismo , Mutagênese Sítio-Dirigida , Fatores de Transcrição
15.
Pituitary ; 18(5): 674-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25557289

RESUMO

INTRODUCTION: Transgenic mice overexpressing the high mobility group A (HMGA) genes, Hmga1 or Hmga2 develop pituitary tumours and their overexpression is also a frequent finding in human pituitary adenomas. In some cases, increased expression of HMGA2 but not that of HMGA1 is consequent to genetic perturbations. However, recent studies show that down-regulation of microRNA (miRNA), that contemporaneously target the HMGA1 and HMGA2 transcripts, are associated with their overexpression. RESULTS: In a cohort of primary pituitary adenoma we determine the impact of epigenetic modifications on the expression of HMGA-targeting miRNA. For these miRNAs, chromatin immunoprecipitations showed that transcript down-regulation is correlated with histone tail modifications associated with condensed silenced genes. The functional impact of epigenetic modification on miRNA expression was determined in the rodent pituitary cell line, GH3. In these cells, histone tail, miRNA-associated, modifications were similar to those apparent in human adenoma and likely account for their repression. Indeed, challenge of GH3 cells with the epidrugs, zebularine and TSA, led to enrichment of the histone modification, H3K9Ac, associated with active genes, and depletion of the modification, H3K27me3, associated with silent genes and re-expression of HMGA-targeting miRNA. Moreover, epidrugs challenges were also associated with a concomitant decrease in hmga1 transcript and protein levels and concurrent increase in bmp-4 expression. CONCLUSIONS: These findings show that the inverse relationship between HMGA expression and targeting miRNA is reversible through epidrug interventions. In addition to showing a mechanistic link between epigenetic modifications and miRNA expression these findings underscore their potential as therapeutic targets in this and other diseases.


Assuntos
Adenoma/tratamento farmacológico , Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Proteínas HMGA/metabolismo , Inibidores de Histona Desacetilases/farmacologia , MicroRNAs/metabolismo , Hipófise/efeitos dos fármacos , Neoplasias Hipofisárias/tratamento farmacológico , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Linhagem Celular , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Ilhas de CpG , Citidina/análogos & derivados , Citidina/farmacologia , Metilação de DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Proteínas HMGA/genética , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , MicroRNAs/genética , Hipófise/metabolismo , Hipófise/patologia , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima
16.
Biochem Biophys Res Commun ; 443(3): 821-7, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24342608

RESUMO

Transforming growth factor (TGF)-ß is a pro-oncogenic cytokine that induces the epithelial-mesenchymal transition (EMT), a crucial event in tumor progression. During TGF-ß-mediated EMT in NMuMG mouse mammary epithelial cells, we observed sustained increases in reactive oxygen species (ROS) levels in the cytoplasm and mitochondria with a concomitant decrease in mitochondrial membrane potential and intracellular glutathione levels. In pseudo ρ0 cells, whose respiratory chain function was impaired, the increase in intracellular ROS levels was abrogated, suggesting an important role of mitochondrial activity as a trigger for TGF-ß-stimulated ROS generation. In line with this, TGF-ß-mediated expression of the EMT marker fibronectin was inhibited not only by chemicals that interfere with ROS signaling but also by exogenously expressed mitochondrial thioredoxin (TXN2) independent of Smad signaling. Of note, TGF-ß-mediated induction of HMGA2, a central mediator of EMT and metastatic progression, was similarly impaired by TXN2 expression, revealing a novel mechanism involving a thiol oxidation reaction in mitochondria, which regulates TGF-ß-mediated gene expression associated with EMT.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Tiorredoxinas/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células HEK293 , Proteínas HMGA/metabolismo , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Glândulas Mamárias Animais/citologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
17.
BMC Cancer ; 14: 851, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25409711

RESUMO

BACKGROUND: Development of resistance to conventional drugs and novel biological agents often impair long-term chemotherapy. HMGA gene overexpression is often associated with antineoplastic drug resistance and reduced survival. Inhibition of HMGA expression in thyroid cancer cells reduces levels of ATM protein, the main cellular sensor of DNA damage, and enhances cellular sensitivity to DNA-damaging agents. HMGA1 overexpression promotes chemoresistance to gemcitabine in pancreatic adenocarcinoma cells through an Akt-dependent mechanism. METHODS: To elucidate the role of HMGA1 proteins in chemoresistance we analyzed resistance to conventional drugs and targeted therapies of human colon carcinoma cells (GEO) that are sensitive to the epidermal growth factor receptor inhibitor cetuximab, and express minimal levels of HMGA1 and cetuximab-resistant (GEO CR) cells expressing high HMGA1 protein levels. RESULTS: GEO CR cells were less sensitive than GEO cells to cetuximab and 5-fluorouracil. GEO CR cells silenced for HMGA1 expression were more susceptible than empty vector-transfected cells to the drugs' cytotoxicity. Similar results were obtained with anaplastic thyroid carcinoma cells expressing or not HMGA1 proteins, treated with doxorubicin or the HDAC inhibitor LBH589. Finally, HMGA1 overexpression promoted the DNA-damage response and stimulated Akt phosphorylation and prosurvival signaling. CONCLUSIONS: Our findings suggest that the blockage of HMGA1 expression is a promising approach to enhance cancer cell chemosensitivity, since it could increase the sensitivity of cancer cells to antineoplastic drugs by inhibiting the survival signal and DNA damage repair pathways.


Assuntos
Neoplasias do Colo/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas HMGA/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Dano ao DNA , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Inativação Gênica , Proteínas HMGA/genética , Humanos , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética
18.
J Virol ; 86(9): 5179-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22379092

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. To identify novel LANA protein-cell protein interactions that could contribute to these activities, we performed a proteomic screen in which purified, adenovirus-expressed Flag-LANA protein was incubated with an array displaying 4,192 nonredundant human proteins. Sixty-one interacting cell proteins were consistently detected. LANA interactions with high-mobility group AT-hook 1 (HMGA1), HMGB1, telomeric repeat binding factor 1 (TRF1), xeroderma pigmentosum complementation group A (XPA), pygopus homolog 2 (PYGO2), protein phosphatase 2A (PP2A)B subunit, Tat-interactive protein 60 (TIP60), replication protein A1 (RPA1), and RPA2 proteins were confirmed in coimmunoprecipitation assays. LANA-associated TIP60 retained acetyltransferase activity and, unlike human papillomavirus E6 and HIV-1 TAT proteins, LANA did not reduce TIP60 stability. The LANA-bound PP2A B subunit was associated with the PP2A A subunit but not the catalytic C subunit, suggesting a disruption of PP2A phosphatase activity. This is reminiscent of the role of simian virus 40 (SV40) small t antigen. Chromatin immunoprecipitation (ChIP) assays showed binding of RPA1 and RPA2 to the KSHV terminal repeats. Interestingly, LANA expression ablated RPA1 and RPA2 binding to the cell telomeric repeats. In U2OS cells that rely on the alternative mechanism for telomere maintenance, LANA expression had minimal effect on telomere length. However, LANA expression in telomerase immortalized endothelial cells resulted in telomere shortening. In KSHV-infected cells, telomere shortening may be one more mechanism by which LANA contributes to the development of malignancy.


Assuntos
Antígenos Virais/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatase 2/metabolismo , Encurtamento do Telômero , Antígenos Virais/genética , Linhagem Celular , Expressão Gênica , Proteínas HMGA/metabolismo , Proteína HMGB1/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisina Acetiltransferase 5 , Proteínas Nucleares/genética , Análise Serial de Proteínas , Ligação Proteica , Proteína de Replicação A/metabolismo , Telômero/metabolismo , Encurtamento do Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
19.
Histopathology ; 62(5): 778-87, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23530587

RESUMO

AIMS: Biopsies from the ampulla of Vater and the common bile duct often pose diagnostic challenges. The aim of this study was to investigate the expression patterns of HMGA1, HMGA2, ß-catenin and p53 in biopsy specimens, in order to evaluate the potential diagnostic value of these proteins in differentiating adenocarcinoma from reactive atypia or adenoma. METHODS AND RESULTS: Forty-eight biopsies (10 from the common bile duct and 38 from the ampulla) were selected for immunohistochemical studies; they included 14 cases of reactive atypia, 12 adenomas, and 22 adenocarcinomas. Expression of HMGA1 was seen in 21% of the reactive atypia cases, 42% of adenomas, and 91% of adenocarcinomas. HMGA2 was positive in 14% of reactive atypias, 42% of adenomas, and 86% of adenocarcinomas. The staining intensity of HMGA1 and HMGA2 was also significantly higher in adenocarcinomas than in adenomas or reactive atypias. Interestingly, coexpression of HMGA1 and HMGA2 was found in 86% of adenocarcinomas, 0% of reactive atypias, and 8% of adenomas. p53 and ß-catenin expression seemed not to provide additional value for discriminating adenocarcinoma from reactive atypia or adenoma. CONCLUSIONS: HMGA1 and HMGA2 might serve to discriminate between reactive atypia, adenoma and adenocarcinoma in ampulla and common bile duct biopsies.


Assuntos
Adenocarcinoma/diagnóstico , Adenoma/diagnóstico , Colangite/diagnóstico , Neoplasias do Ducto Colédoco/diagnóstico , Proteínas HMGA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo , Adenocarcinoma/metabolismo , Adenoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Ampola Hepatopancreática/patologia , Biomarcadores Tumorais/metabolismo , Colangite/metabolismo , Neoplasias do Ducto Colédoco/metabolismo , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
PLoS One ; 18(6): e0286526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37276213

RESUMO

Intracellular pathogens construct their environmental niche, and influence disease susceptibility, by deploying factors that manipulate infected host cell gene expression. Theileria annulata is an important tick-borne parasite of cattle that causes tropical theileriosis. Excellent candidates for modulating host cell gene expression are DNA binding proteins bearing AT-hook motifs encoded within the TashAT gene cluster of the parasite genome. In this study, TashAT2 was transfected into bovine BoMac cells to generate three expressing and three non-expressing (opposite orientation) cell lines. RNA-Seq was conducted and differentially expressed (DE) genes identified. The resulting dataset was compared with genes differentially expressed between infected cells and non-infected cells, and DE genes between infected cell lines from susceptible Holstein vs tolerant Sahiwal cattle. Over 800 bovine genes displayed differential expression associated with TashAT2, 209 of which were also modulated by parasite infection. Network analysis showed enrichment of DE genes in pathways associated with cellular adhesion, oncogenesis and developmental regulation by mammalian AT-hook bearing high mobility group A (HMGA) proteins. Overlap of TashAT2 DE genes with Sahiwal vs Holstein DE genes revealed that a significant number of shared genes were associated with disease susceptibility. Altered protein levels encoded by one of these genes (GULP1) was strongly linked to expression of TashAT2 in BoMac cells and was demonstrated to be higher in infected Holstein leucocytes compared to Sahiwal. We conclude that TashAT2 operates as an HMGA analogue to differentially mould the epigenome of the infected cell and influence disease susceptibility.


Assuntos
Proteínas HMGA , Parasitos , Theileria annulata , Theileriose , Bovinos , Animais , Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Fatores de Transcrição/metabolismo , Parasitos/metabolismo , Theileriose/parasitologia , Theileria annulata/genética , Proteínas HMGA/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA