Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 488, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825683

RESUMO

BACKGROUND: The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS: Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION: Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.


Assuntos
Casca de Planta , Quercus , Quercus/genética , Quercus/crescimento & desenvolvimento , Casca de Planta/genética , Casca de Planta/química , Casca de Planta/metabolismo , Transcriptoma , Hibridização Genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos
2.
Ecol Appl ; 34(4): e2970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602711

RESUMO

Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three-city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban-rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree-planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.


Assuntos
Mudança Climática , Árvores , Urbanização , Árvores/crescimento & desenvolvimento , Acer/crescimento & desenvolvimento , Acer/fisiologia , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Florestas , Cidades
3.
Oecologia ; 205(2): 411-422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898337

RESUMO

The interplay of positive and negative species interactions controls species assembly in communities. Dryland plant communities, such as savannas, are important to global biodiversity and ecosystem functioning. Sandhill oaks in xeric savannas of the southeastern United States can facilitate longleaf pine by enhancing seedling survival, but the effects of oaks on recruitment and growth of longleaf pine have not been examined. We censused, mapped, and monitored nine contiguous hectares of longleaf pine in a xeric savanna to quantify oak-pine facilitation, and to examine other factors impacting recruitment, such as vegetation cover and longleaf pine tree density. We found that newly recruited seedlings and grass stage longleaf pines were more abundant in oak-dominated areas where densities were 230% (newly recruited seedlings) and 360% (grass stage) greater from lowest to highest oak neighborhood densities. Longleaf pine also grew faster under higher oak density. Longleaf pine recruitment was lowest under longleaf pine canopies. Mortality of grass stage and bolt stage longleaf pine was low (~1.0% yr-1) in the census interval without fire. Overall, our findings highlight the complex interactions between pines and oaks-two economically and ecologically important genera globally. Xeric oaks should be incorporated as a management option for conservation and restoration of longleaf pine ecosystems.


Assuntos
Ecossistema , Pradaria , Pinus , Quercus , Plântula , Pinus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
4.
J Environ Manage ; 364: 121498, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897091

RESUMO

Livestock grazing occupies over a quarter of terrestrial land and is prevalent to agroforestry ecosystems, potentially affecting the survival, growth, and density of trees' early developmental stages, such as seeds, seedlings, and saplings. To address the effects of livestock on tree recruitment in the face of ongoing debates about their impacts, we conducted a 33-year meta-analysis in Quercus-dominated agroforestry systems. Our analysis revealed a consistently negative effect of livestock on oak acorns, seedlings, and saplings. Significantly, livestock body size influenced oak regeneration, with small-sized livestock, notably sheep and goats, having a more pronounced negative impact compared to mixed-size systems, mainly involving cattle and sheep. The effects of small-sized livestock were markedly detrimental on acorn survival and seedling/sapling density, although no studies eligible for meta-analysis examined large livestock impacts on acorns. Overall, mixed-size livestock systems, often involving cattle and sheep, lessen the negative effects. Our findings indicate that the body size and foraging behaviors of livestock should be considered for the ecological sustainability of the tree component in agroforestry systems. While protective measures have long been integral to well-managed agroforestry systems, our results underscore the importance of integrating diverse livestock sizes and applying specific protective strategies, particularly for acorns and saplings, to further refine these practices. Future research should expand to underrepresented regions and livestock types to refine global agroforestry management practices.


Assuntos
Agricultura Florestal , Gado , Quercus , Árvores , Quercus/crescimento & desenvolvimento , Animais , Ecossistema , Conservação dos Recursos Naturais , Ovinos , Bovinos
5.
Plant Cell Environ ; 44(4): 1243-1256, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32683699

RESUMO

Hydraulic redistribution (HR) can buffer drought events of tree individuals, however, its relevance for neighbouring trees remains unclear. Here, we quantified HR to neighbouring trees in single- and mixed-species combinations. We hypothesized that uptake of HR water positively correlates with root length, number of root tips and root xylem hydraulic conductivity and that neighbours in single-species combinations receive more HR water than in phylogenetic distant mixed-species combinations. In a split-root experiment, a sapling with its roots split between two pots redistributed deuterium labelled water from a moist to a dry pot with an additional tree each. We quantified HR water received by the sapling in the dry pot for six temperate tree species. After 7 days, one quarter of the water in roots (2.1 ± 0.4 ml), stems (0.8 ± 0.2 ml) and transpiration (1.0 ± 0.3 ml) of the drought stressed sapling originated from HR. The amount of HR water transpired by the receiving plant stayed constant throughout the experiment. While the uptake of HR water increased with root length, species identity did not affect HR as saplings of Picea abies ((L.) Karst) and Fagus sylvatica (L.) in single- and mixed-species combinations received the same amount of HR water.


Assuntos
Florestas , Árvores/fisiologia , Acer/crescimento & desenvolvimento , Acer/fisiologia , Desidratação , Fagaceae/crescimento & desenvolvimento , Fagaceae/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transpiração Vegetal , Pseudotsuga/crescimento & desenvolvimento , Pseudotsuga/fisiologia , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Árvores/crescimento & desenvolvimento , Água/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
6.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681955

RESUMO

Leaf blight disease caused by Pestalotiopsismaculans lead to deleterious losses in the quality of forest container seedlings. The use of plant growth-promoting bacteria provides a promising strategy to simultaneously control diseases and enhance forest seedling production. This study investigated the biocontrol of leaf blight disease and growth promotion potential of Bacillus velezensis CE 100 in Quercus acutissima Carruth seedlings. B. velezensis CE 100 produced cell wall degrading enzymes, such as chitinase, ß-l,3-glucanase, and protease, which caused cell wall lysis and hyphae deformation of P. maculans, leading to mycelial growth inhibition by 54.94%. Inoculation of B. velezensis CE 100 suppressed P. maculans infection and increased seedling survival rate by 1.6-fold and 1.3-fold compared to chemical fertilizer and control, respectively. In addition, B. velezensis CE 100 produced indole-3-acetic acid, which improved root development and nutrient uptake compared to chemical fertilizer and control. Especially, inoculation with B. velezensis CE 100 increased the total nitrogen content of Q. acutissima seedlings, improved the chlorophyll index in the leaves, and increased seedling biomass by 1.3-fold and 2.2-fold compared to chemical fertilizer and control, respectively. Thus, B. velezensis CE 100 could be applied in the eco-friendly production of high-quality forest seedlings.


Assuntos
Antifúngicos/farmacologia , Bacillus/química , Controle Biológico de Vetores , Pestalotiopsis/fisiologia , Doenças das Plantas/prevenção & controle , Quercus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Florestas , Desenvolvimento Vegetal , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Quercus/microbiologia , Plântula/microbiologia
7.
Molecules ; 26(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919481

RESUMO

This study aimed to evaluate a complete nutritional composition in the seeds Quercus virginiana to compare this nutritional composition with three Mediterranean Quercus species. We analyzed the seed morphometry, proximate composition, phytochemicals, and antioxidant capacity. The seed of Q. virginiana presented the smaller seed size and weight, while Q. suber presented the highest values. Moreover, Q. virginiana seeds showed the highest amounts of sugar and total lipids, digestibility, energy, palmitic acid, and stearic acid. On the other hand, Q. virginiana seeds showed the lowest values of linoleic acid. Moreover, Q. coccifera seeds presented the highest total phenolics and flavonoids contents and antioxidant activity. The clustering analysis revealed a significant similarity in seed morphometry and nutritional composition between the Mediterranean Q. ilex and Q. suber, grouping with the American Q. virginiana, but to a considerable distance; by contrast, the Mediterranean Q. coccifera was the most distant in the clustering analysis. The content of phenolics and flavonoids and digestibility value were the variables that contributed to the separation to a greater extent in the clustering of the four species. The nutritional and biological activity assessment of plant seed may be considered as an essential mission to find new sustainable sources and novel chemical agents. In this sense, Quercus seeds may be an alternative and a competitive food source for the agri-food industry.


Assuntos
Antioxidantes/química , Compostos Fitoquímicos/química , Quercus/química , Sementes/química , Antioxidantes/isolamento & purificação , Germinação/efeitos dos fármacos , Humanos , Região do Mediterrâneo , Fenóis/química , Fenóis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Quercus/classificação , Quercus/crescimento & desenvolvimento , Estados Unidos
8.
BMC Plant Biol ; 20(1): 389, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32842952

RESUMO

BACKGROUND: Phosphorus (P) -rich soils develop in phosphorite residing areas while P-deficient soils are ubiquitous in subtropical regions. Little has been reported that how metabolites participate in the seed development and the processes involved in their coping with contrasting-nutrient environments. RESULTS: Here we quantified the metabolites of Quercus variabilis acorns in the early (July), middle (August), late (September) development stages, and determined element (C, H, O, N, P, K, Ca, Mg, S, Fe, Al, Mn, Na, Zn, and Cu) concentrations of acorns in the late stage, at geologically-derived contrasting-P sites in subtropical China. The primary metabolic pathways included sugar metabolism, the TCA cycle, and amino acid metabolism. Most metabolites (especially C- and N-containing metabolites) increased and then decreased from July to September. Acorns between the two sites were significantly discriminated at the three stages, respectively, by metabolites (predominantly sugars and organic acids). Concentrations of P, orthophosphoric acid and most sugars were higher; erythrose was lower in late-stage acorns at P-rich sites than those at P-deficient sites. No significant differences existed in the size and dry mass of individual acorns between oak populations at the two sites. CONCLUSIONS: Oak acorns at the two sites formed distinct metabolic phenotypes related to their distinct geologically-derived soil conditions, and the late-stage acorns tended to increase P-use-efficiency in the material synthesis process at P-deficient sites, relative to those at P-rich sites.


Assuntos
Fósforo/metabolismo , Quercus/crescimento & desenvolvimento , Quercus/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Solo/química , China , Germinação/fisiologia , Estações do Ano
9.
Plant Cell Environ ; 43(8): 1944-1957, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394490

RESUMO

Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important. We conducted a multifactorial experiment with two levels of light (ambient, 2-3% of ambient) and three levels of water stress (0, 50 and 80 percent losses of hydraulic conductivity, PLC) on two Mediterranean oaks (Quercus ilex and Q. faginea) under a rain-out shelter (n = 360). The proportion of resprouting individuals after canopy clipping declined markedly as PLC increased for both species. NSC concentrations affected the response of Q. ilex, the species with higher leaf construction costs, and its effect depended on the PLC. The growth of resprouting individuals was largely dependent on photosynthetic rates for both species, while stored NSC availability and hydraulic limitations played minor and non-significant roles, respectively. Contrary to conventional wisdom, our results indicate that resprouting in oaks may be primarily driven by complex interactions between hydraulics and carbon sources, whereas stored NSC play a significant but secondary role.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Raízes de Plantas/metabolismo , Quercus/fisiologia , Desidratação , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Quercus/crescimento & desenvolvimento , Espanha
10.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471127

RESUMO

Modifications of DNA and histones, including methylation and acetylation, are critical for the epigenetic regulation of gene expression during plant development, particularly during environmental adaptation processes. However, information on the enzymes catalyzing all these modifications in trees, such as Quercus suber L., is still not available. In this study, eight DNA methyltransferases (DNA Mtases) and three DNA demethylases (DDMEs) were identified in Q. suber. Histone modifiers involved in methylation (35), demethylation (26), acetylation (8), and deacetylation (22) were also identified in Q. suber. In silico analysis showed that some Q. suber DNA Mtases, DDMEs and histone modifiers have the typical domains found in the plant model Arabidopsis, which might suggest a conserved functional role. Additional phylogenetic analyses of the DNA and histone modifier proteins were performed using several plant species homologs, enabling the classification of the Q. suber proteins. A link between the expression levels of each gene in different Q. suber tissues (buds, flowers, acorns, embryos, cork, and roots) with the functions already known for their closest homologs in other species was also established. Therefore, the data generated here will be important for future studies exploring the role of epigenetic regulators in this economically important species.


Assuntos
Epigênese Genética , Genoma de Planta , Quercus/genética , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Quercus/enzimologia , Quercus/crescimento & desenvolvimento
11.
BMC Evol Biol ; 19(1): 202, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684859

RESUMO

BACKGROUND: Understanding the origin of genetic variation is the key to predict how species will respond to future climate change. The genus Quercus is a species-rich and ecologically diverse woody genus that dominates a wide range of forests and woodland communities of the Northern Hemisphere. Quercus thus offers a unique opportunity to investigate how adaptation to environmental changes has shaped the spatial genetic structure of closely related lineages. Furthermore, Quercus provides a deep insight into how tree species will respond to future climate change. This study investigated whether closely related Quercus lineages have similar spatial genetic structures and moreover, what roles have their geographic distribution, ecological tolerance, and historical environmental changes played in the similar or distinct genetic structures. RESULTS: Despite their close relationships, the three main oak lineages (Quercus sections Cyclobalanopsis, Ilex, and Quercus) have different spatial genetic patterns and occupy different climatic niches. The lowest level and most homogeneous pattern of genetic diversity was found in section Cyclobalanopsis, which is restricted to warm and humid climates. The highest genetic diversity and strongest geographic genetic structure were found in section Ilex, which is due to their long-term isolation and strong local adaptation. The widespread section Quercus is distributed across the most heterogeneous range of environments; however, it exhibited moderate haplotype diversity. This is likely due to regional extinction during Quaternary climatic fluctuation in Europe and North America. CONCLUSIONS: Genetic variations of sections Ilex and Quercus were significantly predicted by geographic and climate variations, while those of section Cyclobalanopsis were poorly predictable by geographic or climatic diversity. Apart from the different historical environmental changes experienced by different sections, variation of their ecological or climatic tolerances and physiological traits induced varying responses to similar environment changes, resulting in distinct spatial genetic patterns.


Assuntos
Cloroplastos/genética , Ilex/genética , Quercus/genética , Mudança Climática , Ecologia , Europa (Continente) , Florestas , Estruturas Genéticas , Variação Genética , Haplótipos , Ilex/citologia , Ilex/crescimento & desenvolvimento , América do Norte , Filogenia , Quercus/citologia , Quercus/crescimento & desenvolvimento
12.
Mol Plant Microbe Interact ; 32(6): 770-781, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30753106

RESUMO

Herbivores and mycorrhizal fungi interactively influence growth, resource utilization, and plant defense responses. We studied these interactions in a tritrophic system comprising Quercus robur, the herbivore Lymantria dispar, and the ectomycorrhizal fungus Piloderma croceum under controlled laboratory conditions at the levels of gene expression and carbon and nitrogen (C/N) allocation. Taking advantage of the endogenous rhythmic growth displayed by oak, we thereby compared gene transcript abundances and resource shifts during shoot growth with those during the alternating root growth flushes. During root flush, herbivore feeding on oak leaves led to an increased expression of genes related to plant growth and enriched gene ontology terms related to cell wall, DNA replication, and defense. C/N-allocation analyses indicated an increased export of resources from aboveground plant parts to belowground. Accordingly, the expression of genes related to the transport of carbohydrates increased upon herbivore attack in leaves during the root flush stage. Inoculation with an ectomycorrhizal fungus attenuated these effects but, instead, caused an increased expression of genes related to the production of volatile organic compounds. We conclude that oak defense response against herbivory is strong in root flush at the transcriptomic level but this response is strongly inhibited by inoculation with ectomycorrhizal fungi and it is extremely weak at shoot flush.


Assuntos
Herbivoria , Micorrizas , Quercus , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Quercus/microbiologia
13.
Mol Ecol ; 28(24): 5248-5264, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31652373

RESUMO

Drought is a major stress for plants, creating a strong selection pressure for traits that enable plant growth and survival in dry environments. Many drought responses are conserved species-wide responses, while others vary among populations distributed across heterogeneous environments. We tested how six populations of the widely distributed California valley oak (Quercus lobata) sampled from contrasting climates would differ in their response to soil drying relative to well-watered controls in a common environment by measuring ecophysiological traits in 93 individuals and gene expression (RNA-seq) in 42 individuals. Populations did not differ in their adjustment of turgor loss point during soil drying, suggesting a generalized species-wide response. Differential expression analysis identified 689 genes with a common response to treatment across populations and 470 genes with population-specific responses. Weighted gene co-expression network analysis (WGCNA) identified groups of genes with similar expression patterns that may be regulated together (gene modules). Several gene modules responded differently to water stress among populations, suggesting regional differences in gene network regulation. Populations from sites with a high mean annual temperature responded to the imposed water stress with significantly greater changes in gene module expression, indicating that these populations may be locally adapted to respond to drought. We propose that this variation among valley oak populations provides a mechanism for differential tolerance to the increasingly frequent and severe droughts in California.


Assuntos
Adaptação Fisiológica/genética , Quercus/genética , Plântula/genética , Estresse Fisiológico/genética , California , Clima , Secas , Redes Reguladoras de Genes/genética , Temperatura Alta , Quercus/crescimento & desenvolvimento , Solo , Água
14.
Glob Chang Biol ; 25(1): 201-217, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30346104

RESUMO

Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to local land-use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global-change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global-change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global-change drivers, with species-specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus' growth, highlighting species-specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus' growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global-change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.


Assuntos
Mudança Climática , Fagus/crescimento & desenvolvimento , Fraxinus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Secas , Europa (Continente) , Florestas , Ciclo do Nitrogênio , Temperatura
15.
Ann Bot ; 123(4): 707-714, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30452531

RESUMO

BACKGROUND AND AIMS: The ability of plants to allocate energy to resistance against herbivores changes with abiotic conditions and thus may vary along geographical clines, with important consequences for plant communities. Seed size is a plant trait potentially influencing plant tolerance to endoparasites, and seed size often varies across latitude. Consequently, plant tolerance to endoparasites may change across geographical clines. METHODS: The interaction between Quercus ilex (holm oak) and seed-predating Curculio spp. (weevils) was explored along most of the latitudinal range of Q. ilex. This included quantification of variation in seed size, survival likelihood of infested seeds, multi-infestation of acorns and community composition of Curculio weevils in acorns. KEY RESULTS: Larger seeds had a higher probability of surviving weevil attack (i.e. embryo not predated). Southern populations of oak produced on average four times larger seeds than those of northern populations. Consequently, the probability of survival of infested acorns decreased with latitude. The community composition of Curculio varied, with large weevils (C. elephas) dominating in southern populations and small weevils (C. glandium) dominating in northern populations. However, damage tolerance was robust against this turnover in predator functional traits. Furthermore, we did not detect any change in multi-infestation of acorns along the geographical gradient. CONCLUSIONS: Quercus ilex tolerance to seed predation by Curculio weevils increases toward the southern end of its distribution. Generally, studies on geographical variation in plant defence against enemies largely ignore seed attributes or they focus on seed physical barriers. Thus, this research suggests another dimension in which geographical trends in plant defences should be considered, i.e. geographical variation in tolerance to seed predators mediated by seed size.


Assuntos
Herbivoria , Quercus/fisiologia , Sementes/crescimento & desenvolvimento , Gorgulhos/fisiologia , Animais , Cadeia Alimentar , Geografia , Quercus/crescimento & desenvolvimento , Sementes/fisiologia , Espanha
16.
Planta ; 247(2): 317-338, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28988391

RESUMO

MAIN CONCLUSION: The phenylpropanoid pathway impacts the cork quality development. In cork of bad quality, the flavonoid route is favored, whereas in good quality, cork lignin and suberin production prevails. Cork oaks develop a thick cork tissue as a protective shield that results of the continuous activity of a secondary meristem, the cork cambium, or phellogen. Most studies applied to developmental processes do not consider the cell types from which the samples were extracted. Here, laser microdissection (LM) coupled with transcript profiling using RNA sequencing (454 pyrosequencing) was applied to phellogen cells of trees producing low- and good quality cork. Functional annotation and functional enrichment analyses showed that stress-related genes are enriched in samples extracted from trees producing good quality cork (GQC). This process is under tight transcriptional (transcription factors, kinases) regulation and also hormonal control involving ABA, ethylene, and auxins. The phellogen cells collected from trees producing bad quality cork (BQC) show a consistent up-regulation of genes belonging to the flavonoid pathway as a response to stress. They also display a different modulation of cell wall genes resulting into a thinner cork layer, i.e., less meristematic activity. Based on the analysis of the phenylpropanoid pathway regulating genes, in GQC, the synthesis of lignin and suberin is promoted, whereas in BQC, the same pathway favors the biosynthesis of free phenolic compounds. This study provided new insights of how cell-specific gene expression can determine tissue and organ morphology and physiology and identified robust candidate genes that can be used in breeding programs aiming at improving cork quality.


Assuntos
Vias Biossintéticas , Microdissecção e Captura a Laser/métodos , Quercus/genética , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Câmbio/metabolismo , Parede Celular/metabolismo , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Propanóis/metabolismo , Quercus/crescimento & desenvolvimento , Quercus/metabolismo , Análise de Sequência de RNA , Árvores
17.
Am J Bot ; 105(12): 2075-2080, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30521099

RESUMO

PREMISE OF THE STUDY: Extreme weather events can injure plants, causing decreased survival. However, we may underestimate the ecological importance of extreme events if they have strong sublethal effects that manifest after several months. We tested the hypothesis that late-winter extreme-cold events decrease the ability of woody plants to grow and tolerate stem removal in summer. METHODS: Seedlings from four temperate tree species (Abies balsamea, Pinus resinosa, P. strobus, Quercus rubra) were acclimated to winter conditions in growth chambers, and experienced 1 week of warm temperatures before being exposed to one of three 24-h extreme-cold events (minimum temperature: 8°C control, -8°C, or -16°C). Seedlings were then transferred to a greenhouse where we monitored survival and growth. Three months after the extreme-cold event, we mimicked an herbivore attack by removing either 25% or 75% of new stem growth from seedlings of two species (P. resinosa, Q. rubra). KEY RESULTS: While extreme cold had no immediate effect on seedling survival, the coldest temperature treatment reduced stem growth 51% relative to controls. Stem removal decreased P. resinosa survival in the -16°C treatment, but stem removal treatment had no effect on P. resinosa survival in the intermediate -8°C treatment or 8°C control. Stem removal did not alter Q. rubra survival. CONCLUSIONS: Ephemeral late-winter cold temperatures can have unappreciated effects on growing-season seedling dynamics, including growth and herbivory. For predicting how extreme-cold events might alter large-scale patterns of tree distribution, seedlings should be monitored throughout the growing season following extreme late-winter frosts.


Assuntos
Temperatura Baixa , Herbivoria , Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Abies/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Especificidade da Espécie
18.
Am J Bot ; 105(2): 142-150, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29570215

RESUMO

PREMISE OF THE STUDY: Xylem vessels transition through different stages during their functional lifespan, including expansion and development of vessel elements, transition to vessel hydraulic functionality, and eventual transition to post-functionality. We used information on vessel development and function to develop a model of vessel lifespan for woody plants. METHODS: We examined vessel functional lifespan using repeated anatomical sampling throughout the growing season, combined with active-xylem staining to evaluate vessel hydraulic transport functionality. These data were combined with a literature review. The transitions between vessel functional lifespans for several species are illustrated, including grapevine (Vitis vinifera L., Vitaceae), English oak (Quercus robur L., Fagaceae), American chestnut [Castanea dentata (Marshall) Borkh.; Fagaceae], and several arid and semi-arid shrub species. KEY RESULTS: In intact woody plants, development and maturation of vessel elements may be gradual. Once hydraulically functional, vessel elements connect to form a vessel network that is responsible for bulk hydraulic flow through the xylem. Vessels become nonfunctional due to the formation of gas emboli. In some species and under some conditions, vessel functionality of embolized conduits may be restored through refilling. Blockages, such as tyloses, gels, or gums, indicate permanent losses in hydraulic functional capacity; however, there may be some interesting exceptions to permanent loss of functionality for gel-based blockages. CONCLUSIONS: The gradual development and maturation of vessel elements in woody plants, variation in the onset of functionality between different populations of vessels throughout the growing season, and differences in the timing of vessel transitions to post-functionality are important aspects of plant hydraulic function.


Assuntos
Xilema/fisiologia , Fagaceae/crescimento & desenvolvimento , Fagaceae/fisiologia , Longevidade/fisiologia , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Vitis/crescimento & desenvolvimento , Vitis/fisiologia , Água/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/fisiologia , Xilema/crescimento & desenvolvimento
19.
Biol Lett ; 14(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925562

RESUMO

Mistletoes are a widespread group of plants often considered to be hemiparasitic, having detrimental effects on growth and survival of their hosts. We studied the effects of the Pacific mistletoe, Phoradendron villosum, a member of a largely autotrophic genus, on three species of deciduous California oaks. We found no effects of mistletoe presence on radial growth or survivorship and detected a significant positive relationship between mistletoe and acorn production. This latter result is potentially explained by the tendency of P. villosum to be present on larger trees growing in nitrogen-rich soils or, alternatively, by a preference for healthy, acorn-producing trees by birds that potentially disperse mistletoe. Our results indicate that the negative consequences of Phoradendron presence on their hosts are negligible-this species resembles an epiphyte more than a parasite-and outweighed by the important ecosystem services mistletoe provides.


Assuntos
Phoradendron/fisiologia , Quercus/fisiologia , California , Ecossistema , Quercus/crescimento & desenvolvimento , Dispersão de Sementes
20.
Microb Ecol ; 76(4): 1030-1040, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29582105

RESUMO

Litter decomposition is the main source of mineral nitrogen (N) in terrestrial ecosystem and a key step in carbon (C) cycle. Microbial community is the main decomposer, and its specialization on specific litter is considered at the basis of higher decomposition rate in its natural environment than in other forests. However, there are contrasting evidences on how the microbial community responds to a new litter input and if the mass loss is higher in natural environment. We selected leaf litter from three different plant species across three sites of different altitudinal ranges: oak (Quercus petraea (Matt.) Liebl., 530 m a.s.l), beech (Fagus sylvatica L., 1000 m a.s.l.), rhododendron (Rhododendron ferrugineum L., 1530 m a.s.l.). A complete transplantation experiment was set up within the native site and the other two altitudinal sites. Microbial community structure was analyzed via amplified ribosomal intergenic spacer analysis (ARISA) fingerprinting. Functionality was investigated by potential enzyme activities. Chemical composition of litter was recorded. Mass loss showed no faster decomposition rate on native site. Similarly, no influence of site was found on microbial structure, while there was a strong temporal variation. Potential enzymatic activities were not affected by the same temporal pattern with a general increase of activities during autumn. Our results suggested that no specialization in microbial community is present due to the lack of influence of the site in structure and in the mass loss dynamics. Finally, different temporal patterns in microbial community and potential enzymatic activities suggest the presence of functional redundancy within decomposers.


Assuntos
Bactérias/metabolismo , Carbono/análise , Florestas , Microbiota , Nitrogênio/análise , Folhas de Planta/química , Microbiologia do Solo , Fagus/crescimento & desenvolvimento , Itália , Quercus/crescimento & desenvolvimento , Rhododendron/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA