Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(1): 196-207.e14, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502970

RESUMO

Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.


Assuntos
Escherichia coli/metabolismo , Transdução de Sinais , Aerobiose , Anaerobiose , Sequência de Bases , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metilaminas/metabolismo , Metilaminas/farmacologia , Oxigênio/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Fosfotransferases/química , Fosfotransferases/genética , Fosfotransferases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
2.
Cell ; 145(1): 67-78, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21458668

RESUMO

Protein quality control requires careful regulation of intracellular proteolysis. For DegP, a periplasmic protease, substrates promote assembly of inactive hexamers into proteolytically active cages with 12, 18, 24, or 30 subunits. Here, we show that sensitive activation and cage assembly require covalent linkage of distinct substrate sequences that affect degradation (degrons). One degron binds the DegP active site, and another degron binds a separate tethering site in PDZ1 in the crystal structure of a substrate-bound DegP dodecamer. FRET experiments demonstrate that active cages assemble rapidly in a reaction that is positively cooperative in substrate concentration, remain stably assembled while uncleaved substrate is present, and dissociate once degradation is complete. Thus, the energy of binding of linked substrate degrons drives assembly of the proteolytic machine responsible for subsequent degradation. Substrate cleavage and depletion results in disassembly, ensuring that DegP is proteolytically active only when sufficient quantities of protein substrates are present.


Assuntos
Escherichia coli/enzimologia , Proteínas de Choque Térmico/química , Proteínas Periplásmicas/química , Proteínas/metabolismo , Serina Endopeptidases/química , Cristalografia por Raios X , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Proteínas Periplásmicas/metabolismo , Ligação Proteica , Serina Endopeptidases/metabolismo
3.
EMBO J ; 40(21): e108610, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34515361

RESUMO

Bacteria deploy weapons to kill their neighbours during competition for resources and to aid survival within microbiomes. Colicins were the first such antibacterial system identified, yet how these bacteriocins cross the outer membrane (OM) of Escherichia coli is unknown. Here, by solving the structures of translocation intermediates via cryo-EM and by imaging toxin import, we uncover the mechanism by which the Tol-dependent nuclease colicin E9 (ColE9) crosses the bacterial OM. We show that threading of ColE9's disordered N-terminal domain through two pores of the trimeric porin OmpF causes the colicin to disengage from its primary receptor, BtuB, and reorganises the translocon either side of the membrane. Subsequent import of ColE9 through the lumen of a single OmpF subunit is driven by the proton-motive force, which is delivered by the TolQ-TolR-TolA-TolB assembly. Our study answers longstanding questions, such as why OmpF is a better translocator than OmpC, and reconciles the mechanisms by which both Tol- and Ton-dependent bacteriocins cross the bacterial outer membrane.


Assuntos
Bacteriocinas/química , Colicinas/química , Escherichia coli/metabolismo , Porinas/química , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Sítios de Ligação , Colicinas/genética , Colicinas/metabolismo , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Porinas/genética , Porinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Termodinâmica
4.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362850

RESUMO

DegP is an oligomeric protein with dual protease and chaperone activity that regulates protein homeostasis and virulence factor trafficking in the periplasm of gram-negative bacteria. A number of oligomeric architectures adopted by DegP are thought to facilitate its function. For example, DegP can form a "resting" hexamer when not engaged to substrates, mitigating undesired proteolysis of cellular proteins. When bound to substrate proteins or lipid membranes, DegP has been shown to populate a variety of cage- or bowl-like oligomeric states that have increased proteolytic activity. Though a number of DegP's substrate-engaged structures have been robustly characterized, detailed mechanistic information underpinning its remarkable oligomeric plasticity and the corresponding interplay between these dynamics and biological function has remained elusive. Here, we have used a combination of hydrodynamics and NMR spectroscopy methodologies in combination with cryogenic electron microscopy to shed light on the apo-DegP self-assembly mechanism. We find that, in the absence of bound substrates, DegP populates an ensemble of oligomeric states, mediated by self-assembly of trimers, that are distinct from those observed in the presence of substrate. The oligomeric distribution is sensitive to solution ionic strength and temperature and is shifted toward larger oligomeric assemblies under physiological conditions. Substrate proteins may guide DegP toward canonical cage-like structures by binding to these preorganized oligomers, leading to changes in conformation. The properties of DegP self-assembly identified here suggest that apo-DegP can rapidly shift its oligomeric distribution in order to respond to a variety of biological insults.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutação , Ressonância Magnética Nuclear Biomolecular/métodos , Concentração Osmolar , Proteínas Periplásmicas/genética , Domínios Proteicos , Redobramento de Proteína , Serina Endopeptidases/genética , Temperatura
5.
Trends Biochem Sci ; 44(6): 517-527, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30611607

RESUMO

Several recent atomic-resolution studies have resolved how chaperones interact with their client proteins. In some cases, molecular chaperones recognize and bind their clients in conformational ensembles that are locally highly dynamic and interconvert, while in other cases clients bind in unique conformations. The presence of a locally dynamic client ensemble state has important consequences, both for the interpretation of experimental data and for the functionality of chaperones, as local dynamics facilitate rapid client release, folding on and from the chaperone surface, and client recognition without shape complementarity. Facilitated by the local dynamics, at least some chaperones appear to specifically recognize energetically frustrated sites of partially folded client proteins, such that the release of frustration contributes to the interaction affinity.


Assuntos
Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/metabolismo , Humanos , Chaperonas Moleculares/química , Ressonância Magnética Nuclear Biomolecular , Proteínas Periplásmicas/química , Conformação Proteica , Dobramento de Proteína , Termodinâmica
6.
J Biol Chem ; 298(6): 101985, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483450

RESUMO

Ecotin is a homodimeric serine protease inhibitor produced by many commensal and pathogenic microbes. It functions as a virulence factor, enabling survival of various pathogens in the blood. The ecotin dimer binds two protease molecules, and each ecotin protomer has two protease-binding sites: site1 occupies the substrate-binding groove, whereas site2 engages a distinct secondary region. Owing to the twofold rotational symmetry within the ecotin dimer, sites 1 and 2 of a protomer bind to different protease molecules within the tetrameric complex. Escherichia coli ecotin inhibits trypsin-like, chymotrypsin-like, and elastase-like enzymes, including pancreatic proteases, leukocyte elastase, key enzymes of blood coagulation, the contact and complement systems, and other antimicrobial cascades. Here, we show that mannan-binding lectin-associated serine protease-1 (MASP-1) and MASP-2, essential activators of the complement lectin pathway, and MASP-3, an essential alternative pathway activator, are all inhibited by ecotin. We decipher in detail how the preorganization of site1 and site2 within the ecotin dimer contributes to the inhibition of each MASP enzyme. In addition, using mutated and monomeric ecotin variants, we show that site1, site2, and dimerization contribute to inhibition in a surprisingly target-dependent manner. We present the first ecotin:MASP-1 and ecotin:MASP-2 crystal structures, which provide additional insights and permit structural interpretation of the observed functional results. Importantly, we reveal that monomerization completely disables the MASP-2-inhibitory, MASP-3-inhibitory, and lectin pathway-inhibitory capacity of ecotin. These findings provide new opportunities to combat dangerous multidrug-resistant pathogens through development of compounds capable of blocking ecotin dimer formation.


Assuntos
Proteínas de Escherichia coli/química , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Proteínas Periplásmicas/química , Sítios de Ligação , Lectina de Ligação a Manose da Via do Complemento , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lectinas/genética , Lectinas/metabolismo , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Periplásmicas/metabolismo , Subunidades Proteicas
7.
J Am Chem Soc ; 145(24): 13015-13026, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37282495

RESUMO

The periplasmic protein DegP, which is implicated in virulence factor transport leading to pathogenicity, is a bi-functional protease and chaperone that helps to maintain protein homeostasis in Gram-negative bacteria and is essential to bacterial survival under stress conditions. To perform these functions, DegP captures clients inside cage-like structures, which we have recently shown to form through the reorganization of high-order preformed apo oligomers, consisting of trimeric building blocks, that are structurally distinct from client-bound cages. Our previous studies suggested that these apo oligomers may allow DegP to encapsulate clients of various sizes under protein folding stresses by forming ensembles that can include extremely large cage particles, but how this occurs remains an open question. To explore the relation between cage and substrate sizes, we engineered a series of DegP clients of increasing hydrodynamic radii and analyzed their influence on DegP cage formation. We used dynamic light scattering and cryogenic electron microscopy to characterize the hydrodynamic properties and structures of the DegP cages that are adopted in response to each client. We present a series of density maps and structural models that include those for novel particles of approximately 30 and 60 monomers. Key interactions between DegP trimers and the bound clients that stabilize the cage assemblies and prime the clients for catalysis are revealed. We also provide evidence that DegP can form cages which approach subcellular organelles in terms of size.


Assuntos
Proteínas de Choque Térmico , Proteínas Periplásmicas , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Peptídeo Hidrolases/metabolismo , Escherichia coli/metabolismo , Serina Endopeptidases/química , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Chaperonas Moleculares/metabolismo
8.
Biochem Biophys Res Commun ; 688: 149175, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37976815

RESUMO

Protein quality control mechanisms are essential for maintaining cellular integrity, and the HtrA family of serine proteases plays a crucial role in handling folding stress in prokaryotic periplasm. Escherichia coli harbors three HtrA members, namely, DegS, DegP, and DegQ, which share a common domain structure. MucD, a putative HtrA family member that resembles DegP, is involved in alginate biosynthesis regulation and the stress response. Pseudomonas syringae causes plant diseases and opportunistic infections in humans. This study presents the high-resolution structure of MucD from Pseudomonas syringae (psMucD), revealing its composition as a typical HtrA family serine protease with protease and PDZ domains. Its findings suggest that psMucD containing one PDZ domain is a trimer in solution, and psMucD trimerization is mediated by its N-terminal loop. Sequence and structural analyses revealed similarities and differences with other HtrA family members. Additionally, this study provides a model of psMucD's catalytic process, comparing it with other members of the HtrA family of serine proteases.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas , Humanos , Serina Proteases , Pseudomonas syringae/metabolismo , Serina Endopeptidases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Periplásmicas/química , Proteínas de Bactérias/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(3): 1414-1418, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907318

RESUMO

Startling reports described the paradoxical triggering of the human mitogen-activated protein kinase pathway when a small-molecule inhibitor specifically inactivates the BRAF V600E protein kinase but not wt-BRAF. We performed a conceptual analysis of the general phenomenon "activation by inhibition" using bacterial and human HtrA proteases as models. Our data suggest a clear explanation that is based on the classic biochemical principles of allostery and cooperativity. Although substoichiometric occupancy of inhibitor binding sites results in partial inhibition, this effect is overrun by a concomitant activation of unliganded binding sites. Therefore, when an inhibitor of a cooperative enzyme does not reach saturating levels, a common scenario during drug administration, it may cause the contrary of the desired effect. The implications for drug development are discussed.


Assuntos
Sítio Alostérico , Antineoplásicos/farmacologia , Proteínas de Choque Térmico/antagonistas & inibidores , Serina Peptidase 1 de Requerimento de Alta Temperatura A/antagonistas & inibidores , Proteínas Periplásmicas/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Regulação Alostérica , Antineoplásicos/química , Escherichia coli , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/química , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Inibidores de Proteases/química , Ligação Proteica , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
10.
PLoS Comput Biol ; 17(12): e1009756, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965245

RESUMO

The spatial localisation of proteins is critical for most cellular function. In bacteria, this is typically achieved through capture by established landmark proteins. However, this requires that the protein is diffusive on the appropriate timescale. It is therefore unknown how the localisation of effectively immobile proteins is achieved. Here, we investigate the localisation to the division site of the slowly diffusing lipoprotein Pal, which anchors the outer membrane to the cell wall of Gram-negative bacteria. While the proton motive force-linked TolQRAB system is known to be required for this repositioning, the underlying mechanism is unresolved, especially given the very low mobility of Pal. We present a quantitative, mathematical model for Pal relocalisation in which dissociation of TolB-Pal complexes, powered by the proton motive force across the inner membrane, leads to the net transport of Pal along the outer membrane and its deposition at the division septum. We fit the model to experimental measurements of protein mobility and successfully test its predictions experimentally against mutant phenotypes. Our model not only explains a key aspect of cell division in Gram-negative bacteria, but also presents a physical mechanism for the transport of low-mobility proteins that may be applicable to multi-membrane organelles, such as mitochondria and chloroplasts.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Espaço Intracelular , Lipoproteínas , Peptidoglicano , Proteínas Periplásmicas , Transporte Proteico/fisiologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Divisão Celular , Parede Celular/química , Parede Celular/metabolismo , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Ligação Proteica/fisiologia
11.
Genes Dev ; 28(8): 902-11, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24736846

RESUMO

Intracellular proteases combat proteotoxic stress by degrading damaged proteins, but their activity must be carefully controlled to maintain cellular fitness. The activity of Escherichia coli DegP, a highly conserved periplasmic protease, is regulated by substrate-dependent allosteric transformations between inactive and active trimer conformations and by the formation of polyhedral cages that confine the active sites within a proteolytic chamber. Here, we investigate how these distinct control mechanisms contribute to bacterial fitness under heat stress. We found that mutations that increase or decrease the equilibrium population of active DegP trimers reduce high-temperature fitness, that a mutation that blocks cage formation causes a mild fitness decrease, and that combining mutations that stabilize active DegP and block cage formation generates a lethal rogue protease. This lethality is suppressed by an extragenic mutation that prevents covalent attachment of an abundant outer-membrane lipoprotein to peptidoglycan and makes this protein an inhibitor of the rogue protease. Lethality is also suppressed by intragenic mutations that stabilize inactive DegP trimers. In combination, our results suggest that allosteric control of active and inactive conformations is the primary mechanism that regulates DegP proteolysis and fitness, with cage formation providing an additional layer of cellular protection against excessive protease activity.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Proteínas Periplásmicas/metabolismo , Proteólise , Serina Endopeptidases/metabolismo , Estresse Fisiológico/fisiologia , Ativação Enzimática/fisiologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Viabilidade Microbiana/genética , Mutação , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Conformação Proteica , Serina Endopeptidases/química , Serina Endopeptidases/genética , Estresse Fisiológico/genética
12.
J Biol Chem ; 295(42): 14488-14500, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817055

RESUMO

Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone-substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater "holdase" activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone-substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone-client interactions and illustrate how protein surface-based mutational strategies can facilitate the rational improvement of molecular chaperones.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas/metabolismo , Agregados Proteicos , Animais , Bovinos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lactalbumina/química , Lactalbumina/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Ligação Proteica , Eletricidade Estática , Especificidade por Substrato
13.
Biochem J ; 477(16): 2949-2965, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32729902

RESUMO

The biogenesis of outer membrane proteins (OMPs) is an extremely challenging process. In the periplasm of Escherichia coli, a group of quality control factors work together to exercise the safe-guard and quality control of OMPs. DegP, Skp and SurA are the three most prominent ones. Although extensive investigations have been carried out, the molecular mechanism regarding the networking among these proteins remains mostly mysterious. Our group has previously studied the molecular interactions of OMPs with SurA and Skp, using single-molecule detection (SMD). In this work, again using SMD, we studied how OmpC, a representative of OMPs, interacts with DegP, Skp and SurA collectively. Several important discoveries were made. The self-oligomerization of DegP to form hexamer occurs over hundred micromolars. When OmpC is in a monomer state at a low concentration, the OmpC·DegP6 and OmpC·DegP24 complexes form when the DegP concentration is around sub-micromolars and a hundred micromolars, respectively. High OmpC concentration promotes the binding affinity of DegP to OmpC by ∼100 folds. Skp and SurA behave differently when they interact synergistically with DegP in the presence of substrate. DegP can degrade SurA-protected OmpC, but Skp-protected OmpC forms the ternary complex OmpC·(Skp3)n·DegP6 (n = 1,2) to resist the DegP-mediated degradation. Combined with previous results, we were able to depict a comprehensive picture regarding the molecular mechanism of the networking among DegP, Skp and SurA in the periplasm for the OMPs biogenesis under physiological and stressed conditions.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Peptidilprolil Isomerase/química , Proteínas Periplásmicas/química , Dobramento de Proteína , Serina Endopeptidases/química
14.
Biochemistry ; 59(30): 2788-2795, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32657577

RESUMO

Human neutrophil elastase (hNE) is a serine protease that plays a major role in defending the bacterial infection. However, elevated expression of hNE is reported in lung and breast cancer, among others. Moreover, hNE is a target for the treatment of cardiopulmonary diseases. Ecotin (ET) is a serine protease inhibitor present in many Gram-negative bacteria, and it plays a physiological role in inhibiting host proteases, including hNE. Despite this known interaction, the structure of the hNE-ET complex has not been reported, and the mechanism of ecotin inhibition is not available. We determined the structure of the hNE-ET complex by molecular replacement method. The structure of the hNE-ET complex revealed the presence of six interface regions comprising 50s, 60s, and 80s loops, between the ET dimer and two independent hNE monomers, which explains the high affinity of ecotin for hNE (12 pM). Notably, we observed a secondary binding site of hNE located 24 Å from the primary binding site. Comparison of the closely related trypsin-ecotin complex with our hNE-ET complex shows movement of the backbone atoms of the 80s and 50s loops by 4.6 Å, suggesting the flexibility of these loops in inhibiting a range of proteases. Through a detailed structural analysis, we demonstrate the flexibility of the hNE subsites to dock various side chains concomitant with inhibition, indicating the broad specificity of hNE against various inhibitors. These findings will aid in the design of chimeric inhibitors that target both sites of hNE and in the development of therapeutics for controlling hNE-mediated pathogenesis.


Assuntos
Domínio Catalítico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/química , Proteínas Periplásmicas/química , Proteínas Periplásmicas/farmacologia , Sítios de Ligação , Humanos , Modelos Moleculares , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
15.
Mol Microbiol ; 111(3): 637-661, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30536925

RESUMO

Molecular components of the Brucella abortus cell envelope play a major role in its ability to infect, colonize and survive inside mammalian host cells. In this study, we have defined a role for a conserved gene of unknown function in B. abortus envelope stress resistance and infection. Expression of this gene, which we name eipA, is directly activated by the essential cell cycle regulator, CtrA. eipA encodes a soluble periplasmic protein that adopts an unusual eight-stranded ß-barrel fold. Deletion of eipA attenuates replication and survival in macrophage and mouse infection models, and results in sensitivity to treatments that compromise the cell envelope integrity. Transposon disruption of genes required for LPS O-polysaccharide biosynthesis is synthetically lethal with eipA deletion. This genetic connection between O-polysaccharide and eipA is corroborated by our discovery that eipA is essential in Brucella ovis, a naturally rough species that harbors mutations in several genes required for O-polysaccharide production. Conditional depletion of eipA expression in B. ovis results in a cell chaining phenotype, providing evidence that eipA directly or indirectly influences cell division in Brucella. We conclude that EipA is a molecular determinant of Brucella virulence that functions to maintain cell envelope integrity and influences cell division.


Assuntos
Brucella abortus/crescimento & desenvolvimento , Brucella abortus/patogenicidade , Ciclo Celular , Parede Celular/metabolismo , Antígenos O/metabolismo , Proteínas Periplásmicas/metabolismo , Fatores de Virulência/metabolismo , Animais , Brucella abortus/enzimologia , Brucella abortus/genética , Brucella ovis/genética , Brucella ovis/crescimento & desenvolvimento , Brucelose/microbiologia , Brucelose/patologia , Modelos Animais de Doenças , Deleção de Genes , Técnicas de Silenciamento de Genes , Genes Bacterianos , Genes Essenciais , Histocitoquímica , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Conformação Proteica , Dobramento de Proteína , Baço/patologia , Fatores de Virulência/química , Fatores de Virulência/genética
16.
Metab Eng ; 61: 24-32, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32339761

RESUMO

Medium-chain fatty acids (C6-C10) have attracted much attention recently for their unique properties compared to their long-chain counterparts, including low melting points and relatively higher carbon conversion yield. Thioesterase enzymes, which can catalyze the hydrolysis of acyl-ACP (acyl carrier protein) to release free fatty acids (FAs), regulate both overall FA yields and acyl chain length distributions in bacterial and yeast fermentation cultures. These enzymes typically prefer longer chain substrates. Herein, seeking to increase bacterial production of MCFAs, we conducted structure-guided mutational screening of multiple residues in the substrate-binding pocket of the E. coli thioesterase enzyme 'TesA. Confirming our hypothesis that enhancing substrate selectivity for medium-chain acyl substrates would promote overall MCFA production, we found that replacement of residues lining the bottom of the pocket with more hydrophobic residues strongly promoted the C8 substrate selectivity of 'TesA. Specifically, two rounds of saturation mutagenesis led to the identification of the 'TesARD-2 variant that exhibited a 133-fold increase in selectivity for the C8-ACP substrate as compared to C16-ACP substrate. Moreover, the recombinant expression of this variant in an E. coli strain with a blocked ß-oxidation pathway led to a 1030% increase in the in vivo octanoic acid (C8) production titer. When this strain was fermented in a 5-L fed-batch bioreactor, it produced 2.7 g/L of free C8 (45%, molar fraction) and 7.9 g/L of total free FAs, which is the highest-to-date free C8 titer to date reported using the E. coli type II fatty acid synthetic pathway. Thus, reshaping the substrate binding pocket of a bacterial thioesterase enzyme by manipulating the hydrophobicity of multiple residues altered the substrate selectivity and therefore fatty acid product distributions in cells. Our study demonstrates the relevance of this strategy for increasing titers of industrially attractive MCFAs as fermentation products.


Assuntos
Caprilatos/metabolismo , Proteínas de Escherichia coli , Lisofosfolipase , Proteínas Periplásmicas , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lisofosfolipase/química , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Engenharia de Proteínas
17.
Protein Expr Purif ; 175: 105689, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32698044

RESUMO

Lipopolysaccharides are central elements of the outer leaflet of the outer membrane of Gram-negative bacteria and as such, of cyanobacteria. In the past, the structural analysis of the system in proteobacteria like Escherichia coli has contributed to a deep understanding of the transport of lipopolysaccharides from plasma membrane to the outer membrane. While many components of the transport system are conserved between proteobacteria and cyanobacteria, the periplasmic LptC appears to be distinct. The cyanobacterial proteins are twice as long as the proteobacterial proteins or proteins from firmicutes. This prompted the question whether the structure of the cyanobacterial proteins is comparable the one of the proteobacterial proteins. To address this question, we expressed LptC from Anabaena sp. PCC 7120 in E. coli as truncated protein without the transmembrane segment. We purified the protein utilizing HIS-tag based affinity chromatography and polished the protein after removal of the tag by size exclusion chromatography. The purified recombinant protein was crystallized by the sitting-drop vapor diffusion technique and best crystals, despite being twinned, diffracted to a resolution of 2.6 Å.


Assuntos
Anabaena/genética , Expressão Gênica , Proteínas Periplásmicas , Cristalografia por Raios X , Proteínas Periplásmicas/biossíntese , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/isolamento & purificação , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
18.
Phys Chem Chem Phys ; 22(17): 9518-9533, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319475

RESUMO

Thiol peroxidase from Escherichia coli (EcTPx) is a peroxiredoxin that catalyzes the reduction of different hydroperoxides. During the catalytic cycle of EcTPx, the peroxidatic cysteine (CP) is oxidized to a sulfenic acid by peroxide, then the resolving cysteine (CR) condenses with the sulfenic acid of CP to form a disulfide bond, which is finally reduced by thioredoxin. Purified EcTPx as dithiol and disulfide behaves as a monomer under near physiological conditions. Although secondary structure rearrangements are present when comparing different redox states of the enzyme, no significant differences in unfolding free energies are observed under reducing and oxidizing conditions. A conformational change denominated fully folded (FF) to locally unfolded (LU) transition, involving a partial unfolding of αH2 and αH3, must occur to enable the formation of the disulfide bond since the catalytic cysteines are 12 Å apart in the FF conformation of EcTPx. To explore this process, the FF → LU and LU → FF transitions were studied using conventional molecular dynamics simulations and an enhanced conformational sampling technique for different oxidation and protonation states of the active site cysteine residues CP and CR. Our results suggest that the FF → LU transition has a higher associated energy barrier than the refolding LU → FF process in agreement with the relatively low experimental turnover number of EcTPx. Furthermore, in silico designed single-point mutants of αH3 enhanced locally unfolding events, suggesting that the native FF interactions in the active site are not evolutionarily optimized to fully speed-up the conformational transition of wild-type EcTPx.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Simulação de Dinâmica Molecular , Proteínas Periplásmicas/química , Peroxidases/química , Dobramento de Proteína , Simulação por Computador , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação/genética , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Conformação Proteica
19.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036729

RESUMO

Capsular polysaccharides (CPSs) are virulence factors for many important pathogens. In Escherichia coli, CPSs are synthesized via two distinct pathways, but both require proteins from the outer membrane polysaccharide export (OPX) family to complete CPS export from the periplasm to the cell surface. In this study, we compare the properties of the OPX proteins from the prototypical group 1 (Wzy-dependent) and group 2 (ABC transporter-dependent) pathways in E. coli K30 (Wza) and E. coli K2 (KpsD), respectively. In addition, we compare an OPX from Salmonella enterica serovar Typhi (VexA), which shares structural properties with Wza, while operating in an ABC transporter-dependent pathway. These proteins differ in distribution in the cell envelope and formation of stable multimers, but these properties do not align with acylation or the interfacing biosynthetic pathway. In E. coli K2, murein lipoprotein (Lpp) plays a role in peptidoglycan association of KpsD, and loss of this interaction correlates with impaired group 2 capsule production. VexA also depends on Lpp for peptidoglycan association, but CPS production is unaffected in an lpp mutant. In contrast, Wza and group 1 capsule production is unaffected by the absence of Lpp. These results point to complex structure-function relationships between different OPX proteins.IMPORTANCE Capsules are protective layers of polysaccharides that surround the cell surface of many bacteria, including that of Escherichia coli isolates and Salmonella enterica serovar Typhi. Capsular polysaccharides (CPSs) are often essential for virulence because they facilitate evasion of host immune responses. The attenuation of unencapsulated mutants in animal models and the involvement of protein families with conserved features make the CPS export pathway a novel candidate for therapeutic strategies. However, appropriate "antivirulence" strategies require a fundamental understanding of the underpinning cellular processes. Investigating export proteins that are conserved across different biosynthesis strategies will give important insight into how CPS is transported to the cell surface.


Assuntos
Cápsulas Bacterianas/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Polissacarídeos Bacterianos/química , Proteínas da Membrana Bacteriana Externa/genética , Vias Biossintéticas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/química , Lipoproteínas/genética , Peptidoglicano/química , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Polissacarídeos Bacterianos/genética , Transporte Proteico , Salmonella typhi/química , Salmonella typhi/genética
20.
J Biol Chem ; 293(52): 20073-20084, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30315109

RESUMO

The primary role of bacterial periplasmic binding proteins is sequestration of essential metabolites present at a low concentration in the periplasm and making them available for active transporters that transfer these ligands into the bacterial cell. The periplasmic binding proteins (SiaPs) from the tripartite ATP-independent periplasmic (TRAP) transport system that transports mammalian host-derived sialic acids have been well studied from different pathogenic bacteria, including Haemophilus influenzae, Fusobacterium nucleatum, Pasteurella multocida, and Vibrio cholerae SiaPs bind the sialic acid N-acetylneuraminic acid (Neu5Ac) with nanomolar affinity by forming electrostatic and hydrogen-bonding interactions. Here, we report the crystal structure of a periplasmic binding protein (SatA) of the ATP-binding cassette (ABC) transport system from the pathogenic bacterium Haemophilus ducreyi The structure of Hd-SatA in the native form and sialic acid-bound forms (with Neu5Ac and N-glycolylneuraminic acid (Neu5Gc)), determined to 2.2, 1.5, and 2.5 Å resolutions, respectively, revealed a ligand-binding site that is very different from those of the SiaPs of the TRAP transport system. A structural comparison along with thermodynamic studies suggested that similar affinities are achieved in the two classes of proteins through distinct mechanisms, one enthalpically driven and the other entropically driven. In summary, our structural and thermodynamic characterization of Hd-SatA reveals that it binds sialic acids with nanomolar affinity and that this binding is an entropically driven process. This information is important for future structure-based drug design against this pathogen and related bacteria.


Assuntos
Haemophilus ducreyi/química , Ácido N-Acetilneuramínico/química , Proteínas Periplásmicas/química , Cristalografia por Raios X , Haemophilus ducreyi/genética , Haemophilus ducreyi/metabolismo , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA