Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(27): 13311-13319, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209047

RESUMO

Cellular senescence defines an irreversible cell growth arrest state linked to loss of tissue function and aging in mammals. This transition from proliferation to senescence is typically characterized by increased expression of the cell-cycle inhibitor p16INK4a and formation of senescence-associated heterochromatin foci (SAHF). SAHF formation depends on HIRA-mediated nucleosome assembly of histone H3.3, which is regulated by the serine/threonine protein kinase Pak2. However, it is unknown if Pak2 contributes to cellular senescence. Here, we show that depletion of Pak2 delayed oncogene-induced senescence in IMR90 human fibroblasts and oxidative stress-induced senescence of mouse embryonic fibroblasts (MEFs), whereas overexpression of Pak2 accelerated senescence of IMR90 cells. Importantly, depletion of Pak2 in BubR1 progeroid mice attenuated the onset of aging-associated phenotypes and extended life span. Pak2 is required for expression of genes involved in cellular senescence and regulated the deposition of newly synthesized H3.3 onto chromatin in senescent cells. Together, our results demonstrate that Pak2 is an important regulator of cellular senescence and organismal aging, in part through the regulation of gene expression and H3.3 nucleosome assembly.


Assuntos
Envelhecimento , Senescência Celular , Quinases Ativadas por p21/fisiologia , Envelhecimento/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Histonas/metabolismo , Longevidade , Camundongos Knockout , Estresse Oxidativo , Reação em Cadeia da Polimerase em Tempo Real , Quinases Ativadas por p21/metabolismo
2.
Mol Cell ; 49(4): 668-79, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23317503

RESUMO

The HIV Nef protein recruits the polycomb protein Eed and mimics an integrin receptor signal for reasons that are not entirely clear. Here we demonstrate that Nef and Eed complex with the integrin effector paxillin to recruit and activate TNFα converting enzyme (TACE alias ADAM 17) and its close relative ADAM10. The activated proteases cleaved proTNFα and were shuttled into extracellular vesicles (EVs). Peripheral blood mononuclear cells that ingested these EVs released TNFα. Analyzing the mechanism, we found that Pak2, an established host cell effector of Nef, phosphorylated paxillin on Ser272/274 to induce TACE-paxillin association and shuttling into EVs via lipid rafts. Conversely, Pak1 phosphorylated paxillin on Ser258, which inhibited TACE association and lipid raft transfer. Interestingly, melanoma cells used an identical mechanism to shuttle predominantly ADAM10 into EVs. We conclude that HIV-1 and cancer cells exploit a paxillin/integrin-controlled mechanism to release TACE/ADAM10-containing vesicles, ensuring better proliferation/growth conditions in their microenvironment.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Paxilina/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia , Quinases Ativadas por p21/fisiologia , Proteínas ADAM/sangue , Proteína ADAM10 , Proteína ADAM17 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/sangue , Estudos de Casos e Controles , Ativação Enzimática , Células HEK293 , Infecções por HIV/sangue , Infecções por HIV/enzimologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Humanos , Melanoma/sangue , Melanoma/enzimologia , Microdomínios da Membrana/enzimologia , Proteínas de Membrana/sangue , Mutagênese Sítio-Dirigida , Paxilina/genética , Paxilina/metabolismo , Fosforilação , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , Proteína Quinase C-delta/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ribonucleoproteínas/metabolismo , Vesículas Secretórias/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Quinases Ativadas por p21/metabolismo
3.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126623

RESUMO

The anti-cancer effects of cannabinoids including CBD (Cannabidiol) and THC ((-)-trans-∆9-tetrahydrocannabinol) have been reported in the case of pancreatic cancer (PC). The connection of these cannabinoids to KRas oncogenes that mutate in more than 90% of PC, and their effects on PD-L1, a key target of immune checkpoint blockade, have not been thoroughly investigated. Using cell lines and mouse models of PC, the effects of CBD and THC on cancer growth, the interaction between PC cells and a stromal cell, namely pancreatic stellate cells (PSCs), and the mechanism(s) involved were determined by cell-based assays and mouse study in vivo. CBD and THC inhibited the proliferation of PC, PSC, and PSC-stimulated PC cells. They also suppressed pancreatic tumour growth in mice. Furthermore, CBD and/or THC reduced the expression of PD-L1 by either PC or PSC cells. Knockout of p-21 activated kinase 1 (PAK1, activated by KRas) in PC and PSC cells and, in mice, dramatically decreased or blocked these inhibitory effects of CBD and/or THC. These results indicated that CBD and THC exerted their inhibitions on PC and PSC via a p-21 activated kinase 1 (PAK1)-dependent pathway, suggesting that CBD and THC suppress Kras activated pathway by targeting PAK1. The inhibition by CBD and THC of PD-L1 expression will enhance the immune checkpoint blockade of PC.


Assuntos
Canabinoides/farmacologia , Dronabinol/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Células Estreladas do Pâncreas/efeitos dos fármacos , Quinases Ativadas por p21/fisiologia , Animais , Apoptose , Proliferação de Células , Alucinógenos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/enzimologia , Células Estreladas do Pâncreas/patologia , Células Tumorais Cultivadas
4.
Blood ; 127(16): 1967-75, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26932803

RESUMO

Cytoskeletal remodeling of hematopoietic stem and progenitor cells (HSPCs) is essential for homing to the bone marrow (BM). The Ras-related C3 botulinum toxin substrate (Rac)/cell division control protein 42 homolog (CDC42) effector p21-activated kinase (Pak2) has been implicated in HSPC homing and engraftment. However, the molecular pathways mediating Pak2 functions in HSPCs are unknown. Here, we demonstrate that both Pak2 kinase activity and its interaction with the PAK-interacting exchange factor-ß (ß-Pix) are required to reconstitute defective ITALIC! Pak2 (ITALIC! Δ/Δ)HSPC homing to the BM. Pak2 serine/threonine kinase activity is required for stromal-derived factor-1 (SDF1α) chemokine-induced HSPC directional migration, whereas Pak2 interaction with ß-Pix is required to regulate the velocity of HSPC migration and precise F-actin assembly. Lack of SDF1α-induced filopodia and associated abnormal cell protrusions seen in ITALIC! Pak2 (ITALIC! Δ/Δ)HSPCs were rescued by wild-type (WT) Pak2 but not by a Pak2-kinase dead mutant (KD). Expression of a ß-Pix interaction-defective mutant of Pak2 rescued filopodia formation but led to abnormal F-actin bundles. Although CDC42 has previously been considered an upstream regulator of Pak2, we found a paradoxical decrease in baseline activation of CDC42 in ITALIC! Pak2 (ITALIC! Δ/Δ)HSPCs, which was rescued by expression of Pak2-WT but not by Pak2-KD; defective homing of ITALIC! Pak2-deleted HSPCs was rescued by constitutive active CDC42. These data demonstrate that both Pak2 kinase activity and its interaction with ß-Pix are essential for HSPC filopodia formation, cytoskeletal integrity, and homing via activation of CDC42. Taken together, we provide mechanistic insights into the role of Pak2 in HSPC migration and homing.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/fisiologia , Animais , Comunicação Celular , Movimento Celular/genética , Células Cultivadas , Citoesqueleto/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Nicho de Células-Tronco/genética , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
5.
Am J Hematol ; 93(2): 269-276, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29124783

RESUMO

NET formation in mice (NETosis) is supported by reactive oxygen species (ROS) production by NADPH oxidase and histone hypercitrullination by peptidylarginine deiminase 4 (PAD4). Rac1 and Rac2, expressed in polymorphonuclear neutrophils (PMNs), regulate the cytoskeleton, cell shape, adhesion, and migration and are also essential components of the NADPH oxidase complex. We aimed to explore the role of the Rac signaling pathway including the upstream guanosine exchange factor (GEF) activator, Vav, and a downstream effector, the p21-activated kinase, Pak, on NETosis in PMNs using a previously described flow-cytometry-based assay. Rac2-/- PMNs showed reduced levels of citrullinated histone H3 (H3Cit)-positive cells and defective NETosis. Rac1Δ/Δ ; Rac2-/- PMNs demonstrated a further reduction in PMA-induced H3Cit levels and a more profound impairment of NETosis than deletion of Rac2 alone, suggesting an overlapping role of these two highly related proteins. Genetic knockouts of Vav1, or Vav2, did not impair H3Cit response to phorbol myristate ester (PMA) or NETosis. Combined, Vav1 and Vav3 deletions decreased H3Cit response and caused a modest but significant impairment of NETosis. Pharmacologic inhibition of Pak by two inhibitors with distinct mechanisms of action, led to reduced H3Cit levels after PMA stimulation, as well as significant inhibition of NETosis. We validated the importance of Pak using Pak2Δ/Δ PMNs, which demonstrated significantly impaired histone H3 citrullination and NETosis. These data confirm and more comprehensively define the key role of the Rac signaling pathway in PMN NETosis. The Rac signaling cascade may represent a valuable target for inhibition of NETosis and related pathological processes.


Assuntos
Armadilhas Extracelulares/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/fisiologia , Proteínas rac de Ligação ao GTP/fisiologia , Animais , Citrulinação , Histonas/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
6.
J Physiol ; 594(17): 4879-900, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27038336

RESUMO

KEY POINTS: In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin. The p21-activated kinases (Paks) can regulate the contractility of smooth muscle and non-muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation. We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization. We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott-Aldrich syndrome protein (N-WASP). These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. ABSTRACT: The p21-activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus-induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)-induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of tissue extracts and proximity ligation assays in dissociated cells showed that Pak activation and paxillin Ser273 phosphorylation triggered the formation of an adhesion junction signalling complex with paxillin that included G-protein-coupled receptor kinase-interacting protein (GIT1) and the cdc42 guanine exchange factor, ßPIX (Pak interactive exchange factor). Assembly of the Pak-GIT1-ßPIX-paxillin complex was necessary for cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASP) activation, actin polymerization and contraction in response to ACh. RhoA activation was also required for the recruitment of Pak to adhesion junctions, Pak activation, paxillin Ser273 phosphorylation and paxillin complex assembly. These studies demonstrate a novel role for Pak in the regulation of N-WASP activation, actin dynamics and cell contractility.


Assuntos
Actinas/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Paxilina/fisiologia , Traqueia/fisiologia , Quinases Ativadas por p21/fisiologia , Animais , Cães , Feminino , Masculino , Cadeias Leves de Miosina/metabolismo , Fosforilação , Polimerização , Proteína Neuronal da Síndrome de Wiskott-Aldrich/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia
7.
Biochim Biophys Acta ; 1853(1): 157-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25409929

RESUMO

p-21-Activated kinase 1 (PAK1) enhances colorectal cancer (CRC) progression by stimulating Wnt/ß-catenin, ERK and AKT pathways. PAK1 also promotes CRC survival via up-regulation of hypoxia-inducible factor 1α (HIF-1α), a key player in cancer survival. Glaucarubinone, a quassinoid natural product, inhibits pancreatic cancer growth by down-regulation of PAK1. The aim of this study was to investigate the effect of glaucarubinone on CRC growth and metastasis, and the mechanism involved. Cell proliferation was measured in vitro by [(3)H]-thymidine incorporation and in vivo by volume of tumor xenografts. Protein concentrations were measured by Western blotting of cell extracts. We report here that glaucarubinone inhibited CRC growth both in vitro and in vivo. The potency of glaucarubinone as an inhibitor of cell proliferation was negatively correlated to PAK1 expression in CRC cells. Glaucarubinone suppressed the expression of HIF-1α and ß-catenin. Knockdown of PAK1 by shRNA enhanced inhibition by glaucarubinone while constitutively active PAK1 blocked the inhibitory effect. Our findings indicate that glaucarubinone inhibited CRC growth by down-regulation of HIF-1α and ß-catenin via a PAK1-dependent pathway.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Glaucarubina/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Quinases Ativadas por p21/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Glaucarubina/farmacologia , Humanos
8.
J Neurochem ; 137(1): 46-61, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26809475

RESUMO

Stress-responsive neuronal membrane glycoprotein M6a (Gpm6a) functions in neurite extension, filopodium and spine formation and synaptogenesis. The mechanisms of Gpm6a action in these processes are incompletely understood. Previously, we identified the actin regulator coronin-1a (Coro1a) as a putative Gpm6a interacting partner. Here, we used co-immunoprecipitation assays with the anti-Coro1a antibody to show that Coro1a associates with Gpm6a in rat hippocampal neurons. By immunofluorescence microscopy, we demonstrated that in hippocampal neurons Coro1a localizes in F-actin-enriched regions and some of Coro1a spots co-localize with Gpm6a labeling. Notably, the over-expression of a dominant-negative form of Coro1a as well as its down-regulation by siRNA interfered with Gpm6a-induced filopodium formation. Coro1a is known to regulate the plasma membrane translocation and activation of small GTPase Rac1. We show that Coro1a co-immunoprecipitates with Rac1 together with Gpm6a. Pharmacological inhibition of Rac1 resulted in a significant decrease in filopodium formation by Gpm6a. The same was observed upon the co-expression of Gpm6a with the inactive GDP-bound form of Rac1. In this case, the elevated membrane recruitment of GDP-bound Rac1 was detected as well. Moreover, the kinase activity of the p21-activated kinase 1 (Pak1), a main downstream effector of Rac1 that acts downstream of Coro1a, was required for Gpm6a-induced filopodium formation. Taken together, our results provide evidence that a signaling pathway including Coro1a, Rac1, and Pak1 facilitates Gpm6a-induced filopodium formation. Formation of filopodia by membrane glycoprotein M6a (Gpm6a) requires actin regulator coronin-1a (Coro1a), known to regulate plasma membrane localization and activation of Rac1 and its downstream effector Pak1. Coro1a associates with Gpm6a. Blockage of Coro1a, Rac1, or Pak1 interferes with Gpm6a-induced filopodium formation. Moreover, Gpm6a facilitates Rac1 membrane recruitment. Altogether, a mechanistic insight into the process of Gpm6a-induced neuronal filopodium formation is provided.


Assuntos
Glicoproteínas de Membrana/fisiologia , Proteínas dos Microfilamentos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/ultraestrutura , Pseudópodes/fisiologia , Quinases Ativadas por p21/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Actinas/análise , Animais , Células Cultivadas , Regulação para Baixo , Genes Reporter , Hipocampo/citologia , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Biogênese de Organelas , Cultura Primária de Células , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
9.
Tumour Biol ; 37(3): 3071-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26423403

RESUMO

Colorectal adenomatous polyp (CRAP) is a major risk factor for the development of sporadic colorectal cancer (CRC). Histone modifications are one of the epigenetic mechanisms that may have key roles in the carcinogenesis of CRC. The objective of the present study is to investigate the alternations in the defined histone modification gene expression profiles in patients with CRAP and CRC. Histone modification enzyme key gene expressions of the CRC, CRAP, and control groups were evaluated and compared using the reverse transcription PCR (RT-PCR) array method. Gene expression analysis was performed in the CRAP group after dividing the patients into subgroups according to the polyp diameter, pathological results, and morphological parameters which are risk factors for developing CRC in patients with CRAP. PAK1, NEK6, AURKA, AURKB, HDAC1, and HDAC7 were significantly more overexpressed in CRC subjects compared to the controls (p < 0.05). PAK1, NEK6, AURKA, AURKB, and HDAC1 were significantly more overexpressed in the CRAP group compared to the controls (p < 0.005). There were no significant differences between the CRAP and CRC groups with regards to PAK1, NEK6, AURKA, or AURKB gene overexpression. PAK1, NEK6, AURKA, and AURKB were significantly in correlation with the polyp diameter as they were more overexpressed in polyps with larger diameters. In conclusion, overexpressions of NEK6, AURKA, AURKB, and PAK1 genes can be used as predictive markers to decide the colonoscopic surveillance intervals after the polypectomy procedure especially in polyps with larger diameters.


Assuntos
Adenocarcinoma/genética , Polipose Adenomatosa do Colo/genética , Aurora Quinase A/genética , Aurora Quinase B/genética , Neoplasias Colorretais/genética , Quinases Ativadas por p21/genética , Adenocarcinoma/patologia , Polipose Adenomatosa do Colo/patologia , Adulto , Idoso , Aurora Quinase A/fisiologia , Aurora Quinase B/fisiologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/fisiologia , Quinases Ativadas por p21/fisiologia
10.
Blood ; 121(13): 2474-82, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23335370

RESUMO

The p21-activated kinases (Paks) are serine/threonine kinases that are major effectors of the Rho guanosine 5'\x{2011}triphosphatase, Rac, and Cdc42. Rac and Cdc42 are known regulators of hematopoietic stem and progenitor cell (HSPC) function, however, a direct role for Paks in HSPCs has yet to be elucidated. Lin(-)Sca1(+)c-kit(+) (LSK) cells from wild-type mice were transduced with retrovirus expressing Pak inhibitory domain (PID), a well-characterized inhibitor of Pak activation. Defects in marrow homing and in vitro cell migration, assembly of the actin cytoskeleton, proliferation, and survival were associated with engraftment failure of PID-LSK. The PID-LSK demonstrated decreased phosphorylation of extracellular signal-regulated kinase (ERK), whereas constitutive activation of ERK in these cells led to rescue of hematopoietic progenitor cell proliferation in vitro and partial rescue of Pak-deficient HSPC homing and engraftment in vivo. Using conditional knock-out mice, we demonstrate that among group A Paks, Pak2(-/-) HSPC show reduced homing to the bone marrow and altered cell shape similar to PID-LSK cells in vitro and are completely defective in HSPC engraftment. These data demonstrate that Pak proteins are key components of multiple engraftment-associated HSPC functions and play a direct role in activation of ERK in HSPCs, and that Pak2 is specifically essential for HSPC engraftment.


Assuntos
Movimento Celular/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Quinases Ativadas por p21/fisiologia , Animais , Movimento Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/genética , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Quinases Ativadas por p21/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/fisiologia
11.
Tumour Biol ; 36(5): 3685-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25560489

RESUMO

p21-Activated kinase 5 (PAK5) is the last identified member of the PAK family. The PAKs are highly conserved serine/threonine and effector proteins for Cdc42 and Rac and are essential in regulating cell motility and survival. Previous studies have demonstrated that PAK5 played a pivotal role in apoptosis, proliferation, cancer migration, and invasion. However, the biological function of PAK5 in hepatocellular carcinoma, as well as its underlying mechanism, still remains to be fully elucidated. In the present study, we demonstrated that PAK5 markedly inhibited cisplatin-induced apoptosis and promoted cell proliferation in hepatocellular carcinoma cells. Moreover, our results showed that overexpression of PAK5 contributed to cell cycle regulation. In order to elucidate the underlying mechanism of PAK5 on cisplatin-induced apoptosis and cell cycle regulation, we also examined the protein expressions of chk2 and p-chk2. In summary, our study investigated the role of PAK5 in cisplatin-induced cellular processes and provided evidence of its underlying mechanism.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Cisplatino/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Quinases Ativadas por p21/fisiologia , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase do Ponto de Checagem 2/fisiologia , Humanos , Neoplasias Hepáticas/patologia
12.
J Surg Res ; 196(1): 130-5, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25791829

RESUMO

BACKGROUND: P21-activated kinases (PAKs) are small guanosine triphosphate effectors that play critical roles in many fundamental cellular functions, including cytoskeletal reorganization and cell motility. PAKs are widely expressed in a variety of tissues and are often overexpressed in multiple cancer types. The aim of this study was to investigate the relationship between PAK1 and PAK4 and clinicopathologic features of colorectal cancer. METHODS: PAK1 and PAK4 expression in colorectal cancer patients were investigated via TaqMan real-time polymerase chain reaction and immunohistochemistry and clinical analysis. RESULTS: The relative expression levels of PAK1 and PAK4 gene in colorectal carcinoma tissues were significantly higher than those in normal tissues (P < 0.01). PAK4 expression was higher than PAK1 in the same cancer tissue. The expression of PAK1 and PAK4 increased gradually with the clinical stages in carcinoma tissues (P < 0.01). PAK1 expression was higher in lymph node positive patients, and PAK4 expression was higher in infiltration into serous layer patients (P < 0.05). PAK1 overexpression group has a higher recurrence/metastasis rate compared with that of the PAK1 low expression group. Follow-up analysis showed that the median progression-free survival time of the PAK1 high expression group was significantly shorter than that of the PAK1 low expression group. CONCLUSIONS: PAK1 and PAK4 expression were associated with colorectal cancer metastasis and infiltration, PAK1 high expression may indicate poor prognosis of colorectal cancer.


Assuntos
Neoplasias Colorretais/patologia , Quinases Ativadas por p21/fisiologia , Adulto , Idoso , Neoplasias Colorretais/mortalidade , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , RNA Mensageiro/análise , Quinases Ativadas por p21/genética
13.
Cell Mol Life Sci ; 71(14): 2759-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24352566

RESUMO

p-21 activated 6 (PAK6), first identified as interacting with the androgen receptor (AR), is over-expressed in multiple cancer tissues and has been linked to the progression of prostate cancer, however little is known about PAK6 function in the absence of AR signaling. We report here that PAK6 is specifically required for carcinoma cell-cell dissociation downstream of hepatocyte growth factor (HGF) for both DU145 prostate cancer and HT29 colon cancer cells. Moreover, PAK6 overexpression can drive cells to escape from adhesive colonies in the absence of stimulation. We have localized PAK6 to cell-cell junctions and have detected a direct interaction between the kinase domain of PAK6 and the junctional protein IQGAP1. Co-expression of IQGAP1 and PAK6 increases cell colony escape and leads to elevated PAK6 activation. Further studies have identified a PAK6/E-cadherin/IQGAP1 complex downstream of HGF. Moreover, we find that ß-catenin is also localized with PAK6 in cell-cell junctions and is a novel PAK6 substrate. We propose a unique role for PAK6, independent of AR signaling, where PAK6 drives junction disassembly during HGF-driven cell-cell dissociation via an IQGAP1/E-cadherin complex that leads to the phosphorylation of ß-catenin and the disruption of cell-cell adhesions.


Assuntos
Junções Intercelulares/metabolismo , Quinases Ativadas por p21/fisiologia , Proteínas Ativadoras de ras GTPase/fisiologia , Adesão Celular/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Células HEK293 , Células HT29 , Humanos , Fosforilação , Mapeamento de Interação de Proteínas , beta Catenina/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
14.
Adv Exp Med Biol ; 846: 97-137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25472536

RESUMO

Despite efforts to discover the cellular pathways regulating breast cancer metastasis, little is known as to how prolactin (PRL) cooperates with extracellular environment and cytoskeletal proteins to regulate breast cancer cell motility and invasion. We implicated serine-threonine kinase p21-activated kinase 1 (PAK1) as a novel target for PRL-activated Janus-kinase 2 (JAK2). JAK2-dependent PAK1 tyrosyl phosphorylation plays a critical role in regulation of both PAK1 kinase activity and scaffolding properties of PAK1. Tyrosyl phosphorylated PAK1 facilitates PRL-dependent motility via at least two mechanisms: formation of paxillin/GIT1/ßPIX/pTyr-PAK1 complexes resulting in increased adhesion turnover and phosphorylation of actin-binding protein filamin A. Increased adhesion turnover is the basis for cell migration and phosphorylated filamin A stimulates the kinase activity of PAK1 and increases actin-regulating activity to facilitate cell motility. Tyrosyl phosphorylated PAK1 also stimulates invasion of breast cancer cells in response to PRL and three-dimensional (3D) collagen IV via transcription and secretion of MMP-1 and MMP-3 in a MAPK-dependent manner. These data illustrate the complex interaction between PRL and the cell microenvironment in breast cancer cells and suggest a pivotal role for PRL/PAK1 signaling in breast cancer metastasis.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Prolactina/farmacologia , Quinases Ativadas por p21/fisiologia , Animais , Neoplasias da Mama/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Feminino , Humanos , Invasividade Neoplásica , Metástase Neoplásica
15.
J Neurosci ; 33(26): 10729-40, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23804095

RESUMO

Defects in p21-activated kinase (PAK) are suspected to play a role in cognitive symptoms of Alzheimer's disease (AD). Dysfunction in PAK leads to cofilin activation, drebrin displacement from its actin-binding site, actin depolymerization/severing, and, ultimately, defects in spine dynamics and cognitive impairment in mice. To determine the role of PAK in AD, we first quantified PAK by immunoblotting in homogenates from the parietal neocortex of subjects with a clinical diagnosis of no cognitive impairment (n = 12), mild cognitive impairment (n = 12), or AD (n = 12). A loss of total PAK, detected in the cortex of AD patients (-39% versus controls), was correlated with cognitive impairment (r(2) = 0.148, p = 0.027) and deposition of total and phosphorylated tau (r(2) = 0.235 and r(2) = 0.206, respectively), but not with Aß42 (r(2) = 0.056). Accordingly, we found a decrease of total PAK in the cortex of 12- and 20-month-old 3xTg-AD mice, an animal model of AD-like Aß and tau neuropathologies. To determine whether PAK dysfunction aggravates AD phenotype, 3xTg-AD mice were crossed with dominant-negative PAK mice. PAK inactivation led to obliteration of social recognition in old 3xTg-AD mice, which was associated with a decrease in cortical drebrin (-25%), but without enhancement of Aß/tau pathology or any clear electrophysiological signature. Overall, our data suggest that PAK decrease is a consequence of AD neuropathology and that therapeutic activation of PAK may exert symptomatic benefits on high brain function.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Reconhecimento Psicológico/fisiologia , Comportamento Social , Quinases Ativadas por p21/fisiologia , Proteínas tau/metabolismo , Animais , Western Blotting , Química Encefálica/genética , Transtornos Cognitivos/genética , Transtornos Cognitivos/psicologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Fenômenos Eletrofisiológicos , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp
16.
J Neurosci ; 33(2): 790-803, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303955

RESUMO

The Neural cell adhesion molecule (NCAM) plays an important role in regulation of nervous system development. To expand our understanding of the molecular mechanisms via which NCAM influences differentiation of neurons, we used a yeast two-hybrid screening to search for new binding partners of NCAM and identified p21-activated kinase 1 (Pak1). We show that NCAM interacts with Pak1 in growth cones of neurons. The autophosphorylation and activity of Pak1 were enhanced when isolated growth cones were incubated with NCAM function triggering antibodies, which mimic the interaction between NCAM and its extracellular ligands. The association of Pak1 with cell membranes, the efficiency of Pak1 binding to its activators, and Pak1 activity were inhibited in brains of NCAM-deficient mice. NCAM-dependent Pak1 activation was abolished after lipid raft disruption, suggesting that NCAM promotes Pak1 activation in the lipid raft environment. Phosphorylation of the downstream Pak1 effectors LIMK1 and cofilin was reduced in growth cones from NCAM-deficient neurons, which was accompanied by decreased levels of filamentous actin and inhibited filopodium mobility in the growth cones. Dominant-negative Pak1 inhibited and constitutively active Pak1 enhanced the ability of neurons to increase neurite outgrowth in response to the extracellular ligands of NCAM. Our combined observations thus indicate that NCAM activates Pak1 to drive actin polymerization to promote neuronal differentiation.


Assuntos
Moléculas de Adesão de Célula Nervosa/fisiologia , Transdução de Sinais/fisiologia , Quinases Ativadas por p21/fisiologia , Actinas/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Química Encefálica , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , DNA/genética , Feminino , Cones de Crescimento/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Imunoprecipitação , Masculino , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/efeitos dos fármacos , Fosforilação , Ratos , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Proteína cdc42 de Ligação ao GTP/genética , Quinases Ativadas por p21/genética
17.
Carcinogenesis ; 35(3): 624-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24130170

RESUMO

SH3RF (SH3-domain-containing RING finger protein) family members, SH3RF1-3, are multidomain scaffold proteins involved in promoting cell survival and apoptosis. In this report, we show that SH3RF2 is an oncogene product that is overexpressed in human cancers and regulates p21-activated kinase 4 (PAK4) protein stability. Immunohistochemical analysis of 159 colon cancer tissues showed that SH3RF2 expression levels are frequently elevated in cancer tissues and significantly correlate with poor prognostic indicators, including increased invasion, early recurrence and poor survival rates. We also demonstrated that PAK4 protein is degraded by the ubiquitin-proteasome system and that SH3RF2 inhibits PAK4 ubiquitination via physical interaction-mediated steric hindrance, which results in the upregulation of PAK4 protein. Moreover, ablation of SH3RF2 expression attenuates TRADD (TNFR-associated death domain) recruitment to tumor necrosis factor-α (TNF-α) receptor 1 and hinders downstream signals, thereby inhibiting NF-κB (nuclear factor-kappaB) activity and enhancing caspase-8 activity, in the context of TNF-α treatment. Notably, ectopic expression of SH3RF2 effectively prevents apoptosis in cancer cells and enhances cell migration, colony formation and tumor growth in vivo. Taken together, our results suggest that SH3RF2 is an oncogene that may be a definitive regulator of PAK4. Therefore, SH3RF2 may represent an effective therapeutic target for cancer treatment.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas Oncogênicas/fisiologia , Oncogenes , Estabilidade Proteica , Quinases Ativadas por p21/fisiologia , Sequência de Bases , Linhagem Celular , Primers do DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Biochim Biophys Acta ; 1833(1): 33-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23092728

RESUMO

p21-activated kinases (PAKs) were initially identified as effector proteins downstream from GTPases of the Rho family. To date, six members of the PAK family have been discovered in mammalian cells. PAKs play important roles in growth factor signalling, cytoskeletal remodelling, gene transcription, cell proliferation and oncogenic transformation. A large body of research has demonstrated that PAKs are up-regulated in several human cancers, and that their overexpression is linked to tumour progression and resistance to therapy. Structural and biochemical studies have revealed the mechanisms involved in PAK signalling, and opened the way to the development of PAK-targeted therapies for cancer treatment. Here we summarise recent findings from biological and clinical research on the role of PAKs in gastrointestinal cancer, and discuss the current status of PAK-targeted anticancer therapies.


Assuntos
Carcinoma/genética , Neoplasias Gastrointestinais/genética , Quinases Ativadas por p21/fisiologia , Animais , Carcinoma/metabolismo , Neoplasias Gastrointestinais/metabolismo , Humanos , Modelos Biológicos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Quinases Ativadas por p21/química , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
19.
Am J Physiol Endocrinol Metab ; 306(7): E707-22, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24368667

RESUMO

p21-Activated protein kinases (PAKs) are centrally involved in a plethora of cellular processes and functions. Their function as effectors of small GTPases Rac1 and Cdc42 has been extensively studied during the past two decades, particularly in the realms of cell proliferation, apoptosis, and hence tumorigenesis, as well as cytoskeletal remodeling and related cellular events in health and disease. In recent years, a large number of studies have shed light onto the fundamental role of group I PAKs, most notably PAK1, in metabolic homeostasis. In skeletal muscle, PAK1 was shown to mediate the function of insulin on stimulating GLUT4 translocation and glucose uptake, while in pancreatic ß-cells, PAK1 participates in insulin granule localization and vesicle release. Furthermore, we demonstrated that PAK1 mediates the cross talk between insulin and Wnt/ß-catenin signaling pathways and hence regulates gut proglucagon gene expression and the production of the incretin hormone glucagon-like peptide-1 (GLP-1). The utilization of chemical inhibitors of PAK and the characterization of Pak1(-/-) mice enabled us to gain mechanistic insights as well as to assess the overall contribution of PAKs in metabolic homeostasis. This review summarizes our current understanding of PAKs, with an emphasis on the emerging roles of PAK1 in glucose homeostasis.


Assuntos
Glucose/metabolismo , Homeostase/fisiologia , Quinases Ativadas por p21/fisiologia , Animais , Transporte Biológico , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos , Músculo Esquelético/metabolismo , Proglucagon/genética , Proglucagon/metabolismo , Via de Sinalização Wnt/fisiologia
20.
Tumour Biol ; 35(4): 3809-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24347489

RESUMO

The objective of this study is to clarify the possible role and mechanism of Axl in the tumorigenicity and metastasis process of hepatocellular carcinoma. The mRNA and protein expression levels of Axl in MHCC97-H and MHCC97-L cell lines were evaluated by real-time PCR and Western blot analysis. The key factor of phosphatidylinositol-3-kinase (PI3K)/Akt-p21-activated kinases-1 (PAK1) signaling pathway was studied after Axl expression was downregulated by shRNA. Finally, we analyzed the expression status of Axl protein expression in hepatocellular carcinoma tissues and its relationship with the prognosis of hepatocellular carcinoma. Axl was observed to be higher expressed in MHCC97-H cell lines compared to MHCC97-L cell lines. The downregulation of Axl in MHCC97-H cell lines resulted in the inhibition of the invasion ability of MHCC97-H cells both in vitro and in vivo. Interestingly, blocking PI3K/Akt signaling pathway by LY294002 or Akt siRNA could remarkably inhibit the PAK1 activation and cell invasion. Finally, the Axl protein expression was positively correlated with differentiation, lymph node metastasis, and clinical stage in patients with hepatocellular carcinoma patients (all P < 0.01). These findings suggest that Axl can also regulate the metastasis process of hepatocellular carcinoma and may serve as a new prognostic marker and therapeutic target for treating hepatocellular carcinoma metastasis.


Assuntos
Carcinoma Hepatocelular/secundário , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Quinases Ativadas por p21/fisiologia , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/análise , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA