Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574891

RESUMO

The Hippo signaling is instrumental in regulating organ size, regeneration, and carcinogenesis. The cytoskeleton emerges as a primary Hippo signaling modulator. Its structural alterations in response to environmental and intrinsic stimuli control Hippo signaling pathway activity. However, the precise mechanisms underlying the cytoskeleton regulation of Hippo signaling are not fully understood. RAP2 GTPase is known to mediate the mechanoresponses of Hippo signaling via activating the core Hippo kinases LATS1/2 through MAP4Ks and MST1/2. Here we show the pivotal role of the reciprocal regulation between RAP2 GTPase and the cytoskeleton in Hippo signaling. RAP2 deletion undermines the responses of the Hippo pathway to external cues tied to RhoA GTPase inhibition and actin cytoskeleton remodeling, such as energy stress and serum deprivation. Notably, RhoA inhibitors and actin disruptors fail to activate LATS1/2 effectively in RAP2-deficient cells. RNA sequencing highlighted differential regulation of both actin and microtubule networks by RAP2 gene deletion. Consistently, Taxol, a microtubule-stabilizing agent, was less effective in activating LATS1/2 and inhibiting cell growth in RAP2 and MAP4K4/6/7 knockout cells. In summary, our findings position RAP2 as a central integrator of cytoskeletal signals for Hippo signaling, which offers new avenues for understanding Hippo regulation and therapeutic interventions in Hippo-impaired cancers.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Camundongos , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fosforilação
2.
Cell Mol Life Sci ; 81(1): 283, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963422

RESUMO

Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.


Assuntos
AMP Cíclico , Fatores de Troca do Nucleotídeo Guanina , Sumoilação , Enzimas de Conjugação de Ubiquitina , Proteínas rap1 de Ligação ao GTP , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , AMP Cíclico/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Células HEK293 , Simulação de Dinâmica Molecular , Complexo Shelterina/metabolismo , Transdução de Sinais , Proteínas de Ligação a Telômeros/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Resposta ao Choque Térmico , Sequência de Aminoácidos , Ligação Proteica
3.
Nature ; 560(7720): 655-660, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135582

RESUMO

Mammalian cells are surrounded by neighbouring cells and extracellular matrix (ECM), which provide cells with structural support and mechanical cues that influence diverse biological processes1. The Hippo pathway effectors YAP (also known as YAP1) and TAZ (also known as WWTR1) are regulated by mechanical cues and mediate cellular responses to ECM stiffness2,3. Here we identified the Ras-related GTPase RAP2 as a key intracellular signal transducer that relays ECM rigidity signals to control mechanosensitive cellular activities through YAP and TAZ. RAP2 is activated by low ECM stiffness, and deletion of RAP2 blocks the regulation of YAP and TAZ by stiffness signals and promotes aberrant cell growth. Mechanistically, matrix stiffness acts through phospholipase Cγ1 (PLCγ1) to influence levels of phosphatidylinositol 4,5-bisphosphate and phosphatidic acid, which activates RAP2 through PDZGEF1 and PDZGEF2 (also known as RAPGEF2 and RAPGEF6). At low stiffness, active RAP2 binds to and stimulates MAP4K4, MAP4K6, MAP4K7 and ARHGAP29, resulting in activation of LATS1 and LATS2 and inhibition of YAP and TAZ. RAP2, YAP and TAZ have pivotal roles in mechanoregulated transcription, as deletion of YAP and TAZ abolishes the ECM stiffness-responsive transcriptome. Our findings show that RAP2 is a molecular switch in mechanotransduction, thereby defining a mechanosignalling pathway from ECM stiffness to the nucleus.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transformação Celular Neoplásica , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Quinases do Centro Germinativo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Proteínas do Tecido Nervoso/metabolismo , Fosfolipase C gama/metabolismo , Fosfoproteínas/metabolismo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Transcriptoma , Proteínas de Sinalização YAP , Proteínas rap de Ligação ao GTP/genética
4.
Angiogenesis ; 26(2): 265-278, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36403190

RESUMO

Overcoming vascular immunosuppression: lack of endothelial cell (EC) responsiveness to inflammatory stimuli in the proangiogenic environment of tumors, is essential for successful cancer immunotherapy. The mechanisms through which Vascular Endothelial Growth Factor A(VEGF-A) modulates tumor EC response to exclude T-cells are not well understood. Here, we demonstrate that EC-specific deletion of small GTPase Rap1B, previously implicated in normal angiogenesis, restricts tumor growth in endothelial-specific Rap1B-knockout (Rap1BiΔEC) mice. EC-specific Rap1B deletion inhibits angiogenesis, but also leads to an altered tumor microenvironment with increased recruitment of leukocytes and increased activity of tumor CD8+ T-cells. Depletion of CD8+ T-cells restored tumor growth in Rap1BiΔEC mice. Mechanistically, global transcriptome and functional analyses indicated upregulation of signaling by a tumor cytokine, TNF-α, and increased NF-κB transcription in Rap1B-deficient ECs. Rap1B-deficiency led to elevated proinflammatory chemokine and Cell Adhesion Molecules (CAMs) expression in TNF-α stimulated ECs. Importantly, CAM expression was elevated in tumor ECs from Rap1BiΔEC mice. Significantly, Rap1B deletion prevented VEGF-A-induced immunosuppressive downregulation of CAM expression, demonstrating that Rap1B is essential for VEGF-A-suppressive signaling. Thus, our studies identify a novel endothelial-endogenous mechanism underlying VEGF-A-dependent desensitization of EC to proinflammatory stimuli. Significantly, they identify EC Rap1B as a potential novel vascular target in cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Células Endoteliais , Neoplasias , Proteínas rap de Ligação ao GTP , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Terapia de Imunossupressão , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neoplasias/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia , Células Endoteliais/imunologia , Células Endoteliais/fisiologia , NF-kappa B/genética , NF-kappa B/imunologia , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/imunologia
5.
Proc Natl Acad Sci U S A ; 117(18): 9896-9905, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321834

RESUMO

The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix-cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood. Here, we identified the matricellular protein thrombospondin-1 (Thbs1) as an extracellular mediator of matrix mechanotransduction that acts via integrin αvß1 to establish focal adhesions and promotes nuclear shuttling of Yes-associated protein (YAP) in response to high strain of cyclic stretch. Thbs1-mediated YAP activation depends on the small GTPase Rap2 and Hippo pathway and is not influenced by alteration of actin fibers. Deletion of Thbs1 in mice inhibited Thbs1/integrin ß1/YAP signaling, leading to maladaptive remodeling of the aorta in response to pressure overload and inhibition of neointima formation upon carotid artery ligation, exerting context-dependent effects on the vessel wall. We thus propose a mechanism of matrix mechanotransduction centered on Thbs1, connecting mechanical stimuli to YAP signaling during vascular remodeling in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Integrina beta1/genética , Trombospondina 1/genética , Fatores de Transcrição/genética , Remodelação Vascular/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Artérias Carótidas/crescimento & desenvolvimento , Artérias Carótidas/metabolismo , Microambiente Celular/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Adesões Focais/genética , Via de Sinalização Hippo , Humanos , Integrina beta1/metabolismo , Mecanotransdução Celular , Camundongos , Neointima/genética , Neointima/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Trombospondina 1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Proteínas rap de Ligação ao GTP/genética
6.
J Cell Mol Med ; 26(20): 5150-5164, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36056690

RESUMO

The present study demonstrated for the first time that SNORA70E, which belongs to box H/ACA small nucleolar noncoding RNAs (snoRNAs) who could bind and induce pseudouridylation of RNAs, was significantly elevated in ovarian cancer tissues and was an unfavourable prognostic factor of ovarian cancer. The over-expression of SNORA70E showed increased cell proliferation, invasion and migration in vitro and induced tumour growth in vivo. Further research found that SNORA70E regulates RAS-Related Protein 1B (RAP1B) mRNA through pseudouracil modification by combing with the pyrimidine synthase Dyskerin Pseudouridine Synthase 1 (DKC1) and increase RAP1B protein level. What's more, the silencing of DKC1/RAP1B in SNORA70E overexpression cells both inhibited cell proliferation, migration and invasion through reducing ß-catenin, PI3K, AKT1, mTOR, and MMP9 protein levels. Besides, RNA-Seq results revealed that SNORA70E regulates the alternative splicing of PARP-1 binding protein (PARPBP), leading to the 4th exon-skipping in PARPBP-88, forming a new transcript PARPBP-15, which promoted cell invasion, migration and proliferation. Finally, ASO-mediated silencing of SNORA70E could inhibit ovarian cancer cell proliferation, invasion, migration ability in vitro and inhibit tumorigenicity in vivo. In conclusion, SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of RAP1B and alternative splicing of PARPBP. Our results demonstrated that SNORA70E may be a new diagnostic and therapeutic target for ovarian cancer.


Assuntos
Proteínas de Ligação a DNA , Neoplasias Ovarianas , RNA Nucleolar Pequeno , Proteínas rap de Ligação ao GTP , Processamento Alternativo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Metaloproteinase 9 da Matriz/genética , Proteínas Nucleares/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/genética , Inibidores de Poli(ADP-Ribose) Polimerases , RNA Mensageiro , RNA Nucleolar Pequeno/genética , Serina-Treonina Quinases TOR/genética , beta Catenina/genética , Proteínas rap de Ligação ao GTP/genética
7.
J Biol Chem ; 296: 100290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453281

RESUMO

Rho/Ras family small GTPases are known to regulate numerous cellular processes, including cytoskeletal reorganization, cell proliferation, and cell differentiation. These processes are also controlled by Ca2+, and consequently, cross talk between these signals is considered likely. However, systematic quantitative evaluation has not yet been reported. To fill this gap, we constructed optogenetic tools to control the activity of small GTPases (RhoA, Rac1, Cdc42, Ras, Rap, and Ral) using an improved light-inducible dimer system (iLID). We characterized these optogenetic tools with genetically encoded red fluorescence intensity-based small GTPase biosensors and confirmed these optogenetic tools' specificities. Using these optogenetic tools, we investigated calcium mobilization immediately after small GTPase activation. Unexpectedly, we found that a transient intracellular calcium elevation was specifically induced by RhoA activation in RPE1 and HeLa cells. RhoA activation also induced transient intracellular calcium elevation in MDCK and HEK293T cells, suggesting that generally RhoA induces calcium signaling. Interestingly, the molecular mechanisms linking RhoA activation to calcium increases were shown to be different among the different cell types: In RPE1 and HeLa cells, RhoA activated phospholipase C epsilon (PLCε) at the plasma membrane, which in turn induced Ca2+ release from the endoplasmic reticulum (ER). The RhoA-PLCε axis induced calcium-dependent nuclear factor of activated T cells nuclear translocation, suggesting that it does activate intracellular calcium signaling. Conversely, in MDCK and HEK293T cells, RhoA-ROCK-myosin II axis induced the calcium transients. These data suggest universal coordination of RhoA and calcium signaling in cellular processes, such as cellular contraction and gene expression.


Assuntos
Sinalização do Cálcio/genética , Cálcio/metabolismo , Transdução de Sinal Luminoso/genética , Optogenética/métodos , Proteína rhoA de Ligação ao GTP/genética , Animais , Técnicas Biossensoriais/métodos , Diferenciação Celular , Proliferação de Células , Cães , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Luz , Células Madin Darby de Rim Canino , Especificidade de Órgãos , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Am J Med Genet A ; 188(9): 2808-2814, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35451551

RESUMO

RAP1B is a RAS-superfamily small GTP-binding protein involved in numerous cell processes. Pathogenic gain-of-function variants in this gene have been associated with RAP1B-related syndromic thrombocytopenia, an ultrarare disorder characterized by hematologic abnormalities, neurodevelopmental delays, growth delay, and congenital birth defects including cardiovascular, genitourinary, neurologic, and skeletal systems. We report a 23-year-old male with a novel, de novo RAP1B gain-of-function variant identified on genome sequencing. This is the third reported case which expands the molecular and phenotypic spectrum of RAP1B-related syndromic thrombocytopenia.


Assuntos
Trombocitopenia , Adulto , Humanos , Masculino , Trombocitopenia/genética , Adulto Jovem , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 41(2): 638-650, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267664

RESUMO

OBJECTIVE: Small GTPase Rap1 (Ras-association proximate 1) is a novel, positive regulator of NO release and endothelial function with a potentially key role in mechanosensing of atheroprotective, laminar flow. Our objective was to delineate the role of Rap1 in the progression of atherosclerosis and its specific functions in the presence and absence of laminar flow, to better define its role in endothelial mechanisms contributing to plaque formation and atherogenesis. Approach and Results: In a mouse atherosclerosis model, endothelial Rap1B deletion exacerbates atherosclerotic plaque formation. In the thoracic aorta, where laminar shear stress-induced NO is otherwise atheroprotective, plaque area is increased in Athero-Rap1BiΔEC (atherogenic endothelial cell-specific, tamoxifen-inducible Rap1A+Rap1B knockout) mice. Endothelial Rap1 deficiency also leads to increased plaque size, leukocyte accumulation, and increased CAM (cell adhesion molecule) expression in atheroprone areas, whereas vascular permeability is unchanged. In endothelial cells, in the absence of protective laminar flow, Rap1 deficiency leads to an increased proinflammatory TNF-α (tumor necrosis factor alpha) signaling and increased NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and elevated inflammatory receptor expression. Interestingly, this increased signaling to NF-κB activation is corrected by AKTVIII-an inhibitor of Akt (protein kinase B) translocation to the membrane. Together, these data implicate Rap1 in restricting Akt-dependent signaling, preventing excessive cytokine receptor signaling and proinflammatory NF-κB activation. CONCLUSIONS: Via 2 distinct mechanisms, endothelial Rap1 protects from the atherosclerosis progression in the presence and absence of laminar flow; Rap1-stimulated NO release predominates in laminar flow, and restriction of proinflammatory signaling predominates in the absence of laminar flow. Our studies provide novel insights into the mechanisms underlying endothelial homeostasis and reveal the importance of Rap1 signaling in cardiovascular disease.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Placa Aterosclerótica , Transdução de Sinais , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
10.
Cell Mol Biol Lett ; 27(1): 24, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260078

RESUMO

BACKGROUND: Transmembrane protein 43 (TMEM43), a member of the transmembrane protein subfamily, plays a critical role in the initiation and development of cancers. However, little is known concerning the biological function and molecular mechanisms of TMEM43 in pancreatic cancer. METHODS: In this study, TMEM43 expression levels were analyzed in pancreatic cancer samples compared with control samples. The relationship of TMEM43 expression and disease-free survival (DFS) and overall survival (OS) were assessed in pancreatic cancer patients. In vitro and in vivo assays were performed to explore the function and role of TMEM43 in pancreatic cancer. Coimmunoprecipitation (co-IP) followed by protein mass spectrometry was applied to analyze the molecular mechanisms of TMEM43 in pancreatic cancer. RESULTS: We demonstrated that TMEM43 expression level is elevated in pancreatic cancer samples compared with control group, and is correlated with poor DFS and OS in pancreatic cancer patients. Knockdown of TMEM43 inhibited pancreatic cancer progression in vitro, decreased the percentage of S phase, and inhibited the tumorigenicity of pancreatic cancer in vivo. Moreover, we demonstrated that TMEM43 promoted pancreatic cancer progression by stabilizing PRPF3 and regulating the RAP2B/ERK axis. CONCLUSIONS: The present study suggests that TMEM43 contributes to pancreatic cancer progression through the PRPF3/RAP2B/ERK axis, and might be a novel therapeutic target for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
11.
Cell Mol Life Sci ; 78(3): 1101-1112, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32601713

RESUMO

Plexins receive guidance cues from semaphorin ligands and transmit their signal through the plasma membrane. This family of proteins is unique amongst single-pass transmembrane receptors as their intracellular regions interact directly with several small GTPases, which regulate cytoskeletal dynamics and cell adhesion. Here, we characterize the GTPase Activating Protein (GAP) function of Plexin-B1 and find that a cooperative GAP activity towards the substrate GTPase, Rap1b, is associated with the N-terminal Juxtamembrane region of Plexin-B1. Importantly, we unveil an activation mechanism of Plexin-B1 by identifying a novel functional loop which partially blocks Rap1b entry into the plexin GAP domain. Consistent with the concept of allokairy developed for other systems, Plexin-B activity is increased by an apparent substrate-mediated cooperative effect. Simulations and mutagenesis suggest the repositioned JM conformation is stabilized by the new activation switch loop when the active site is occupied, giving rise to faster enzymatic turnover and cooperative behavior. The biological implications, essentially those of a threshold behavior for cell migration, are discussed.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
12.
Acta Biochim Biophys Sin (Shanghai) ; 54(3): 361-369, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35538031

RESUMO

Pancreatic cancer is highly lethal due to its aggressive invasive properties and capacity for metastatic dissemination. Additional therapeutic targets and effective treatment options for patients with tumours of high invasive capacity are required. Ras-related protein-2a (RAP2) is a member of the GTP-binding proteins. RAP2 has been reported to be widely upregulated in many types of cancers via regulating cytoskeleton reorganization, cell proliferation, migration, and adhesion, as well as inflammation. As a member of the RAS oncogene family, which has been demonstrated to drive pancreatic cancer oncogenesis and many other malignancies, the physiological roles of RAP2 in pancreatic cancer have seldom been discussed. In the present study, we explored the correlation between RAP2 expression and the prediction of overall survival of pancreatic cancer patients. Mechanistic studies were carried out to shed light on the role of RAP2 in pancreatic cancer invasion and how RAP2 is regulated in the invasive process. Our results demonstrated that patients with higher RAP2 expression showed unfavourable prognoses. studies demonstrated that silencing of inhibited the invasion of pancreatic cancer cells. Moreover, our results demonstrated that transforming growth factor-ß1 (TGF-ß1), an inducer of the metastatic potential of pancreatic cancer cells, regulates the expression of RAP2 via the transcription factor c-Myc. In conclusion, the present study uncovered RAP2 as a novel predictive marker and therapeutic target for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Fator de Crescimento Transformador beta1 , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Invasividade Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo , Neoplasias Pancreáticas
13.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499729

RESUMO

Cutaneous squamous cell carcinoma (CSCC) is an epidermal skin cancer that evolves from normal epidermis along several pre-malignant stages. Previously we found specific miRNAs alterations in each step along these stages. miR-199a-3p expression decreases at the transition to later stages. A crucial step for epithelial carcinoma cells to acquire invasive capacity is the disruption of cell-cell contacts and the gain of mesenchymal motile phenotype, a process known as epithelial-to-mesenchymal transition (EMT). This study aims to study the role of decreased expression of miR-199a-3p in keratinocytes' EMT towards carcinogenesis. First, we measured miR-199a-3p in different stages of epidermal carcinogenesis. Then, we applied Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) assay to search for possible biochemical targets of miR-199a-3p and verified that Ras-associated protein B2 (RAP2B) is a bona-fide target of miR-199a-3p. Next, we analyzed RAP2B expression, in CSCC biopsies. Last, we evaluated possible mechanisms leading to decreased miR-199a-3p expression. miR-199a-3p induces a mesenchymal to epithelial transition (MET) in CSSC cells. Many of the under-expressed genes in CSCC overexpressing miR-199a-3p, are possible targets of miR-199a-3p and play roles in EMT. RAP2B is a biochemical target of miR-199a-3p. Overexpression of miR-199a-3p in CSCC results in decreased phosphorylated focal adhesion kinase (FAK). In addition, inhibiting FAK phosphorylation inhibits EMT marker genes' expression. In addition, we proved that DNA methylation is part of the mechanism by which miR-199a-3p expression is inhibited. However, it is not by the methylation of miR-199a putative promoter. These findings suggest that miR-199a-3p inhibits the EMT process by targeting RAP2B. Inhibitors of RAP2B or FAK may be effective therapeutic agents for CSCC.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Neoplasias Cutâneas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
14.
Exp Cell Res ; 387(2): 111785, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31877303

RESUMO

Papillary thyroid carcinoma (PTC) is a common endocrine malignancy with an increasing occurrence and recurrence. MicroRNAs (miRNAs) have been widely acknowledged to be participated in human cancers. However, how these miRNAs exert roles and potential mechanisms in PTC regulatory networks is still lacking. The purpose of our study lies in discovering the regulatory basis of miR-200b/c and Rap1b for PTC tumorigenesis and malignant progression, as well as the underlying molecular mechanisms. Herein, miR-200b/c expression was sharply dropped and Rap1b expression was up-regulated in PTC cells and tissues samples when compared to normal thyroid epithelial cells and normal tissues. miR-200b/c targeted Rap1 directly and negatively regulated its expression. miR-200b/c overexpression suppressed proliferative, colony forming, migratory and invasive capabilities and EMT as well as elevated apoptosis of PTC cells through inhibiting Rap1b. Furthermore, xenograft experiments showed miR-200b/c overexpression constrained growth of PTC xenograft and EMT. miR-200b/c inhibited NF-κB/Twist1 signals via regulating the Rap1b expression in cells and animal models. Taken together, our study suggested that upregulation of miR-200b/c-RAP1B axis constrained PTC cell proliferation, invasion, migration and EMT. Also, the upregulation of miR-200b/c-RAP1B leaded to elevated apoptosis through inhibiting the NF-κB/Twist1 pathway, thus inhibiting PTC tumorigenesis and malignant progression.


Assuntos
Carcinogênese/genética , MicroRNAs/genética , NF-kappa B/genética , Proteínas Nucleares/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Proteína 1 Relacionada a Twist/genética , Proteínas rap de Ligação ao GTP/genética , Animais , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima/genética
15.
Cell Mol Biol Lett ; 26(1): 24, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090323

RESUMO

BACKGROUND: The suppressive effects of miR-33a-5p have been reported in colorectal cancer and lung cancer. However, the functional role of miR-33a-5p in pancreatic ductal adenocarcinoma (PDAC) has not yet been elucidated. METHODS: The expression of miR-33a-5p was determined using reverse-transcription quantitative PCR (RT-qPCR) in PDAC tissues and cell lines. The association between miR-33a-5p expression and clinical categorical parameters was analyzed by the chi-square test. Cell proliferation was analyzing by Cell Counting Kit -8 (CCK-8) assay. Transwell assay was utilized to assess cell migration and invasion. The interactions between miR-33a-5p and RAP2A were verified by luciferase reporter assay, RT-qPCR, western blot analysis and RNA immunoprecipitation (RIP) assay. RESULTS: Here, we observed for the first time that miR-33a-5p expression level was significantly decreased in PDAC tissues and cell lines. There was a significant association between decreased miR-33a-5p expression and TNM stage or lymph node metastasis. Overexpression of miR-33a-5p significantly inhibited SW1990 and PANC-1 cell proliferation, migration and invasion. Knockdown of miR-33a-5p remarkedly promoted cell proliferation, migration and invasion in BxPC-3 and ASPC-1. Mechanistically, RAP2A was confirmed as the target of miR-33a-5p in PDAC cells. Moreover, RAP2A overexpression abolished miR-33a-5p-mediated suppressive effects on SW1990 and PANC-1 cells. CONCLUSIONS: Taken together, these results suggest that miR-33a-5p exerted tumor suppressive effects on PDAC cells by targeting RAP2A, which might provide a new theoretical basis for the clinical treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Proteínas rap de Ligação ao GTP/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia
16.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801503

RESUMO

Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.


Assuntos
Alquil e Aril Transferases/metabolismo , Inibidores Enzimáticos/farmacologia , Fragmentos de Peptídeos/farmacologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas rap de Ligação ao GTP/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Humanos , Prenilação de Proteína , Especificidade por Substrato , Xantinas/farmacologia , Proteínas rap de Ligação ao GTP/química , Proteínas rap de Ligação ao GTP/genética
17.
Clin Genet ; 98(4): 374-378, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32627184

RESUMO

We present two independent cases of syndromic thrombocytopenia with multiple malformations, microcephaly, learning difficulties, dysmorphism and other features. Exome sequencing identified two novel de novo heterozygous variants in these patients, c.35G>T p.(Gly12Val) and c.178G>C p.(Gly60Arg), in the RAP1B gene (NM_001010942.2). These variants have not been described previously as germline variants, however functional studies in literature strongly suggest a clinical implication of these two activating hot spot positions. We hypothesize that pathogenic missense variants in the RAP1B gene cause congenital syndromic thrombocytopenia with a spectrum of associated malformations and dysmorphism, possibly through a gain of function mechanism.


Assuntos
Deficiência Intelectual/genética , Microcefalia/genética , Trombocitopenia/genética , Proteínas rap de Ligação ao GTP/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Exoma/genética , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Microcefalia/diagnóstico , Microcefalia/patologia , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Trombocitopenia/diagnóstico , Trombocitopenia/patologia , Sequenciamento do Exoma
18.
Blood ; 132(18): 1951-1962, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30131434

RESUMO

RAP GTPases, important regulators of cellular adhesion, are abundant signaling molecules in the platelet/megakaryocytic lineage. However, mice lacking the predominant isoform, RAP1B, display a partial platelet integrin activation defect and have a normal platelet count, suggesting the existence of a RAP1-independent pathway to integrin activation in platelets and a negligible role for RAP GTPases in megakaryocyte biology. To determine the importance of individual RAP isoforms on platelet production and on platelet activation at sites of mechanical injury or vascular leakage, we generated mice with megakaryocyte-specific deletion (mKO) of Rap1a and/or Rap1b Interestingly, Rap1a/b-mKO mice displayed a marked macrothrombocytopenia due to impaired proplatelet formation by megakaryocytes. In platelets, RAP isoforms had redundant and isoform-specific functions. Deletion of RAP1B, but not RAP1A, significantly reduced α-granule secretion and activation of the cytoskeleton regulator RAC1. Both isoforms significantly contributed to thromboxane A2 generation and the inside-out activation of platelet integrins. Combined deficiency of RAP1A and RAP1B markedly impaired platelet aggregation, spreading, and clot retraction. Consistently, thrombus formation in physiological flow conditions was abolished in Rap1a/b-mKO, but not Rap1a-mKO or Rap1b-mKO, platelets. Rap1a/b-mKO mice were strongly protected from experimental thrombosis and exhibited a severe defect in hemostasis after mechanical injury. Surprisingly, Rap1a/b-mKO platelets were indistinguishable from controls in their ability to prevent blood-lymphatic mixing during development and hemorrhage at sites of inflammation. In summary, our studies demonstrate an essential role for RAP1 signaling in platelet integrin activation and a critical role in platelet production. Although important for hemostatic/thrombotic plug formation, platelet RAP1 signaling is dispensable for vascular integrity during development and inflammation.


Assuntos
Plaquetas/citologia , Deleção de Genes , Adesividade Plaquetária , Trombopoese , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genética , Animais , Plaquetas/metabolismo , Hemostasia , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
19.
J Biol Chem ; 293(20): 7659-7673, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29618512

RESUMO

Rap1 proteins are members of the Ras subfamily of small GTPases involved in many biological responses, including adhesion, cell proliferation, and differentiation. Like all small GTPases, they work as molecular allosteric units that are active in signaling only when associated with the proper membrane compartment. Prenylation, occurring in the cytosol, is an enzymatic posttranslational event that anchors small GTPases at the membrane, and prenyl-binding proteins are needed to mask the cytoplasm-exposed lipid during transit to the target membrane. However, several of these proteins still await discovery. In this study, we report that cyclase-associated protein 1 (CAP1) binds Rap1. We found that this binding is GTP-independent, does not involve Rap1's effector domain, and is fully contained in its C-terminal hypervariable region (HVR). Furthermore, Rap1 prenylation was required for high-affinity interactions with CAP1 in a geranylgeranyl-specific manner. The prenyl binding specifically involved CAP1's C-terminal hydrophobic ß-sheet domain. We present a combination of experimental and computational approaches, yielding a model whereby the high-affinity binding between Rap1 and CAP1 involves electrostatic and nonpolar side-chain interactions between Rap1's HVR residues, lipid, and CAP1 ß-sheet domain. The binding was stabilized by the lipid insertion into the ß-solenoid whose interior was occupied by nonpolar side chains. This model was reminiscent of the recently solved structure of the PDEδ-K-Ras complex; accordingly, disruptors of this complex, e.g. deltarasin, blocked the Rap1-CAP1 interaction. These findings indicate that CAP1 is a geranylgeranyl-binding partner of Rap1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Diterpenos/metabolismo , Prenilação de Proteína , Células Epiteliais da Tireoide/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Diterpenos/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Ratos , Proteínas rap de Ligação ao GTP/química , Proteínas rap de Ligação ao GTP/genética
20.
J Biol Chem ; 293(22): 8521-8529, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29622678

RESUMO

Platelets are recruited to sites of vascular injury, where they are activated and aggregate to form a hemostatic plug. This process requires the activation of the small GTPase Rap1B by its cognate guanine nucleotide exchange factor CalDAG-GEFI. Studies on platelet function suggest that CalDAG-GEFI activity is regulated by changes in cytosolic calcium, but the exact molecular mechanism is poorly understood. Here we show that purified CalDAG-GEFI is autoinhibited and directly regulated by calcium. Substitutions of putative calcium-binding residues within the canonical EF hands of CalDAG-GEFI diminish its capacity to activate Rap1B. Structural differences between active (WT) and inactive (EF hand variant) CalDAG-GEFI protein were determined by hydrogen-deuterium exchange MS. The highest differential rates of deuterium uptake in WT over EF hand variant CalDAG-GEFI were observed in regions within the catalytic Cdc25 domain and a putative autoinhibitory linker connecting the Cdc25 and EF hand domains. Exchange activity in the EF hand variant was fully restored by an additional substitution, valine 406 to glutamate, which is thought to disrupt the interface between the autoinhibitory linker and the Cdc25 domain. Overall, our results suggest a model for how CalDAG-GEFI remains in an autoinhibited state when levels of cytosolic calcium in resting platelets are low. In response to cellular stimulation, calcium mobilization and binding to the EF hands causes conformational rearrangements within CalDAG-GEFI, including the autoinhibitory linker that frees the catalytic surface of CalDAG-GEFI to engage and activate Rap1B. The data from this study are the first evidence linking CalDAG-GEFI activity directly to calcium.


Assuntos
Plaquetas/efeitos dos fármacos , Cálcio/farmacologia , Motivos EF Hand , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Agregação Plaquetária , Conformação Proteica/efeitos dos fármacos , Proteínas rap de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Modelos Moleculares , Transdução de Sinais , Proteínas rap de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA