Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.045
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 130-148.e17, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38128538

RESUMO

The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.


Assuntos
Embriófitas , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Embriófitas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fosforilação , Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Algas/metabolismo
2.
Cell ; 185(25): 4788-4800.e13, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36413996

RESUMO

The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid ß-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.


Assuntos
Proteínas de Algas , Chlamydomonas , Cloroplastos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Membranas Intracelulares/metabolismo , Transporte Proteico , Chlamydomonas/química , Chlamydomonas/citologia , Complexos Multiproteicos/metabolismo , Proteínas de Algas/metabolismo
3.
Cell ; 171(1): 133-147.e14, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938113

RESUMO

Approximately one-third of global CO2 fixation is performed by eukaryotic algae. Nearly all algae enhance their carbon assimilation by operating a CO2-concentrating mechanism (CCM) built around an organelle called the pyrenoid, whose protein composition is largely unknown. Here, we developed tools in the model alga Chlamydomonas reinhardtii to determine the localizations of 135 candidate CCM proteins and physical interactors of 38 of these proteins. Our data reveal the identity of 89 pyrenoid proteins, including Rubisco-interacting proteins, photosystem I assembly factor candidates, and inorganic carbon flux components. We identify three previously undescribed protein layers of the pyrenoid: a plate-like layer, a mesh layer, and a punctate layer. We find that the carbonic anhydrase CAH6 is in the flagella, not in the stroma that surrounds the pyrenoid as in current models. These results provide an overview of proteins operating in the eukaryotic algal CCM, a key process that drives global carbon fixation.


Assuntos
Proteínas de Algas/metabolismo , Ciclo do Carbono , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Proteínas de Algas/química , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Chlamydomonas reinhardtii/química , Cloroplastos/química , Proteínas Luminescentes/análise , Microscopia Confocal , Fotossíntese , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo
4.
Cell ; 171(1): 148-162.e19, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938114

RESUMO

Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.


Assuntos
Chlamydomonas reinhardtii/citologia , Cloroplastos/ultraestrutura , Proteínas de Algas/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Biogênese de Organelas , Ribulose-Bifosfato Carboxilase/metabolismo
5.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39190296

RESUMO

Brown algae are multicellular photosynthetic organisms that have evolved independently of plants and other algae. Here, we have studied the determinism of body axis formation in the kelp Saccharina latissima. After microdissection of the embryo, we show that the stalk, an empty cell that retains the embryo on the maternal tissue, represses longitudinal cell divisions in the early embryo, thereby reinforcing the establishment of the initial apico-basal axis. In addition, it promotes cell growth and controls cell shape and arrangement in the flat oblong embryo composed of cells aligned in rows and columns. Although the stalk persists for several weeks until the embryo reaches at least 500 cells, proper embryogenesis requires connection to maternal tissue only during the first 4 days after fertilisation, i.e. before the embryo reaches the 8-cell stage. Transplantation experiments indicate that the maternal signal is not diffused in seawater, but requires contact between the embryo and the maternal tissue. This first global quantitative study of brown algal embryogenesis highlights the role of MUM, an unknown maternal message, in the control of growth axes and tissue patterning in kelp embryos.


Assuntos
Kelp , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Phaeophyceae , Proteínas de Algas/metabolismo , Algas Comestíveis , Laminaria
6.
Nature ; 579(7797): 146-151, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32076272

RESUMO

Photosynthetic organisms have developed various light-harvesting systems to adapt to their environments1. Phycobilisomes are large light-harvesting protein complexes found in cyanobacteria and red algae2-4, although how the energies of the chromophores within these complexes are modulated by their environment is unclear. Here we report the cryo-electron microscopy structure of a 14.7-megadalton phycobilisome with a hemiellipsoidal shape from the red alga Porphyridium purpureum. Within this complex we determine the structures of 706 protein subunits, including 528 phycoerythrin, 72 phycocyanin, 46 allophycocyanin and 60 linker proteins. In addition, 1,598 chromophores are resolved comprising 1,430 phycoerythrobilin, 48 phycourobilin and 120 phycocyanobilin molecules. The markedly improved resolution of our structure compared with that of the phycobilisome of Griffithsia pacifica5 enabled us to build an accurate atomic model of the P. purpureum phycobilisome system. The model reveals how the linker proteins affect the microenvironment of the chromophores, and suggests that interactions of the aromatic amino acids of the linker proteins with the chromophores may be a key factor in fine-tuning the energy states of the chromophores to ensure the efficient unidirectional transfer of energy.


Assuntos
Microscopia Crioeletrônica , Transferência de Energia , Ficobilissomas/química , Ficobilissomas/ultraestrutura , Porphyridium/química , Porphyridium/ultraestrutura , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Algas/ultraestrutura , Modelos Moleculares , Fotossíntese , Ficobilinas/química , Ficobilinas/metabolismo , Ficobilissomas/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rodófitas/química , Rodófitas/ultraestrutura
7.
EMBO J ; 40(5): e105781, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368450

RESUMO

The intraflagellar transport (IFT) machinery consists of the anterograde motor kinesin-II, the retrograde motor IFT dynein, and the IFT-A and -B complexes. However, the interaction among IFT motors and IFT complexes during IFT remains elusive. Here, we show that the IFT-B protein IFT54 interacts with both kinesin-II and IFT dynein and regulates anterograde IFT. Deletion of residues 342-356 of Chlamydomonas IFT54 resulted in diminished anterograde traffic of IFT and accumulation of IFT motors and complexes in the proximal region of cilia. IFT54 directly interacted with kinesin-II and this interaction was strengthened for the IFT54Δ342-356 mutant in vitro and in vivo. The deletion of residues 261-275 of IFT54 reduced ciliary entry and anterograde traffic of IFT dynein with accumulation of IFT complexes near the ciliary tip. IFT54 directly interacted with IFT dynein subunit D1bLIC, and deletion of residues 261-275 reduced this interaction. The interactions between IFT54 and the IFT motors were also observed in mammalian cells. Our data indicate a central role for IFT54 in binding the IFT motors during anterograde IFT.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas/fisiologia , Cílios/fisiologia , Dineínas/metabolismo , Flagelos/fisiologia , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Algas/genética , Dineínas/genética , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética
8.
Plant Physiol ; 196(1): 77-94, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38833589

RESUMO

An inducible protein-knockdown system is highly effective for investigating the functions of proteins and mechanisms essential for the survival and growth of organisms. However, this technique is not available in photosynthetic eukaryotes. The unicellular red alga Cyanidioschyzon merolae possesses a very simple cellular and genomic architecture and is genetically tractable but lacks RNA interference machinery. In this study, we developed a protein-knockdown system in this alga. The constitutive system utilizes the destabilizing activity of the FK506-binding protein 12 (FKBP12)-rapamycin-binding (FRB) domain of human target of rapamycin kinase or its derivatives to knock down target proteins. In the inducible system, rapamycin treatment induces the heterodimerization of the human FRB domain fused to the target proteins with the human FKBP fused to S-phase kinase-associated protein 1 or Cullin 1, subunits of the SCF E3 ubiquitin ligase. This results in the rapid degradation of the target proteins through the ubiquitin-proteasome pathway. With this system, we successfully degraded endogenous essential proteins such as the chloroplast division protein dynamin-related protein 5B and E2 transcription factor, a regulator of the G1/S transition, within 2 to 3 h after rapamycin administration, enabling the assessment of resulting phenotypes. This rapamycin-inducible protein-knockdown system contributes to the functional analysis of genes whose disruption leads to lethality.


Assuntos
Rodófitas , Sirolimo , Rodófitas/genética , Rodófitas/metabolismo , Sirolimo/farmacologia , Técnicas de Silenciamento de Genes , Proteínas de Algas/metabolismo , Proteínas de Algas/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Humanos , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteólise/efeitos dos fármacos
9.
Cell ; 142(2): 284-95, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655469

RESUMO

Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues.


Assuntos
Interações Hospedeiro-Patógeno , Oomicetos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Dados de Sequência Molecular , Plantas/microbiologia
10.
Nature ; 569(7757): 581-585, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043749

RESUMO

Methylation of cytosine to 5-methylcytosine (5mC) is a prevalent DNA modification found in many organisms. Sequential oxidation of 5mC by ten-eleven translocation (TET) dioxygenases results in a cascade of additional epigenetic marks and promotes demethylation of DNA in mammals1,2. However, the enzymatic activity and function of TET homologues in other eukaryotes remains largely unexplored. Here we show that the green alga Chlamydomonas reinhardtii contains a 5mC-modifying enzyme (CMD1) that is a TET homologue and catalyses the conjugation of a glyceryl moiety to the methyl group of 5mC through a carbon-carbon bond, resulting in two stereoisomeric nucleobase products. The catalytic activity of CMD1 requires Fe(II) and the integrity of its binding motif His-X-Asp, which is conserved in Fe-dependent dioxygenases3. However, unlike previously described TET enzymes, which use 2-oxoglutarate as a co-substrate4, CMD1 uses L-ascorbic acid (vitamin C) as an essential co-substrate. Vitamin C donates the glyceryl moiety to 5mC with concurrent formation of glyoxylic acid and CO2. The vitamin-C-derived DNA modification is present in the genome of wild-type C. reinhardtii but at a substantially lower level in a CMD1 mutant strain. The fitness of CMD1 mutant cells during exposure to high light levels is reduced. LHCSR3, a gene that is critical for the protection of C. reinhardtii from photo-oxidative damage under high light conditions, is hypermethylated and downregulated in CMD1 mutant cells compared to wild-type cells, causing a reduced capacity for photoprotective non-photochemical quenching. Our study thus identifies a eukaryotic DNA base modification that is catalysed by a divergent TET homologue and unexpectedly derived from vitamin C, and describes its role as a potential epigenetic mark that may counteract DNA methylation in the regulation of photosynthesis.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Algas/metabolismo , Ácido Ascórbico/metabolismo , Biocatálise , Chlamydomonas reinhardtii/enzimologia , DNA/química , DNA/metabolismo , 5-Metilcitosina/química , Dióxido de Carbono/metabolismo , Metilação de DNA , Glioxilatos/metabolismo , Nucleosídeos/química , Nucleosídeos/metabolismo , Fotossíntese
11.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996872

RESUMO

The target of rapamycin (TOR) kinase is a master regulator that integrates nutrient signals to promote cell growth in all eukaryotes. It is well established that amino acids and glucose are major regulators of TOR signaling in yeast and metazoan, but whether and how TOR responds to carbon availability in photosynthetic organisms is less understood. In this study, we showed that photosynthetic assimilation of CO2 by the Calvin-Benson-Bassham (CBB) cycle regulates TOR activity in the model single-celled microalga Chlamydomonas reinhardtii Stimulation of CO2 fixation boosted TOR activity, whereas inhibition of the CBB cycle and photosynthesis down-regulated TOR. We uncovered a tight link between TOR activity and the endogenous level of a set of amino acids including Ala, Glu, Gln, Leu, and Val through the modulation of CO2 fixation and the use of amino acid synthesis inhibitors. Moreover, the finding that the Chlamydomonas starch-deficient mutant sta6 displayed disproportionate TOR activity and high levels of most amino acids, particularly Gln, further connected carbon assimilation and amino acids to TOR signaling. Thus, our results showed that CO2 fixation regulates TOR signaling, likely through the synthesis of key amino acids.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Sirolimo/farmacologia , Proteínas de Algas/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Transdução de Sinais/efeitos dos fármacos , Amido/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
J Phycol ; 60(4): 928-941, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924097

RESUMO

The northward shift of Pyropia yezoensis aquaculture required the breeding of germplasms with tolerance to the oxidative stress due to the high light conditions of the North Yellow Sea area. The MPV17/PMP22 family proteins were identified as a molecule related to reactive oxygen species (ROS) metabolism. Here, one of the MPV17 homolog genes designated as PyM-LP2 was selected for functional identification by introducing the encoding sequence region/reverse complementary fragment into the Py. yezoensis genome. Although the photosynthetic activity, the respiratory rate, and the ROS level in wild type (WT) and different gene-transformed algal strains showed similar levels under normal conditions, the overexpression (OE) strain exhibited higher values of photosynthesis, respiration, and reducing equivalents pool size but lower intracellular ROS production under stress conditions compared with the WT. Conversely, all the above parameters showed opposite variation trends in RNAi strain as those in the OE strain. This implied that the PyM-LP2 protein was involved in the mitigation of the oxidative stress. Sequence analysis revealed that this PyM-LP2 protein was assorted to peroxisomes and might serve as a poring channel for transferring malate (Mal) to peroxisomes. By overexpressing PyM-LP2, the transfer of Mal from chloroplasts to peroxisomes was enhanced under stress conditions, which promoted photorespiration and ultimately alleviated excessive reduction of the photosynthetic electron chain. This research lays the groundwork for the breeding of algae with enhanced resistance to oxidative stresses.


Assuntos
Proteínas de Algas , Espécies Reativas de Oxigênio , Rodófitas , Rodófitas/genética , Rodófitas/metabolismo , Rodófitas/fisiologia , Proteínas de Algas/metabolismo , Proteínas de Algas/genética , Espécies Reativas de Oxigênio/metabolismo , Fotossíntese , Estresse Oxidativo , Algas Comestíveis , Porphyra
13.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34011609

RESUMO

Transitions between separate sexes (dioecy) and other mating systems are common across eukaryotes. Here, we study a change in a haploid dioecious green algal species with male- and female-determining chromosomes (U and V). The genus Volvox is an oogamous (with large, immotile female gametes and small, motile male gametes) and includes both heterothallic species (with distinct male and female genotypes, associated with a mating-type system that prevents fusion of gametes of the same sex) and homothallic species (bisexual, with the ability to self-fertilize). We date the origin of an expanded sex-determining region (SDR) in Volvox to at least 75 Mya, suggesting that homothallism represents a breakdown of dioecy (heterothallism). We investigated the involvement of the SDR of the U and V chromosomes in this transition. Using de novo whole-genome sequences, we identified a heteromorphic SDR of ca 1 Mbp in male and female genotypes of the heterothallic species Volvox reticuliferus and a homologous region (SDLR) in the closely related homothallic species Volvox africanus, which retained several different hallmark features of an SDR. The V. africanus SDLR includes a large region resembling the female SDR of the presumptive heterothallic ancestor, whereas most genes from the male SDR are absent. However, we found a multicopy array of the male-determining gene, MID, in a different genomic location from the SDLR. Thus, in V. africanus, an ancestrally female genotype may have acquired MID and thereby gained male traits.


Assuntos
Genoma , Haploidia , Filogenia , Volvox/genética , Proteínas de Algas , Evolução Biológica , Mapeamento Cromossômico , Células Germinativas , Reprodução , Volvox/classificação
14.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33707211

RESUMO

Marine viruses are the most abundant biological entity in the ocean and are considered as major evolutionary drivers of microbial life [C. A. Suttle, Nat. Rev. Microbiol. 5, 801-812 (2007)]. Yet, we lack quantitative approaches to assess their impact on the marine ecosystem. Here, we provide quantification of active viral infection in the bloom forming single-celled phytoplankton Emiliania huxleyi infected by the large virus EhV, using high-throughput single-molecule messenger RNA in situ hybridization (smFISH) of both virus and host transcripts. In natural samples, viral infection reached only 25% of the population despite synchronized bloom demise exposing the coexistence of infected and noninfected subpopulations. We prove that photosynthetically active cells chronically release viral particles through nonlytic infection and that viral-induced cell lysis can occur without viral release, thus challenging major assumptions regarding the life cycle of giant viruses. We could also assess active infection in cell aggregates linking viral infection and carbon export to the deep ocean [C. P. Laber et al., Nat. Microbiol. 3, 537-547 (2018)] and suggest a potential host defense strategy by enrichment of infected cells in sinking aggregates. Our approach can be applied to diverse marine microbial systems, opening a mechanistic dimension to the study of biotic interactions in the ocean.


Assuntos
Eutrofização , Vírus Gigantes/fisiologia , Haptófitas/virologia , Proteínas de Algas/genética , Interações Hospedeiro-Patógeno , Hibridização in Situ Fluorescente , Estágios do Ciclo de Vida , RNA Mensageiro/metabolismo , Água do Mar/microbiologia , Análise de Célula Única , Proteínas Virais/genética , Vírion/metabolismo
15.
Compr Rev Food Sci Food Saf ; 23(3): e13372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38795380

RESUMO

The burgeoning demand for protein, exacerbated by population growth and recent disruptions in the food supply chain, has prompted a rapid exploration of sustainable protein alternatives. Among these alternatives, algae stand out for their environmental benefits, rapid growth, and rich protein content. However, the widespread adoption of algae-derived proteins faces significant challenges. These include issues related to harvesting, safety, scalability, high cost, standardization, commercialization, and regulatory hurdles. Particularly daunting is the efficient extraction of algal proteins, as their resilient cell walls contain approximately 70% of the protein content, with conventional methods accessing only a fraction of this. Overcoming this challenge necessitates the development of cost-effective, scalable, and environmentally friendly cell disruption techniques capable of breaking down these rigid cell walls, often laden with viscous polysaccharides. Various approaches, including physical, chemical, and enzymatic methods, offer potential solutions, albeit with varying efficacy depending on the specific algal strain and energy transfer efficiency. Moreover, there remains a pressing need for further research to elucidate the functional, technological, and bioaccessible properties of algal proteins and peptides, along with exploring their diverse commercial applications. Despite these obstacles, algae hold considerable promise as a sustainable protein source, offering a pathway to meet the escalating nutritional demands of a growing global population. This review highlights the nutritional, technological, and functional aspects of algal proteins and peptides while underscoring the challenges hindering their widespread adoption. It emphasizes the critical importance of establishing a sustainable trajectory for food production, with algae playing a pivotal role in this endeavor.


Assuntos
Proteínas de Algas , Peptídeos , Peptídeos/química , Proteínas de Algas/química
16.
Cell ; 133(5): 771-3, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510922

RESUMO

TALE homeodomain proteins regulate development in many eukaryotes. Now, Lee et al. (2008) report that two TALE homeodomain proteins control zygote development of the unicellular green alga Chlamydomonas. This implicates TALE gene loss and diversification in the evolution of new diploid body plans that appeared when land plants evolved from algal ancestors over 450 million years ago.


Assuntos
Evolução Biológica , Chlamydomonas reinhardtii/genética , Plantas/genética , Proteínas de Algas/genética , Animais , Chlamydomonas reinhardtii/fisiologia , Evolução Molecular , Proteínas de Homeodomínio/genética , Desenvolvimento Vegetal , Proteínas de Plantas/genética
17.
Cell ; 133(5): 829-40, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510927

RESUMO

Developmental mechanisms that yield multicellular diversity are proving to be well conserved within lineages, generating interest in their origins in unicellular ancestors. We report that molecular regulation of the haploid-diploid transition in Chlamydomonas, a unicellular green soil alga, shares common ancestry with differentiation pathways in land plants. Two homeoproteins, Gsp1 and Gsm1, contributed by gametes of plus and minus mating types respectively, physically interact and translocate from the cytosol to the nucleus upon gametic fusion, initiating zygote development. Their ectopic expression activates zygote development in vegetative cells and, in a diploid background, the resulting zygotes undergo a normal meiosis. Gsm1/Gsp1 dyads share sequence homology with and are functionally related to KNOX/BELL dyads regulating stem-cell (meristem) specification in land plants. We propose that combinatorial homeoprotein-based transcriptional control, a core feature of the fungal/animal radiation, may have originated in a sexual context and enabled the evolution of land-plant body plans.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Evolução Molecular , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Animais , Chlamydomonas reinhardtii/fisiologia , Dimerização , Diploide , Regulação da Expressão Gênica , Haploidia , Dados de Sequência Molecular , Plantas , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
18.
Nature ; 551(7678): 57-63, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29045394

RESUMO

Life on Earth depends on photosynthesis for its conversion of solar energy to chemical energy. Photosynthetic organisms have developed a variety of light-harvesting systems to capture sunlight. The largest light-harvesting complex is the phycobilisome (PBS), the main light-harvesting antenna in cyanobacteria and red algae. It is composed of phycobiliproteins and linker proteins but the assembly mechanisms and energy transfer pathways of the PBS are not well understood. Here we report the structure of a 16.8-megadalton PBS from a red alga at 3.5 Å resolution obtained by single-particle cryo-electron microscopy. We modelled 862 protein subunits, including 4 linkers in the core, 16 rod-core linkers and 52 rod linkers, and located a total of 2,048 chromophores. This structure reveals the mechanisms underlying specific interactions between linkers and phycobiliproteins, and the formation of linker skeletons. These results provide a firm structural basis for our understanding of complex assembly and the mechanisms of energy transfer within the PBS.


Assuntos
Microscopia Crioeletrônica , Ficobilissomas/química , Ficobilissomas/ultraestrutura , Rodófitas/química , Rodófitas/ultraestrutura , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Algas/ultraestrutura , Transferência de Energia , Modelos Moleculares , Ficobilissomas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
19.
Nucleic Acids Res ; 49(D1): D1004-D1011, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33104790

RESUMO

Algae are a diverse, polyphyletic group of photosynthetic eukaryotes spanning nearly all eukaryotic lineages of life and collectively responsible for ∼50% of photosynthesis on Earth. Sequenced algal genomes, critical to understanding their complex biology, are growing in number and require efficient tools for analysis. PhycoCosm (https://phycocosm.jgi.doe.gov) is an algal multi-omics portal, developed by the US Department of Energy Joint Genome Institute to support analysis and distribution of algal genome sequences and other 'omics' data. PhycoCosm provides integration of genome sequence and annotation for >100 algal genomes with available multi-omics data and interactive web-based tools to enable algal research in bioenergy and the environment, encouraging community engagement and data exchange, and fostering new sequencing projects that will further these research goals.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma/genética , Genômica/métodos , Alga Marinha/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Metabolismo Energético/genética , Internet , Anotação de Sequência Molecular/métodos , Fotossíntese/genética , Alga Marinha/classificação , Interface Usuário-Computador , Navegador
20.
Proc Natl Acad Sci U S A ; 117(37): 23131-23139, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868427

RESUMO

Lipid droplets (LDs) are intracellular organelles found in a wide range of organisms and play important roles in stress tolerance. During nitrogen (N) starvation, Chlamydomonas reinhardtii stores large amounts of triacylglycerols (TAGs) inside LDs. When N is resupplied, the LDs disappear and the TAGs are degraded, presumably providing carbon and energy for regrowth. The mechanism by which cells degrade LDs is poorly understood. Here, we isolated a mutant (dth1-1, Delayed in TAG Hydrolysis 1) in which TAG degradation during recovery from N starvation was compromised. Consequently, the dth1-1 mutant grew poorly compared to its parental line during N recovery. Two additional independent loss-of-function mutants (dth1-2 and dth1-3) also exhibited delayed TAG remobilization. DTH1 transcript levels increased sevenfold upon N resupply, and DTH1 protein was localized to LDs. DTH1 contains a putative lipid-binding domain (DTH1LBD) with alpha helices predicted to be structurally similar to those in apolipoproteins E and A-I. Recombinant DTH1LBD bound specifically to phosphatidylethanolamine (PE), a major phospholipid coating the LD surface. Overexpression of DTH1LBD in Chlamydomonas phenocopied the dth1 mutant's defective TAG degradation, suggesting that the function of DTH1 depends on its ability to bind PE. Together, our results demonstrate that the lipid-binding DTH1 plays an essential role in LD degradation and provide insight into the molecular mechanism of protein anchorage to LDs at the LD surface in photosynthetic cells.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Gotículas Lipídicas/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Sequência de Aminoácidos , Metabolismo dos Lipídeos/fisiologia , Nitrogênio/metabolismo , Fosfolipídeos/metabolismo , Fotossíntese/fisiologia , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA