Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 48(5): 1014-1028.e6, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752062

RESUMO

Stromal cells (SCs) establish the compartmentalization of lymphoid tissues critical to the immune response. However, the full diversity of lymph node (LN) SCs remains undefined. Using droplet-based single-cell RNA sequencing, we identified nine peripheral LN non-endothelial SC clusters. Included are the established subsets, Ccl19hi T-zone reticular cells (TRCs), marginal reticular cells, follicular dendritic cells (FDCs), and perivascular cells. We also identified Ccl19lo TRCs, likely including cholesterol-25-hydroxylase+ cells located at the T-zone perimeter, Cxcl9+ TRCs in the T-zone and interfollicular region, CD34+ SCs in the capsule and medullary vessel adventitia, indolethylamine N-methyltransferase+ SCs in the medullary cords, and Nr4a1+ SCs in several niches. These data help define how transcriptionally distinct LN SCs support niche-restricted immune functions and provide evidence that many SCs are in an activated state.


Assuntos
Linfonodos/imunologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Células Estromais/imunologia , Transcriptoma/imunologia , Animais , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CCL19/metabolismo , Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Feminino , Linfonodos/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos Endogâmicos C57BL , Células Estromais/metabolismo
2.
Immunol Rev ; 292(1): 9-23, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31538349

RESUMO

Lymph nodes (LNs) are at the cross roads of immunity and tolerance. These tissues are compartmentalized into specialized niche areas by lymph node stromal cells (LN SCs). LN SCs shape the LN microenvironment and guide immunological cells into different zones through establishment of a CCL19 and CCL21 gradient. Following local immunological cues, LN SCs modulate activity to support immune cell priming, activation, and fate. This review will present our current understanding of LN SC subsets roles in regulating T cell tolerance. Three major types of LN SC subsets, namely fibroblastic reticular cells, lymphatic endothelial cells, and blood endothelial cells, are discussed. These subsets serve as scaffolds to support and regulate T cell homeostasis. They contribute to tolerance by presenting peripheral tissue antigens to both CD4 and CD8 T cells. The role of LN SCs in regulating T cell migration and tolerance induction is discussed. Looking forward, recent advances in bioengineered materials and approaches to leverage LN SCs to induce T cell tolerance are highlighted, as are current clinical practices that allow for manipulation of the LN microenvironment to induce tolerance. Increased understanding of LN architecture, how different LN SCs integrate immunological cues and shape immune responses, and approaches to induce T cell tolerance will help further combat autoimmune diseases and graft rejection.


Assuntos
Microambiente Celular/imunologia , Tolerância Imunológica/imunologia , Linfonodos/imunologia , Células Estromais/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa/imunologia , Animais , Quimiocina CCL19/imunologia , Quimiocina CCL19/metabolismo , Quimiocina CCL21/imunologia , Quimiocina CCL21/metabolismo , Humanos , Linfonodos/metabolismo , Células Estromais/metabolismo , Linfócitos T/metabolismo
3.
Cancer Immunol Immunother ; 69(4): 569-580, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31980915

RESUMO

BACKGROUND: The chemokine MIP-3α (CCL20) binds to CCR6 on immature dendritic cells. DNA vaccines fusing MIP-3α to melanoma-associated antigens have shown improved efficacy and immunogenicity in the B16F10 mouse melanoma model. Here, we report that the combination of type-I interferon therapy (IFNα) with 5-Aza-2'-deoxycitidine (5Aza) profoundly enhanced the therapeutic efficacy of a MIP-3α-Gp100-Trp2 DNA vaccine. METHODS: Beginning on day 5 post-transplantation of B16F10 melanoma, vaccine was administered intramuscularly (i.m.) by electroporation. CpG adjuvant was given 2 days later. 5Aza was given intraperitoneally at 1 mg/kg and IFNα therapy either intratumorally or i.m. as noted. Tumor sizes, tumor growth, and mouse survival were assessed. Tumor lysate gene expression levels and tumor-infiltrating lymphocytes (TILs) were assessed by qRT-PCR and flow cytometry, respectively. RESULTS: Adding IFNα and 5Aza treatments to mice vaccinated with MIP-3α-Gp100-Trp2 leads to reduced tumor burden and increased median survival (39% over vaccine and 95% over controls). Tumor lysate expression of CCL19 and CCR7 were upregulated ten and fivefold over vaccine, respectively. Vaccine-specific and overall CD8+ TILs were increased over vaccine (sevenfold and fourfold, respectively), as well as the proportion of TILs that were CD8+ (twofold). CONCLUSIONS: Efficient targeting of antigen to immature dendritic cells with a chemokine-fusion vaccine offers an alternative to classic and dendritic cell vaccines. Combining this approach with IFNα and 5Aza treatment significantly improved vaccine efficacy. This improved efficacy correlated with changes in chemokine gene expression and CD8+ TIL infiltration and was dependent on the presence of all therapeutic components.


Assuntos
Vacinas Anticâncer/imunologia , Decitabina/imunologia , Células Dendríticas/imunologia , Interferon-alfa/imunologia , Melanoma Experimental/imunologia , Animais , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Metilação de DNA/efeitos dos fármacos , Decitabina/administração & dosagem , Células Dendríticas/citologia , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Imunoterapia/métodos , Interferon-alfa/administração & dosagem , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL , Receptores CCR7/genética , Receptores CCR7/imunologia
4.
Cancer Immunol Immunother ; 69(5): 813-824, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32055920

RESUMO

Despite significant therapeutic improvements chronic lymphocytic leukemia (CLL) remains an incurable disease and there is a persistent pursuit of new treatment alternatives. Lurbinectedin, a selective inhibitor of active transcription of protein-coding genes, is currently in phase II/III clinical trials for solid tumors such as small-cell lung cancer (SCLC). In this study, we aimed to evaluate the activity of Lurbinectedin on circulating mononuclear cells from CLL patients and to determine whether Lurbinectedin could affect the cross-talk between B-CLL cells and the tumor microenvironment. We found that Lurbinectedin induced a dose- and time-dependent death in all cell types evaluated, with B cells, monocytes and monocytic myeloid derived suppressor cells (Mo-MDSC) being the most susceptible populations. At sub-apoptotic doses, Lurbinectedin decreased the expression of CCR7 in B-CLL cells and impaired their migration towards CCL19 and CCL21. Furthermore, low concentrations of Lurbinectedin stimulated the synthesis of pro-IL1ß in monocytes and nurse-like cells, without inducing the inflammasome activation. Altogether, these results indicate that Lurbinectedin might have antitumor activity in CLL due to its direct action on leukemic cells in combination with its effects on the tumor microenvironment. Our findings encourage further investigation of Lurbinectedin as a potential therapy for CLL.


Assuntos
Carbolinas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Quimiocina CCL19/imunologia , Quimiocina CCL19/metabolismo , Quimiocina CCL21/imunologia , Quimiocina CCL21/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Cultura Primária de Células , Receptores CCR7/imunologia , Receptores CCR7/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia
5.
Immunity ; 32(5): 703-13, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20471289

RESUMO

Chemokines orchestrate immune cell trafficking by eliciting either directed or random migration and by activating integrins in order to induce cell adhesion. Analyzing dendritic cell (DC) migration, we showed that these distinct cellular responses depended on the mode of chemokine presentation within tissues. The surface-immobilized form of the chemokine CCL21, the heparan sulfate-anchoring ligand of the CC-chemokine receptor 7 (CCR7), caused random movement of DCs that was confined to the chemokine-presenting surface because it triggered integrin-mediated adhesion. Upon direct contact with CCL21, DCs truncated the anchoring residues of CCL21, thereby releasing it from the solid phase. Soluble CCL21 functionally resembles the second CCR7 ligand, CCL19, which lacks anchoring residues and forms soluble gradients. Both soluble CCR7 ligands triggered chemotactic movement, but not surface adhesion. Adhesive random migration and directional steering cooperate to produce dynamic but spatially restricted locomotion patterns closely resembling the cellular dynamics observed in secondary lymphoid organs.


Assuntos
Movimento Celular/imunologia , Quimiocinas/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Animais , Células Cultivadas , Células Imobilizadas , Quimiocina CCL19/imunologia , Quimiocina CCL21/genética , Quimiocina CCL21/imunologia , Fluorimunoensaio , Integrinas/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR7/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Reticulina/química , Solubilidade , Propriedades de Superfície
6.
PLoS Biol ; 14(7): e1002515, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27415420

RESUMO

Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses.


Assuntos
Comunicação Celular/imunologia , Movimento Celular/imunologia , Fibroblastos/imunologia , Linfonodos/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Contagem de Células , Movimento Celular/genética , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CCL19/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Linfonodos/citologia , Linfonodos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Modelos Imunológicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
7.
J Immunol ; 199(7): 2291-2304, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28807994

RESUMO

The chemokine receptor CCR7 drives leukocyte migration into and within lymph nodes (LNs). It is activated by chemokines CCL19 and CCL21, which are scavenged by the atypical chemokine receptor ACKR4. CCR7-dependent navigation is determined by the distribution of extracellular CCL19 and CCL21, which form concentration gradients at specific microanatomical locations. The mechanisms underpinning the establishment and regulation of these gradients are poorly understood. In this article, we have incorporated multiple biochemical processes describing the CCL19-CCL21-CCR7-ACKR4 network into our model of LN fluid flow to establish a computational model to investigate intranodal chemokine gradients. Importantly, the model recapitulates CCL21 gradients observed experimentally in B cell follicles and interfollicular regions, building confidence in its ability to accurately predict intranodal chemokine distribution. Parameter variation analysis indicates that the directionality of these gradients is robust, but their magnitude is sensitive to these key parameters: chemokine production, diffusivity, matrix binding site availability, and CCR7 abundance. The model indicates that lymph flow shapes intranodal CCL21 gradients, and that CCL19 is functionally important at the boundary between B cell follicles and the T cell area. It also predicts that ACKR4 in LNs prevents CCL19/CCL21 accumulation in efferent lymph, but does not control intranodal gradients. Instead, it attributes the disrupted interfollicular CCL21 gradients observed in Ackr4-deficient LNs to ACKR4 loss upstream. Our novel approach has therefore generated new testable hypotheses and alternative interpretations of experimental data. Moreover, it acts as a framework to investigate gradients at other locations, including those that cannot be visualized experimentally or involve other chemokines.


Assuntos
Movimento Celular , Quimiocina CCL19/metabolismo , Simulação por Computador , Linfonodos/fisiologia , Receptores CCR/metabolismo , Animais , Linfócitos B/imunologia , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Células Dendríticas/imunologia , Humanos , Linfonodos/imunologia , Camundongos , Receptores CCR/deficiência , Receptores CCR/genética , Receptores CCR/imunologia , Receptores CCR7/imunologia , Linfócitos T/imunologia
8.
J Allergy Clin Immunol ; 142(4): 1257-1271.e4, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29391257

RESUMO

BACKGROUND: A particular characteristic of non-small cell lung cancer is the composition of the tumor microenvironment with a very high proportion of fibroblastic stromal cells (FSCs). OBJECTIVE: Lapses in our basic knowledge of fibroblast phenotype and function in the tumor microenvironment make it difficult to define whether FSC subsets exist that exhibit either tumor-promoting or tumor-suppressive properties. METHODS: We used gene expression profiling of lung versus tumor FSCs from patients with non-small cell lung cancer. Moreover, CCL19-expressing FSCs were studied in transgenic mouse models by using a lung cancer metastasis model. RESULTS: CCL19 mRNA expression in human tumor FSCs correlates with immune cell infiltration and intratumoral accumulation of CD8+ T cells. Mechanistic dissection in murine lung carcinoma models revealed that CCL19-expressing FSCs form perivascular niches to promote accumulation of CD8+ T cells in the tumor. Targeted ablation of CCL19-expressing tumor FSCs reduced immune cell recruitment and resulted in unleashed tumor growth. CONCLUSION: These data suggest that a distinct population of CCL19-producing FSCs fosters the development of an immune-stimulating intratumoral niche for immune cells to control cancer growth.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Quimiocina CCL19/imunologia , Fibroblastos/imunologia , Neoplasias Pulmonares/imunologia , Células Estromais/imunologia , Animais , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Quimiocina CCL19/genética , Humanos , Neoplasias Pulmonares/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/transplante , Transcriptoma , Microambiente Tumoral/imunologia
9.
Fish Shellfish Immunol ; 72: 301-308, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29128493

RESUMO

The CC motif chemokine 19 (CCL19) functions in acute inflammation by recruiting lymphocytes and other cells. However, CCL19 has only been investigated in few fish species. In this study, we characterized a CCL19-like molecule (PaCCL19l) in ayu (Plecoglossus altivelis), a teleost fish. Sequence analysis revealed that PaCCL19l was most closely related to Atlantic salmon (Salmon salar) CCL19l1, which belonged to the fish CCL19a.1 subcluster. PaCCL19l was constitutively expressed in the tested ayu tissues and peripheral blood mononuclear cells (PBMCs), with the highest transcript level in PBMCs. Upon infection with Vibrio anguillarum, the expressions of PaCCL19l in the head kidney, liver, spleen, PBMCs, and monocytes/macrophages (MO/MΦ) were dramatically up-regulated. Recombinant PaCCL19l (rPaCCL19l) exhibited a significant effect on the chemotaxis of lymphocytes and MO/MΦ in vitro and in vivo. Meanwhile, rPaCCL19l exerted a high chemotaxic activity for lipopolysaccharide (LPS)-stimulated MO/MΦ (M1-type), but not for cyclic adenosine monophosphate (cAMP)-stimulated MO/MΦ (M2-type). When ayu MO/MΦ was treated with rPaCCL19l along with Vibrio anguillarum infection, the mRNA expression of proinflammatory cytokines (IL-1ß, TNFα, IL-6, IL-12b, and IFN-γ) was up-regulated, while that of anti-inflammatory cytokines (IL-10, TGFß, and IL-22) was down-regulated. Ayu MO/MΦ treated with anti-PaCCL19l IgG gave the opposite result. These results implicated that PaCCL19l is involved in the selective chemotaxis of ayu immune cells and promotes the host at a pro-inflammatory state.


Assuntos
Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Osmeriformes/genética , Osmeriformes/imunologia , Sequência de Aminoácidos , Animais , Quimiocina CCL19/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Leucócitos/metabolismo , Filogenia , Alinhamento de Sequência/veterinária , Vibrio/fisiologia , Vibrioses/imunologia
10.
J Immunol ; 197(11): 4453-4463, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798156

RESUMO

Mucosal surfaces require balancing different physiological roles and immune functions. To effectively achieve multifunctionality, mucosal epithelia have evolved unique microenvironments that create unique regional immune responses without impairing other normal physiological functions. Whereas examples of regional immunity are known in other mucosal epithelia, to date, no immune microenvironments have been described in the nasal mucosa, a site where the complex functions of olfaction and immunity need to be orchestrated. In this study we identified the presence of CD8α+ cells in the rainbow trout (Oncorhynchus mykiss) nasal epithelium. Nasal CD8α+ cells display a distinct phenotype suggestive of CD8+ T cells with high integrin ß2 expression. Importantly, nasal CD8α+ cells are located in clusters at the mucosal tip of each olfactory lamella but scattered in the neuroepithelial region. The grouping of CD8α+ cells may be explained by the greater expression of CCL19, ICAM-1, and VCAM-1 in the mucosal tip compared with the neuroepithelium. Whereas viral Ag uptake occurred via both tip and lateral routes, tip-resident MHC class II+ cells are located significantly closer to the lumen of the nasal cavity than are their neuroepithelial counterparts, therefore having quicker access to invading pathogens. Our studies reveal compartmentalized mucosal immune responses within the nasal mucosa of a vertebrate species, a strategy that likely optimizes local immune responses while protecting olfactory sensory functions.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Microambiente Celular/imunologia , Imunidade Celular , Imunidade nas Mucosas , Mucosa Nasal/imunologia , Oncorhynchus mykiss/imunologia , Animais , Antígenos CD8/imunologia , Quimiocina CCL19/imunologia , Proteínas de Peixes/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão de Célula Vascular/imunologia
11.
J Immunol ; 197(11): 4312-4324, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815426

RESUMO

Dendritic cells (DCs) play a pivotal role in the regulation of the immune response. DC development and activation is finely orchestrated through transcriptional programs. GATA1 transcription factor is required for murine DC development, and data suggest that it might be involved in the fine-tuning of the life span and function of activated DCs. We generated DC-specific Gata1 knockout mice (Gata1-KODC), which presented a 20% reduction of splenic DCs, partially explained by enhanced apoptosis. RNA sequencing analysis revealed a number of deregulated genes involved in cell survival, migration, and function. DC migration toward peripheral lymph nodes was impaired in Gata1-KODC mice. Migration assays performed in vitro showed that this defect was selective for CCL21, but not CCL19. Interestingly, we show that Gata1-KODC DCs have reduced polysialic acid levels on their surface, which is a known determinant for the proper migration of DCs toward CCL21.


Assuntos
Movimento Celular/imunologia , Quimiocina CCL21/imunologia , Células Dendríticas/imunologia , Fator de Transcrição GATA1/imunologia , Linfonodos/imunologia , Ácidos Siálicos/imunologia , Animais , Movimento Celular/genética , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CCL21/genética , Células Dendríticas/citologia , Fator de Transcrição GATA1/deficiência , Linfonodos/citologia , Camundongos , Camundongos Knockout , Ácidos Siálicos/genética
12.
Brain ; 140(4): 967-980, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334918

RESUMO

One major challenge in multiple sclerosis is to understand the cellular and molecular mechanisms leading to disease severity progression. The recently demonstrated correlation between disease severity and remyelination emphasizes the importance of identifying factors leading to a favourable outcome. Why remyelination fails or succeeds in multiple sclerosis patients remains largely unknown, mainly because remyelination has never been studied within a humanized pathological context that would recapitulate major events in plaque formation such as infiltration of inflammatory cells. Therefore, we developed a new paradigm by grafting healthy donor or multiple sclerosis patient lymphocytes in the demyelinated lesion of nude mice spinal cord. We show that lymphocytes play a major role in remyelination whose efficacy is significantly decreased in mice grafted with multiple sclerosis lymphocytes compared to those grafted with healthy donors lymphocytes. Mechanistically, we demonstrated in vitro that lymphocyte-derived mediators influenced differentiation of oligodendrocyte precursor cells through a crosstalk with microglial cells. Among mice grafted with lymphocytes from different patients, we observed diverse remyelination patterns reproducing for the first time the heterogeneity observed in multiple sclerosis patients. Comparing lymphocyte secretory profile from patients exhibiting high and low remyelination ability, we identified novel molecules involved in oligodendrocyte precursor cell differentiation and validated CCL19 as a target to improve remyelination. Specifically, exogenous CCL19 abolished oligodendrocyte precursor cell differentiation observed in patients with high remyelination pattern. Multiple sclerosis lymphocytes exhibit intrinsic capacities to coordinate myelin repair and further investigation on patients with high remyelination capacities will provide new pro-regenerative strategies.


Assuntos
Imunidade Adaptativa/fisiologia , Doenças Desmielinizantes/imunologia , Bainha de Mielina/imunologia , Adolescente , Adulto , Idoso , Animais , Transplante de Células , Quimiocina CCL19/imunologia , Feminino , Humanos , Linfócitos/imunologia , Lisofosfatidilcolinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Células-Tronco Neurais/imunologia , Oligodendroglia/imunologia , Oligodendroglia/patologia , Adulto Jovem
13.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28808159

RESUMO

The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209+ MZ macrophages (MZMs) and the CD169+ marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.


Assuntos
Brucelose/imunologia , Interações Hospedeiro-Patógeno , Interferon gama/imunologia , Macrófagos/imunologia , Receptores de Interferon/imunologia , Baço/imunologia , Animais , Antibacterianos/farmacologia , Linfócitos B/imunologia , Linfócitos B/microbiologia , Brucella abortus/efeitos dos fármacos , Brucella abortus/imunologia , Brucella abortus/patogenicidade , Brucella melitensis/efeitos dos fármacos , Brucella melitensis/imunologia , Brucella melitensis/patogenicidade , Brucella suis/efeitos dos fármacos , Brucella suis/imunologia , Brucella suis/patogenicidade , Brucelose/tratamento farmacológico , Brucelose/genética , Brucelose/microbiologia , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CCL21/genética , Quimiocina CCL21/imunologia , Quimiocina CXCL13/genética , Quimiocina CXCL13/imunologia , Doença Crônica , Regulação da Expressão Gênica , Interferon gama/genética , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Rifampina/farmacologia , Transdução de Sinais , Baço/microbiologia , Estreptomicina/farmacologia , Linfócitos T/imunologia , Linfócitos T/microbiologia , Receptor de Interferon gama
14.
J Immunol ; 195(10): 4781-91, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453751

RESUMO

The germinal center (GC) is divided into a dark zone (DZ) and a light zone (LZ). GC B cells must cycle between these zones to achieve efficient Ab affinity maturation. Follicular dendritic cells (FDCs) are well characterized for their role in supporting B cell Ag encounter in primary follicles and in the GC LZ. However, the properties of stromal cells supporting B cells in the DZ are relatively unexplored. Recent work identified a novel stromal population of Cxcl12-expressing reticular cells (CRCs) in murine GC DZs. In this article, we report that CRCs have diverse morphologies, appearing in open and closed networks, with variable distribution in lymphoid tissue GCs. CRCs are also present in splenic and peripheral lymph node primary follicles. Real-time two-photon microscopy of Peyer's patch GCs demonstrates B cells moving in close association with CRC processes. CRCs are gp38(+) with low to undetectable expression of FDC markers, but CRC-like cells in the DZ are lineage marked, along with FDCs and fibroblastic reticular cells, by CD21-Cre- and Ccl19-Cre-directed fluorescent reporters. In contrast to FDCs, CRCs do not demonstrate dependence on lymphotoxin or TNF for chemokine expression or network morphology. CRC distribution in the DZ does require CXCR4 signaling, which is necessary for GC B cells to access the DZ and likely to interact with CRC processes. Our findings establish CRCs as a major stromal cell type in the GC DZ and suggest that CRCs support critical activities of GC B cells in the DZ niche through Cxcl12 expression and direct cell-cell interactions.


Assuntos
Linfócitos B , Quimiocina CXCL12 , Regulação da Expressão Gênica/imunologia , Centro Germinativo , Linfonodos , Baço , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Comunicação Celular/genética , Comunicação Celular/imunologia , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/imunologia , Baço/citologia , Baço/imunologia
15.
J Immunol ; 195(1): 71-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26034175

RESUMO

In addition to the secretion of Ag-specific Abs, B cells may play an important role in the generation of immune responses by efficiently presenting Ag to T cells. We and other investigators recently described a subpopulation of CD11c(+) B cells (Age/autoimmune-associated B cells [ABCs]) that appear with age, during virus infections, and at the onset of some autoimmune diseases and participate in autoimmune responses by secreting autoantibodies. In this study, we assessed the ability of these cells to present Ag and activate Ag-specific T cells. We demonstrated that ABCs present Ag to T cells, in vitro and in vivo, better than do follicular B cells (FO cells). Our data indicate that ABCs express higher levels of the chemokine receptor CCR7, have higher responsiveness to CCL21 and CCL19 than do FO cells, and are localized at the T/B cell border in spleen. Using multiphoton microscopy, we show that, in vivo, CD11c(+) B cells form significantly more stable interactions with T cells than do FO cells. Together, these data identify a previously undescribed role for ABCs as potent APCs and suggest another potential mechanism by which these cells can influence immune responses and/or the development of autoimmunity.


Assuntos
Envelhecimento/imunologia , Células Apresentadoras de Antígenos/imunologia , Autoimunidade , Linfócitos B/imunologia , Antígeno CD11c/imunologia , Baço/imunologia , Envelhecimento/genética , Animais , Células Apresentadoras de Antígenos/citologia , Autoanticorpos/biossíntese , Linfócitos B/citologia , Antígeno CD11c/genética , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CCL21/genética , Quimiocina CCL21/imunologia , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR7/genética , Receptores CCR7/imunologia , Transdução de Sinais , Baço/citologia , Linfócitos T/citologia , Linfócitos T/imunologia
16.
J Immunol ; 195(1): 329-38, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25994965

RESUMO

There is a lack of an HSV-2 vaccine, in part as the result of various factors that limit robust and long-term memory immune responses at the mucosal portals of viral entry. We previously demonstrated that chemokine CCL19 augmented mucosal and systemic immune responses to HIV-1 envelope glycoprotein. Whether such enhanced immunity can protect animals against virus infection remains to be addressed. We hypothesized that using CCL19 in a fusion form to direct an immunogen to responsive immunocytes might have an advantage over CCL19 being used in combination with an immunogen. We designed two fusion constructs, plasmid (p)gBIZCCL19 and pCCL19IZgB, by fusing CCL19 to the C- or N-terminal end of the extracellular HSV-2 glycoprotein B (gB) with a linker containing two (Gly4Ser)2 repeats and a GCN4-based isoleucine zipper motif for self-oligomerization. Following immunization in mice, pgBIZCCL19 and pCCL19IZgB induced strong gB-specific IgG and IgA in sera and vaginal fluids. The enhanced systemic and mucosal Abs showed increased neutralizing activity against HSV-2 in vitro. Measurement of gB-specific cytokines demonstrated that gB-CCL19 fusion constructs induced balanced Th1 and Th2 cellular immune responses. Moreover, mice vaccinated with fusion constructs were well protected from intravaginal lethal challenge with HSV-2. Compared with pgB and pCCL19 coimmunization, fusion constructs increased mucosal surface IgA(+) cells, as well as CCL19-responsive immunocytes in spleen and mesenteric lymph nodes. Our findings indicate that enhanced humoral and cellular immune responses can be achieved by immunization with an immunogen fused to a chemokine, providing information for the design of vaccines against mucosal infection by HSV-2 and other sexually transmitted viruses.


Assuntos
Quimiocina CCL19/imunologia , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Motivos de Aminoácidos , Animais , Quimiocina CCL19/administração & dosagem , Quimiocina CCL19/genética , Feminino , Herpes Genital/imunologia , Herpes Genital/mortalidade , Herpes Genital/patologia , Herpesvirus Humano 2/química , Imunidade Celular/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Imunização , Imunoglobulina A/biossíntese , Imunoglobulina G/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Plasmídeos/administração & dosagem , Plasmídeos/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Análise de Sobrevida , Equilíbrio Th1-Th2 , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vagina/imunologia , Vagina/patologia , Vagina/virologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
17.
J Autoimmun ; 66: 89-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537567

RESUMO

There remain significant obstacles in developing biologics to treat primary biliary cholangitis (PBC). Although a number of agents have been studied both in murine models and human patients, the results have been relatively disappointing. IL-22 is a member of the IL-10 family and has multiple theoretical reasons for predicting successful usage in PBC. We have taken advantage of an IL-22 expressing adeno-associated virus (AAV-IL-22) to address the potential role of IL-22 in not only protecting mice from autoimmune cholangitis, but also in treating animals with established portal inflammation. Using our established mouse model of 2-OA-OVA immunization, including α-galactosylceramide (α-GalCer) stimulation, we treated mice both before and after the onset of clinical disease with AAV-IL-22. Firstly, AAV-IL-22 treatment given prior to 2-OA-OVA and α-GalCer exposure, i.e. before the onset of disease, significantly reduces the portal inflammatory response, production of Th1 cytokines and appearance of liver fibrosis. It also reduced the liver lymphotropic chemokines CCL5, CCL19, CXCL9, and CXCL10. Secondly, and more importantly, therapeutic use of AAV-IL-22, administered after the onset of disease, achieved a greater hurdle and significantly improved portal pathology. Further the improvements in inflammation were negatively correlated with levels of CCL5 and CXCL10 and positively correlated with levels of IL-22. In conclusion, we submit that the clinical use of IL-22 has a potential role in modulating the inflammatory portal process in patients with PBC.


Assuntos
Doenças Autoimunes/terapia , Terapia Biológica/métodos , Colangite/terapia , Interleucinas/imunologia , Fígado/imunologia , Sistema Porta/imunologia , Animais , Quimiocina CCL19/imunologia , Quimiocina CCL19/metabolismo , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/imunologia , Quimiocina CXCL9/metabolismo , Dependovirus , Modelos Animais de Doenças , Feminino , Galactosilceramidas/imunologia , Galactosilceramidas/farmacologia , Vetores Genéticos , Interleucinas/genética , Fígado/irrigação sanguínea , Cirrose Hepática Biliar/imunologia , Cirrose Hepática Biliar/terapia , Camundongos , Camundongos Endogâmicos C57BL , Sistema Porta/patologia , Interleucina 22
18.
J Immunol ; 192(12): 6120-6130, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24850722

RESUMO

Cell therapy regimens are frequently compromised by low-efficiency cell homing to therapeutic niches. Improvements in this regard would enhance effectiveness of clinically applicable cell therapy. The major regulators of tissue-specific cellular migration are chemokines, and therefore selection of therapeutic cellular populations for appropriate chemokine receptor expression would enhance tissue-homing competence. A number of practical considerations preclude the use of Abs in this context, and alternative approaches are required. In this study, we demonstrate that appropriately labeled chemokines are at least as effective in detecting their cognate receptors as commercially available Abs. We also demonstrate the utility of biotinylated chemokines as cell-sorting reagents. Specifically, we demonstrate, in the context of CCR7 (essential for lymph node homing of leukocytes), the ability of biotinylated CCL19 with magnetic bead sorting to enrich for CCR7-expressing cells. The sorted cells demonstrate improved CCR7 responsiveness and lymph node-homing capability, and the sorting is effective for both T cells and dendritic cells. Importantly, the ability of chemokines to detect CCR7, and sort for CCR7 positivity, crosses species being effective on murine and human cells. This novel approach to cell sorting is therefore inexpensive, versatile, and applicable to numerous cell therapy contexts. We propose that this represents a significant technological advance with important therapeutic implications.


Assuntos
Quimiocina CCL19/química , Citometria de Fluxo/métodos , Receptores CCR7/química , Animais , Quimiocina CCL19/imunologia , Feminino , Humanos , Masculino , Camundongos , Receptores CCR7/imunologia
19.
Acta Pharmacol Sin ; 37(9): 1229-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27546005

RESUMO

AIM: CCL19 and its receptor CCR7 are essential molecules for facilitating the trafficking of mature dendritic cells (DCs) and helping to establish a microenvironment in lymphoid tissues to initiate primary immune responses, whereas CCL17 is required in the CCR7-CCL19-dependent migration of DCs. In this study we examined whether co-administration of CCL17 and CCL19 could enhance the immunogenicity of an anti-caries DNA vaccine, pCIA-P, in rodents. METHODS: Plasmids encoding CCL17 (pCCL17/VAX) and CCL19 (pCCL19/VAX) were constructed. BALB/c mice were intranasally administered pCCL17/VAX, pCCL19/VAX, or pCCL17/VAX plus pCCL19/VAX, the migration of DCs to the spleen and draining lymph nodes (DLNs) was assessed with flow cytometry. The mice were co-administered pCIA-P; and the anti-PAc antibodies in the serum and saliva were detected with ELISA. Wistar rats were orally challenged with Streptococcus mutans and then administered pCIA-P in combination with pCCL17/VAX, pCCL19/VAX, or pCCL17/VAX plus pCCL19/VAX. The amount of S mutans sustained on rat molar surfaces was assessed using a colony forming assay. Caries activity was scored with the Keyes method. RESULTS: Co-administration of the CCL17 and CCL19 genes in mice caused a greater increase in the number of mature DCs in the spleen and DLNs compared with administration of CCL17 or CCL19 genes alone. CCL17 and CCL19 double-adjuvant plus pCIA-P induced significantly higher levels of anti-PAc salivary IgA and anti-PAc serum IgG antibody in mice, and strengthened the ability of pCIA-P in inhibiting the colonization of S mutans on rat tooth surfaces. The caries activity of the combined adjuvant group was significantly lower than that of the pCCL17/VAX or the pCCL19/VAX group. CONCLUSION: A nasal adjuvant consisting of a combination of CCL17 and CCL19 attracts more mature DCs to secondary lymphoid tissues, inducing enhanced antibody responses against the anti-caries DNA vaccine pCIA-P and reducing S mutans infection in rodents.


Assuntos
Quimiocina CCL17/imunologia , Quimiocina CCL19/imunologia , Cárie Dentária/prevenção & controle , Vacinas de DNA/imunologia , Adjuvantes Imunológicos , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Quimiocina CCL17/genética , Quimiocina CCL19/genética , Citocinas/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Cárie Dentária/imunologia , Cárie Dentária/microbiologia , Linfonodos/imunologia , Camundongos Endogâmicos BALB C , Ratos Wistar , Baço/imunologia , Streptococcus mutans/imunologia , Vacinas de DNA/administração & dosagem
20.
PLoS Pathog ; 8(12): e1003051, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236276

RESUMO

During acute infection in human and animal hosts, the obligate intracellular protozoan Toxoplasma gondii infects a variety of cell types, including leukocytes. Poised to respond to invading pathogens, dendritic cells (DC) may also be exploited by T. gondii for spread in the infected host. Here, we report that human and mouse myeloid DC possess functional γ-aminobutyric acid (GABA) receptors and the machinery for GABA biosynthesis and secretion. Shortly after T. gondii infection (genotypes I, II and III), DC responded with enhanced GABA secretion in vitro. We demonstrate that GABA activates GABA(A) receptor-mediated currents in T. gondii-infected DC, which exhibit a hypermigratory phenotype. Inhibition of GABA synthesis, transportation or GABA(A) receptor blockade in T. gondii-infected DC resulted in impaired transmigration capacity, motility and chemotactic response to CCL19 in vitro. Moreover, exogenous GABA or supernatant from infected DC restored the migration of infected DC in vitro. In a mouse model of toxoplasmosis, adoptive transfer of infected DC pre-treated with GABAergic inhibitors reduced parasite dissemination and parasite loads in target organs, e.g. the central nervous system. Altogether, we provide evidence that GABAergic signaling modulates the migratory properties of DC and that T. gondii likely makes use of this pathway for dissemination. The findings unveil that GABA, the principal inhibitory neurotransmitter in the brain, has activation functions in the immune system that may be hijacked by intracellular pathogens.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Transdução de Sinais/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Ácido gama-Aminobutírico/imunologia , Animais , Células Cultivadas , Quimiocina CCL19/imunologia , Células Dendríticas/parasitologia , Humanos , Camundongos , Receptores de GABA-A/imunologia , Toxoplasmose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA