Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.996
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(1): 80-97.e26, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608661

RESUMO

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.


Assuntos
RNA Helicases DEAD-box , Glucose , Queratinócitos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glucose/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Humanos
2.
Nat Rev Mol Cell Biol ; 25(8): 599-616, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38528155

RESUMO

Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.


Assuntos
Pele , Cicatrização , Humanos , Cicatrização/fisiologia , Animais , Pele/metabolismo , Pele/patologia , Inflamação/patologia , Inflamação/metabolismo , Cicatriz/metabolismo , Cicatriz/patologia , Neovascularização Fisiológica , Queratinócitos/metabolismo
3.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166614

RESUMO

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Assuntos
Retrovirus Endógenos/fisiologia , Homeostase , Inflamação/microbiologia , Inflamação/patologia , Microbiota , Animais , Bactérias/metabolismo , Cromossomos Bacterianos/genética , Dieta Hiperlipídica , Inflamação/imunologia , Inflamação/virologia , Interferon Tipo I/metabolismo , Queratinócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Retroelementos/genética , Transdução de Sinais , Pele/imunologia , Pele/microbiologia , Linfócitos T/imunologia , Transcrição Gênica
4.
Cell ; 184(14): 3812-3828.e30, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214472

RESUMO

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.


Assuntos
Antígenos CD28/deficiência , Padrões de Herança/genética , Papillomaviridae/fisiologia , Pele/virologia , Linfócitos T/imunologia , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/imunologia , Criança , Endopeptidases/metabolismo , Feminino , Genes Recessivos , Células HEK293 , Homozigoto , Humanos , Imunidade Humoral , Memória Imunológica , Células Jurkat , Queratinócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Oncogenes , Papiloma/patologia , Papiloma/virologia , Linhagem , Sinais Direcionadores de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Cell ; 182(2): 497-514.e22, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579974

RESUMO

To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Genômica/métodos , Neoplasias Cutâneas/metabolismo , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , RNA-Seq , Análise de Célula Única , Pele/metabolismo , Neoplasias Cutâneas/patologia , Transcriptoma , Transplante Heterólogo
6.
Nat Immunol ; 23(11): 1577-1587, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271146

RESUMO

Aberrant RNA splicing in keratinocytes drives inflammatory skin disorders. In the present study, we found that the RNA helicase DDX5 was downregulated in keratinocytes from the inflammatory skin lesions in patients with atopic dermatitis and psoriasis, and that mice with keratinocyte-specific deletion of Ddx5 (Ddx5∆KC) were more susceptible to cutaneous inflammation. Inhibition of DDX5 expression in keratinocytes was induced by the cytokine interleukin (IL)-17D through activation of the CD93-p38 MAPK-AKT-SMAD2/3 signaling pathway and led to pre-messenger RNA splicing events that favored the production of membrane-bound, intact IL-36 receptor (IL-36R) at the expense of soluble IL-36R (sIL-36R) and to the selective amplification of IL-36R-mediated inflammatory responses and cutaneous inflammation. Restoration of sIL-36R in Ddx5∆KC mice with experimental atopic dermatitis or psoriasis suppressed skin inflammation and alleviated the disease phenotypes. These findings indicate that IL-17D modulation of DDX5 expression controls inflammation in keratinocytes during inflammatory skin diseases.


Assuntos
Dermatite Atópica , Interleucina-27 , Psoríase , Camundongos , Animais , Interleucina-27/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/patologia , Queratinócitos/metabolismo , Pele/patologia , Psoríase/genética , Psoríase/patologia , Inflamação/metabolismo
7.
Nat Immunol ; 22(7): 839-850, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34168371

RESUMO

Granulomas are complex cellular structures composed predominantly of macrophages and lymphocytes that function to contain and kill invading pathogens. Here, we investigated the single-cell phenotypes associated with antimicrobial responses in human leprosy granulomas by applying single-cell and spatial sequencing to leprosy biopsy specimens. We focused on reversal reactions (RRs), a dynamic process whereby some patients with disseminated lepromatous leprosy (L-lep) transition toward self-limiting tuberculoid leprosy (T-lep), mounting effective antimicrobial responses. We identified a set of genes encoding proteins involved in antimicrobial responses that are differentially expressed in RR versus L-lep lesions and regulated by interferon-γ and interleukin-1ß. By integrating the spatial coordinates of the key cell types and antimicrobial gene expression in RR and T-lep lesions, we constructed a map revealing the organized architecture of granulomas depicting compositional and functional layers by which macrophages, T cells, keratinocytes and fibroblasts can each contribute to the antimicrobial response.


Assuntos
Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Mycobacterium leprae/imunologia , Pele/imunologia , Adolescente , Adulto , Idoso , Feminino , Fibroblastos/imunologia , Fibroblastos/microbiologia , Fibroblastos/patologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Queratinócitos/imunologia , Queratinócitos/microbiologia , Queratinócitos/patologia , Hanseníase Virchowiana/genética , Hanseníase Virchowiana/microbiologia , Hanseníase Virchowiana/patologia , Hanseníase Tuberculoide/genética , Hanseníase Tuberculoide/microbiologia , Hanseníase Tuberculoide/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/patogenicidade , RNA-Seq , Análise de Célula Única , Pele/microbiologia , Pele/patologia , Linfócitos T/imunologia , Linfócitos T/microbiologia , Linfócitos T/patologia , Transcriptoma
8.
Cell ; 171(1): 188-200.e16, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28867286

RESUMO

Actin filaments polymerizing against membranes power endocytosis, vesicular traffic, and cell motility. In vitro reconstitution studies suggest that the structure and the dynamics of actin networks respond to mechanical forces. We demonstrate that lamellipodial actin of migrating cells responds to mechanical load when membrane tension is modulated. In a steady state, migrating cell filaments assume the canonical dendritic geometry, defined by Arp2/3-generated 70° branch points. Increased tension triggers a dense network with a broadened range of angles, whereas decreased tension causes a shift to a sparse configuration dominated by filaments growing perpendicularly to the plasma membrane. We show that these responses emerge from the geometry of branched actin: when load per filament decreases, elongation speed increases and perpendicular filaments gradually outcompete others because they polymerize the shortest distance to the membrane, where they are protected from capping. This network-intrinsic geometrical adaptation mechanism tunes protrusive force in response to mechanical load.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Queratinócitos/ultraestrutura , Pseudópodes/química , Pseudópodes/ultraestrutura , Animais , Membrana Celular/química , Queratinócitos/química , Microscopia Eletrônica , Peixe-Zebra
9.
Nat Immunol ; 20(7): 915-927, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31110316

RESUMO

The molecular and cellular processes that lead to renal damage and to the heterogeneity of lupus nephritis (LN) are not well understood. We applied single-cell RNA sequencing (scRNA-seq) to renal biopsies from patients with LN and evaluated skin biopsies as a potential source of diagnostic and prognostic markers of renal disease. Type I interferon (IFN)-response signatures in tubular cells and keratinocytes distinguished patients with LN from healthy control subjects. Moreover, a high IFN-response signature and fibrotic signature in tubular cells were each associated with failure to respond to treatment. Analysis of tubular cells from patients with proliferative, membranous and mixed LN indicated pathways relevant to inflammation and fibrosis, which offer insight into their histologic differences. In summary, we applied scRNA-seq to LN to deconstruct its heterogeneity and identify novel targets for personalized approaches to therapy.


Assuntos
Perfilação da Expressão Gênica , Interferon Tipo I/metabolismo , Queratinócitos/metabolismo , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Transcriptoma , Biópsia , Linhagem da Célula/genética , Biologia Computacional/métodos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Perfilação da Expressão Gênica/métodos , Humanos , Nefrite Lúpica/patologia , Ligação Proteica , Transdução de Sinais , Análise de Célula Única , Pele/imunologia , Pele/metabolismo , Pele/patologia
10.
Immunity ; 55(9): 1586-1588, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103856

RESUMO

The full range of receptors through which antimicrobial peptides exert their immunologic effects remains incompletely explored. Dong and colleagues identify Mgrpra2 as a G-coupled protein receptor on neutrophils, for which keratinocyte-derived Beta-defensins serve as key ligands. Binding of Mgrpra2 leads to release of neutrophil granules and Il-1ß, which helps shape skin microbiome composition and augments cutaneous defense against bacterial infection.


Assuntos
beta-Defensinas , Proteínas de Transporte , Queratinócitos/metabolismo , Neutrófilos/metabolismo , Pele/metabolismo , beta-Defensinas/química , beta-Defensinas/metabolismo
11.
Immunity ; 55(9): 1645-1662.e7, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35882236

RESUMO

Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1ß and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.


Assuntos
Infecções Bacterianas , Neutrófilos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Antibacterianos , Proteínas de Transporte , Defensinas/genética , Disbiose , Queratinócitos , Receptores Acoplados a Proteínas G/metabolismo , Staphylococcus aureus
12.
Cell ; 167(5): 1323-1338.e14, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863246

RESUMO

Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial T cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.


Assuntos
Envelhecimento/fisiologia , Subpopulações de Linfócitos/citologia , Transdução de Sinais , Cicatrização , Animais , Interleucina-6/administração & dosagem , Queratinócitos/metabolismo , Camundongos , Pele/citologia , Fenômenos Fisiológicos da Pele , Cicatrização/efeitos dos fármacos
13.
Immunity ; 54(7): 1366-1368, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260882

RESUMO

Cells can detect pathogens through guard proteins that sense disturbances in core cellular processes, but the exact mechanisms often remain elusive. In this issue of Immunity, Orzalli et al. identify Bcl-2 family members as guard proteins that detect virus-induced translational inhibition and induce pyroptosis in human keratinocytes.


Assuntos
Queratinócitos , Piroptose , Humanos
14.
Immunity ; 54(1): 84-98.e5, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33212014

RESUMO

Following antigen-driven expansion in lymph node, transforming growth factor-ß (TGFß) is required for differentiation of skin-recruited CD8+ T cell effectors into epidermal resident memory T (Trm) cells and their epidermal persistence. We found that the source of TGFß -supporting Trm cells was autocrine. In addition, antigen-specific Trm cells that encountered cognate antigen in the skin, and bystander Trm cells that did not, both displayed long-term persistence in the epidermis under steady-state conditions. However, when the active-TGFß was limited or when new T cell clones were recruited into the epidermis, antigen-specific Trm cells were more efficiently retained than bystander Trm cells. Genetically enforced TGFßR signaling allowed bystander Trm cells to persist in the epidermis as efficiently as antigen-specific Trm cells in both contexts. Thus, competition between T cells for active TGFß represents an unappreciated selective pressure that promotes the accumulation and persistence of antigen-specific Trm cells in the epidermal niche.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epiderme/imunologia , Queratinócitos/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Ligação Competitiva , Efeito Espectador , Microambiente Celular , Células Clonais , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transdução de Sinais , Especificidade do Receptor de Antígeno de Linfócitos T
15.
Cell ; 163(7): 1596-610, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687353

RESUMO

A central question in biology is whether variability between genetically identical cells exposed to the same culture conditions is largely stochastic or deterministic. Using image-based transcriptomics in millions of single human cells, we find that while variability of cytoplasmic transcript abundance is large, it is for most genes minimally stochastic and can be predicted with multivariate models of the phenotypic state and population context of single cells. Computational multiplexing of these predictive signatures across hundreds of genes revealed a complex regulatory system that controls the observed variability of transcript abundance between individual cells. Mathematical modeling and experimental validation show that nuclear retention and transport of transcripts between the nucleus and the cytoplasm is central to buffering stochastic transcriptional fluctuations in mammalian gene expression. Our work indicates that cellular compartmentalization confines transcriptional noise to the nucleus, thereby preventing it from interfering with the control of single-cell transcript abundance in the cytoplasm.


Assuntos
Perfilação da Expressão Gênica , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Hibridização in Situ Fluorescente , Queratinócitos/metabolismo , Análise de Célula Única , Processos Estocásticos , Transcrição Gênica
16.
Cell ; 161(2): 277-90, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25860610

RESUMO

Coordinated organ behavior is crucial for an effective response to environmental stimuli. By studying regeneration of hair follicles in response to patterned hair plucking, we demonstrate that organ-level quorum sensing allows coordinated responses to skin injury. Plucking hair at different densities leads to a regeneration of up to five times more neighboring, unplucked resting hairs, indicating activation of a collective decision-making process. Through data modeling, the range of the quorum signal was estimated to be on the order of 1 mm, greater than expected for a diffusible molecular cue. Molecular and genetic analysis uncovered a two-step mechanism, where release of CCL2 from injured hairs leads to recruitment of TNF-α-secreting macrophages, which accumulate and signal to both plucked and unplucked follicles. By coupling immune response with regeneration, this mechanism allows skin to respond predictively to distress, disregarding mild injury, while meeting stronger injury with full-scale cooperative activation of stem cells.


Assuntos
Folículo Piloso/citologia , Células-Tronco/citologia , Animais , Comunicação Celular , Quimiocina CCL2/metabolismo , Folículo Piloso/fisiologia , Queratinócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regeneração , Pele/citologia , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Cell ; 163(1): 160-73, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26406376

RESUMO

Focal adhesion kinase (FAK) promotes anti-tumor immune evasion. Specifically, the kinase activity of nuclear-targeted FAK in squamous cell carcinoma (SCC) cells drives exhaustion of CD8(+) T cells and recruitment of regulatory T cells (Tregs) in the tumor microenvironment by regulating chemokine/cytokine and ligand-receptor networks, including via transcription of Ccl5, which is crucial. These changes inhibit antigen-primed cytotoxic CD8(+) T cell activity, permitting growth of FAK-expressing tumors. Mechanistically, nuclear FAK is associated with chromatin and exists in complex with transcription factors and their upstream regulators that control Ccl5 expression. Furthermore, FAK's immuno-modulatory nuclear activities may be specific to cancerous squamous epithelial cells, as normal keratinocytes do not have nuclear FAK. Finally, we show that a small-molecule FAK kinase inhibitor, VS-4718, which is currently in clinical development, also drives depletion of Tregs and promotes a CD8(+) T cell-mediated anti-tumor response. Therefore, FAK inhibitors may trigger immune-mediated tumor regression, providing previously unrecognized therapeutic opportunities.


Assuntos
Carcinoma de Células Escamosas/imunologia , Quimiocina CCL5/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Evasão Tumoral , Aminopiridinas/administração & dosagem , Animais , Carcinoma de Células Escamosas/metabolismo , Quimiocina CCL5/imunologia , Modelos Animais de Doenças , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Nus , Neoplasias Cutâneas/metabolismo , Transcrição Gênica
18.
Nat Immunol ; 18(3): 334-343, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092372

RESUMO

Environmental challenges to epithelial cells trigger gene expression changes that elicit context-appropriate immune responses. We found that the chromatin remodeler Mi-2ß controls epidermal homeostasis by regulating the genes involved in keratinocyte and immune-cell activation to maintain an inactive state. Mi-2ß depletion resulted in rapid deployment of both a pro-inflammatory and an immunosuppressive response in the skin. A key target of Mi-2ß in keratinocytes is the pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP). Loss of TSLP receptor (TSLPR) signaling specifically in regulatory T (Treg) cells prevented their activation and permitted rapid progression from a skin pro-inflammatory response to a lethal systemic condition. Thus, in addition to their well-characterized role in pro-inflammatory responses, keratinocytes also directly support immune-suppressive responses that are critical for re-establishing organismal homeostasis.


Assuntos
Citocinas/metabolismo , DNA Helicases/metabolismo , Imunoglobulinas/metabolismo , Queratinócitos/fisiologia , Receptores de Citocinas/metabolismo , Linfócitos T Reguladores/fisiologia , Animais , Comunicação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Imunoglobulinas/genética , Inflamação/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Citocinas/genética , Transdução de Sinais/genética , Linfopoietina do Estroma do Timo
19.
Nat Immunol ; 18(2): 152-160, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27992404

RESUMO

Autoimmune diseases affect 7.5% of the US population, and they are among the leading causes of death and disability. A notable feature of many autoimmune diseases is their greater prevalence in females than in males, but the underlying mechanisms of this have remained unclear. Through the use of high-resolution global transcriptome analyses, we demonstrated a female-biased molecular signature associated with susceptibility to autoimmune disease and linked this to extensive sex-dependent co-expression networks. This signature was independent of biological age and sex-hormone regulation and was regulated by the transcription factor VGLL3, which also had a strong female-biased expression. On a genome-wide level, VGLL3-regulated genes had a strong association with multiple autoimmune diseases, including lupus, scleroderma and Sjögren's syndrome, and had a prominent transcriptomic overlap with inflammatory processes in cutaneous lupus. These results identified a VGLL3-regulated network as a previously unknown inflammatory pathway that promotes female-biased autoimmunity. They demonstrate the importance of studying immunological processes in females and males separately and suggest new avenues for therapeutic development.


Assuntos
Redes Reguladoras de Genes , Queratinócitos/fisiologia , Lúpus Eritematoso Cutâneo/genética , Escleroderma Sistêmico/genética , Fatores Sexuais , Síndrome de Sjogren/genética , Pele/patologia , Fatores de Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Fatores de Transcrição/genética , Transcriptoma , Adulto Jovem
20.
Nat Immunol ; 18(1): 64-73, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869817

RESUMO

Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dermatite Atópica/imunologia , Epiderme/inervação , Queratina-15/metabolismo , Queratinócitos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Prurido/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Atmosféricos/efeitos adversos , Animais , Animais Recém-Nascidos , Orientação de Axônios/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Epiderme/patologia , Regulação da Expressão Gênica , Humanos , Queratina-15/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Receptor EphB2/genética , Receptor EphB2/metabolismo , Receptores de Hidrocarboneto Arílico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA