Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 594(7863): 418-423, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33953400

RESUMO

Although RAF monomer inhibitors (type I.5, BRAF(V600)) are clinically approved for the treatment of BRAFV600-mutant melanoma, they are ineffective in non-BRAFV600 mutant cells1-3. Belvarafenib is a potent and selective RAF dimer (type II) inhibitor that exhibits clinical activity in patients with BRAFV600E- and NRAS-mutant melanomas. Here we report the first-in-human phase I study investigating the maximum tolerated dose, and assessing the safety and preliminary efficacy of belvarafenib in BRAFV600E- and RAS-mutated advanced solid tumours (NCT02405065, NCT03118817). By generating belvarafenib-resistant NRAS-mutant melanoma cells and analysing circulating tumour DNA from patients treated with belvarafenib, we identified new recurrent mutations in ARAF within the kinase domain. ARAF mutants conferred resistance to belvarafenib in both a dimer- and a kinase activity-dependent manner. Belvarafenib induced ARAF mutant dimers, and dimers containing mutant ARAF were active in the presence of inhibitor. ARAF mutations may serve as a general resistance mechanism for RAF dimer inhibitors as the mutants exhibit reduced sensitivity to a panel of type II RAF inhibitors. The combination of RAF plus MEK inhibition may be used to delay ARAF-driven resistance and suggests a rational combination for clinical use. Together, our findings reveal specific and compensatory functions for the ARAF isoform and implicate ARAF mutations as a driver of resistance to RAF dimer inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Proteínas Proto-Oncogênicas A-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas A-raf/genética , Quinases raf/antagonistas & inibidores , Animais , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Melanoma/patologia , Camundongos , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas A-raf/química , Quinases raf/química
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091470

RESUMO

RAF inhibitors unexpectedly induce ERK signaling in normal and tumor cells with elevated RAS activity. Paradoxical activation is believed to be RAS dependent. In this study, we showed that LY3009120, a pan-RAF inhibitor, can unexpectedly cause paradoxical ERK activation in KRASG12C-dependent lung cancer cell lines, when KRAS is inhibited by ARS1620, a KRASG12C inhibitor. Using H/N/KRAS-less mouse embryonic fibroblasts, we discovered that classical RAS proteins are not essential for RAF inhibitor-induced paradoxical ERK signaling. In their absence, RAF inhibitors can induce ERK phosphorylation, ERK target gene transcription, and cell proliferation. We further showed that the MRAS/SHOC2 complex is required for this process. This study highlights the complexity of the allosteric RAF regulation by RAF inhibitors, and the importance of other RAS-related proteins in this process.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Quinases raf/antagonistas & inibidores , Proteínas ras/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fibroblastos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Mutação/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases raf/metabolismo , Proteínas ras/fisiologia
3.
Oncologist ; 29(5): 431-440, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38109296

RESUMO

BACKGROUND: The prognosis of malignant primary high-grade brain tumors, predominantly glioblastomas, is poor despite intensive multimodality treatment options. In more than 50% of patients with glioblastomas, potentially targetable mutations are present, including rearrangements, altered splicing, and/or focal amplifications of epidermal growth factor receptor (EGFR) by signaling through the RAF/RAS pathway. We studied whether treatment with the clinically available anti-EGFR monoclonal antibody panitumumab provides clinical benefit for patients with RAF/RAS-wild-type (wt) glioblastomas in the Drug Rediscovery Protocol (DRUP). METHODS: Patients with progression of treatment refractory RAF/RASwt glioblastoma were included for treatment with panitumumab in DRUP when measurable according to RANO criteria. The primary endpoints of this study are clinical benefit (CB: defined as confirmed objective response [OR] or stable disease [SD] ≥ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and up to 24 patients in stage 2 if at least 1 in 8 patients had CB in stage 1. RESULTS: Between 03-2018 and 02-2022, 24 evaluable patients were treated. CB was observed in 5 patients (21%), including 2 patients with partial response (8.3%) and 3 patients with SD ≥ 16 weeks (12.5%). After median follow-up of 15 months, median progression-free survival and overall survival were 1.7 months (95% CI 1.6-2.1 months) and 4.5 months (95% CI 2.9-8.6 months), respectively. No unexpected toxicities were observed. CONCLUSIONS: Panitumumab treatment provides limited CB in patients with recurrent RAF/RASwt glioblastoma precluding further development of this therapeutic strategy.


Assuntos
Glioblastoma , Panitumumabe , Humanos , Panitumumabe/uso terapêutico , Panitumumabe/efeitos adversos , Panitumumabe/farmacologia , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/mortalidade , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Proteínas ras/genética , Quinases raf/genética , Quinases raf/antagonistas & inibidores
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731852

RESUMO

Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of BRAFV600E substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib-trametinib, in 2017, and encorafenib-binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinases de Proteína Quinase Ativadas por Mitógeno , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Animais , Quinases raf/antagonistas & inibidores , Quinases raf/metabolismo , Quinases raf/genética , Mutação
5.
Mol Cancer ; 20(1): 85, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092233

RESUMO

BACKGROUND: While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy. METHODS: Rigosertib (RGS) is a non-ATP-competitive small molecule RAS mimetic. RGS monotherapy or in combination therapy with ICB were investigated using immunocompetent mouse models of BRAFwt and BRAFmut melanoma and analyzed in reference to patient data. RESULTS: RGS treatment (300 mg/kg) was well tolerated in mice and resulted in ~ 50% inhibition of tumor growth as monotherapy and ~ 70% inhibition in combination with αPD1 + αCTLA4. RGS-induced tumor growth inhibition depends on CD40 upregulation in melanoma cells followed by immunogenic cell death, leading to enriched dendritic cells and activated T cells in the tumor microenvironment. The RGS-initiated tumor suppression was partially reversed by either knockdown of CD40 expression in melanoma cells or depletion of CD8+ cytotoxic T cells. Treatment with either dabrafenib and trametinib or with RGS, increased CD40+SOX10+ melanoma cells in the tumors of melanoma patients and patient-derived xenografts. High CD40 expression level correlates with beneficial T-cell responses and better survival in a TCGA dataset from melanoma patients. Expression of CD40 by melanoma cells is associated with therapeutic response to RAF/MEK inhibition and ICB. CONCLUSIONS: Our data support the therapeutic use of RGS + αPD1 + αCTLA4 in RAS/RAF/PI3K pathway-activated melanomas and point to the need for clinical trials of RGS + ICB for melanoma patients who do not respond to ICB alone. TRIAL REGISTRATION: NCT01205815 (Sept 17, 2010).


Assuntos
Antineoplásicos/farmacologia , Antígenos CD40/biossíntese , Glicina/análogos & derivados , Inibidores de Checkpoint Imunológico/farmacologia , Melanoma/patologia , Sulfonas/farmacologia , Proteínas ras/antagonistas & inibidores , Animais , Feminino , Glicina/farmacologia , Humanos , Masculino , Melanoma/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/antagonistas & inibidores
6.
Curr Opin Oncol ; 33(2): 120-126, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332926

RESUMO

PURPOSE OF REVIEW: Although immune checkpoint inhibitors and small molecule inhibitors targeting the MAPK pathway have revolutionized the management of metastatic melanoma, long-term disease control occurs only for a minority of patients because of multiple resistance mechanisms. One way to tackle resistance is to develop the next-generation of RAF, MEK and ERK inhibitors using our understanding of the molecular mechanisms that fine-tune the MAPK pathway. RECENT FINDINGS: Studies on the regulation of the MAPK pathway have revealed a dominant role for homo-dimerization and hetero-dimerization of RAF, MEK and ERK. Allosteric inhibitors that break these dimers are, therefore, undergoing various stages of preclinical and clinical evaluation. Novel MEK inhibitors are less susceptible to differences in MEK's activation state and do not drive the compensatory activation of MEK that could limit efficacy. Innovations in targeting ERK originate from dual inhibitors that block MEK-catalyzed ERK phosphorylation, thereby limiting the extent of ERK reactivation following feedback relief. SUMMARY: The primary goal in RAF, MEK and ERK inhibitors' development is to produce molecules with less inhibitor paradox and off-target effects, giving robust and sustained MAPK pathway inhibition.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Quinases raf/antagonistas & inibidores , Ensaios Clínicos Fase I como Assunto , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/enzimologia , Terapia de Alvo Molecular , Neoplasias Cutâneas/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia
7.
Biochem Soc Trans ; 49(1): 237-251, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33367512

RESUMO

The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Quinases raf/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , Estrutura Secundária de Proteína/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/fisiologia , Quinases raf/química , Quinases raf/metabolismo
8.
Bioorg Chem ; 109: 104715, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647741

RESUMO

This paper presents the design and synthesis of 4-(3-hydroxyanilino)-6-(1H-1,2,3-triazol-4-yl)quinazolines of scaffold 9 as selective B-Raf/B-RafV600E and potent EGFR/VEGFR2 kinase inhibitors. Total 14 compounds of scaffold 9 having different side chains at the triazolyl group with/without fluoro substituents at the anilino group were synthesized and investigated. Among them, 9m with a 2-carbamoylethyl side chain and C-4'/C-6' difluoro substituents was the most potent, which selectively inhibited B-Raf (IC50: 57 nM) and B-RafV600E (IC50: 51 nM) over C-Raf (IC50: 1.0 µM). Compound 9m also actively inhibited EGFR (IC50: 73 nM) and VEGFR2 (IC50: 7.0 nM) but not EGFRT790M and PDGFR-ß (IC50: >10 µM). Despite having good potency for B-Raf and B-RafV600E in the enzymatic assays, 9m was less active to inhibit melanoma A375 cells which proliferate due to constitutively activated B-Raf600E. The inferior activity of 9m for A375 was similar to that of sorafenib (6), suggesting that 9m might bind to the inactive conformations of B-Raf and B-RafV600E. Docking simulations could thus be performed to reveal the binding poses of 9m in B-Raf, B-RafV600E, and VEGFR2 kinases.


Assuntos
Receptores ErbB/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Quinazolinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Quinases raf/antagonistas & inibidores , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Quinazolinas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Mol Cell ; 49(4): 751-8, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23352452

RESUMO

Raf kinases are essential for normal Ras-Raf-MEK-ERK pathway signaling, and activating mutations in components of this pathway are associated with a variety of human cancers, as well as the related developmental disorders Noonan, LEOPARD, and cardiofaciocutaneous syndromes. Although the Raf kinases are known to dimerize during normal and disease-associated Raf signaling, the functional significance of Raf dimerization has not been fully elucidated. Here, using mutational analysis and a peptide inhibitor, we show that dimerization is required for normal Ras-dependent Raf activation and for the biological function of disease-associated Raf mutants with moderate, low, or impaired kinase activity. However, dimerization is not needed for the function of B-Raf mutants with high catalytic activity, such as V600E-B-Raf. Importantly, we find that a dimer interface peptide can effectively block Raf dimerization and inhibit Raf signaling when dimerization is required for Raf function, thus identifying the Raf dimer interface as a therapeutic target.


Assuntos
Sistema de Sinalização das MAP Quinases , Quinases raf/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Ativação Enzimática , Fator de Crescimento Epidérmico/fisiologia , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Neoplasias/enzimologia , Fragmentos de Peptídeos/farmacologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Quinases raf/antagonistas & inibidores , Quinases raf/química , Quinases raf/genética , Proteínas ras/metabolismo
10.
Mol Cell ; 52(4): 529-40, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24140422

RESUMO

The extracellular signal-regulated kinase (ERK) plays a central role in the signaling cascades of cell growth. Here, we show that stochastic ERK activity pulses regulate cell proliferation rates in a cell density-dependent manner. A fluorescence resonance energy transfer (FRET) biosensor revealed that stochastic ERK activity pulses fired spontaneously or propagated from adjacent cells. Frequency, but not amplitude, of ERK activity pulses exhibited a bell-shaped response to the cell density and correlated with cell proliferation rates. Consistently, synthetic ERK activity pulses generated by a light-switchable CRaf protein accelerated cell proliferation. A mathematical model clarified that 80% and 20% of ERK activity pulses are generated by the noise and cell-to-cell propagation, respectively. Finally, RNA sequencing analysis of cells subjected to the synthetic ERK activity pulses suggested the involvement of serum responsive factor (SRF) transcription factors in the gene expression driven by the ERK activity pulses.


Assuntos
Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Algoritmos , Animais , Benzamidas/farmacologia , Comunicação Celular , Contagem de Células , Linhagem Celular , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Regulação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Cinética , Modelos Biológicos , Regiões Promotoras Genéticas , Ratos , Análise de Sequência de RNA , Processos Estocásticos , Imagem com Lapso de Tempo , Quinases raf/antagonistas & inibidores , Quinases raf/metabolismo
11.
Biomed Chromatogr ; 35(2): e4968, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32881002

RESUMO

In this study, a simple and sensitive UHPLC-ESI-MS/MS method was established for the determination of LXH254 in rat plasma. The developed method was validated according to the Food and Drug administration guidelines. After extraction using ethyl acetate, the sample was separated on an ACQUITY BEH C18 column. The mobile phase consisted of 2 mM ammonium acetate containing 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. The flow rate was 0.3 mL/min. A TSQ triple quadrupole mass spectrometer operated in positive-ion mode was used for mass detection, with multiple reaction monitoring transitions of m/z 503.3 > 459.1 and m/z 435.3 > 367.1 for LXH254 and olaparib (internal standard), respectively. An excellent linearity was achieved in the concentration range of 0.1-1000 ng/mL, with correlation coefficient >0.998. The mean recovery was more than 78.55%. Inter- and intra-day precision (percentage of relative standard deviation) did not exceed 12.87%, and accuracy was in the range of -2.50 to 13.50%. LXH254 was demonstrated to be stable under the tested storage conditions. The validated UHPLC-MS/MS method was further applied to the pharmacokinetic study of LXH254 in rat plasma after oral (2, 5, and 15 mg/kg) and intravenous (2 mg/kg) administrations. The pharmacokinetic study revealed that LXH254 showed low clearance, moderate bioavailability (~30%), and linear pharmacokinetic profile over the oral dose range of 2-15 mg/kg. To the best of our knowledge, this is the first report on the method development and validation of the determination of LXH254 and its application to pharmacokinetic study.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/farmacocinética , Espectrometria de Massas em Tandem/métodos , Quinases raf/antagonistas & inibidores , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Estabilidade de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Modelos Lineares , Masculino , Niacinamida/análogos & derivados , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Int J Neurosci ; 131(10): 975-983, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32378973

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common aggressive primary cancer occurring in the brain tissue. GBM accounts 16% of primary brain tumors and half of gliomas. Additionally, the incidence of GBM is increases with aging, and reaches the peak at the age of 75 to 84 years. The survival of patients with GBM remains at a low level, only less than 5% patients diagnosed with GBM survive for 5 years. Temozolomide (TMZ) is a DNA alkylating agent and is currently a first line chemotherapeutic treatment for GBM. TMZ combined with radiation therapy has been shown to prolong the overall survival (OS) to 14.6 months compared with 12.1 months for radiation therapy alone. NF-E2-related factor 2 (Nrf2) is a transcription factor that contains seven functional domains. The binding of Keap1 to Nrf2 is a central regulator of the cellular defense mechanism against environmental stresses. METHODS: First, Nrf2 overexpression and inhibition models were constructed in U251 cells using transfection. The percentage of viable cells was detected using the MTT assay. Then, the expression of the HO-1 regulator was detected using qPCR, and the concentrations of oxidative stress related factors were detected using ELISAs. The levels of proteins related to oxidative stress and the Ras/Raf/MEK signaling pathway was detected using western blotting analysis. RESULTS: We initially established Nrf2 inhibition and activation cell models in U251 cells and found that the inhibition of Nrf2 expression decreased the mRNA and protein levels of the anti-oxidative enzymes, as well as the secretion of these enzymes into the cellular microenvironment. These effects might be mediated by the inhibition of Ras/Raf/MEK signaling pathway, leading to the inhibition of cellular proliferation. CONCLUSIONS: Inhibition of Nrf2 expression might enhance the effect of TMZ on the treatment of GBM and might be a new therapeutic strategy.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Glioma/tratamento farmacológico , MAP Quinase Quinase Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Temozolomida/farmacologia , Quinases raf/efeitos dos fármacos , Proteínas ras/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Quinases raf/antagonistas & inibidores , Proteínas ras/antagonistas & inibidores
13.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638749

RESUMO

Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) has been identified as a group of enzymes that catalyze cytosine deamination in single-stranded (ss) DNA to form uracil, causing somatic mutations in some cancers. We analyzed the APOBEC3 family in 33 TCGA cancer types and the results indicated that APOBEC3s are upregulated in multiple cancers and strongly correlate with prognosis, particularly in low grade glioma (LGG). Then we constructed a prognostic model based on family expression in LGG where the APOBEC3 family signature is an accurate predictive model (AUC of 0.85). Gene mutation, copy number variation (CNV), and a differential gene expression (DEG) analysis were performed in different risk groups, and the weighted gene co-expression network analysis (WGCNA) was employed to clarify the role of various members in LGG; CIBERSORT algorithm was deployed to evaluate the landscape of LGG immune infiltration. We found that upregulation of the APOBEC3 family expression can strengthen Ras/MAPK signaling pathway, promote tumor progression, and ultimately reduce the treatment benefits of Raf inhibitors. Moreover, the APOBEC3 family was shown to enhance the immune response mediated by myeloid cells and interferon gamma, as well as PD-L1 and PD-L2 expression, implying that they have immunotherapy potential. Therefore, the APOBEC3 signature enables an efficient assessment of LGG patient survival outcomes and expansion of clinical benefits by selecting appropriate individualized treatment strategies.


Assuntos
Desaminases APOBEC , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma , Modelos Biológicos , Inibidores de Proteínas Quinases/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Quinases raf , Desaminases APOBEC/biossíntese , Desaminases APOBEC/genética , Intervalo Livre de Doença , Feminino , Glioma/tratamento farmacológico , Glioma/enzimologia , Glioma/genética , Glioma/mortalidade , Humanos , Masculino , Taxa de Sobrevida , Quinases raf/antagonistas & inibidores , Quinases raf/genética , Quinases raf/metabolismo
14.
Angew Chem Int Ed Engl ; 60(12): 6567-6572, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33427372

RESUMO

Cyclorasins 9A5 and 9A54 are 11-mer cyclic peptides that inhibit the Ras-Raf protein interaction. The peptides share a cell-penetrating peptide (CPP)-like motif; however, only cyclorasin 9A5 can permeabilize cells to exhibit strong cell-based activity. To unveil the structural origin underlying their distinct cellular permeabilization activities, we compared the three-dimensional structures of cyclorasins 9A5 and 9A54 in water and in the less polar solvent dimethyl sulfoxide (DMSO) by solution NMR. We found that cyclorasin 9A5 changes its extended conformation in water to a compact amphipathic structure with converged aromatic residues surrounded by Arg residues in DMSO, which might contribute to its cell permeabilization activity. However, cyclorasin 9A54 cannot adopt this amphipathic structure, due to the steric hindrance between two neighboring bulky amino-acid sidechains, Tle-2 and dVal-3. We also found that the bulkiness of the sidechains at positions 2 and 3 negatively affects the cell permeabilization activities, indicating that the conformational plasticity that allows the peptides to form the amphipathic structure is important for their cell permeabilization activities.


Assuntos
Peptídeos Cíclicos/farmacologia , Quinases raf/antagonistas & inibidores , Proteínas ras/antagonistas & inibidores , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Conformação Proteica , Quinases raf/química , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo
15.
Respir Res ; 20(1): 194, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443651

RESUMO

BACKGROUND: The aim of this study was to investigate the effects and mechanisms of ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7) on lung cancer cells. METHODS: The expression characteristics of ENTPD7 and its effect on the survival of lung cancer patients were analyzed by referring to The Cancer Genome Atlas (TCGA). Streptavidin-peroxidase (SP) staining was performed to detect the ENTPD7 protein in tumor tissues and adjacent tissues. Plasmid transfection technology was also applied to silence ENTPD7 gene. Crystal violet staining and flow cytometry were performed to determine cell proliferation and apoptosis. Tumor-bearing nude mice model was established to investigate the effect of sh-ENTPD7 on tumors. RESULTS: The results showed that patients with low levels of ENTPD7 had higher survival rates. ENTPD7 was up-regulated in lung cancer tissues and cells. Down-regulation of the expression of ENTPD7 inhibited proliferation but promoted apoptosis of lung cancer cell. Silencing ENTPD7 also inhibited the expression levels of Ras and Raf proteins and the phosphorylation of mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK). Tumor-bearing nude mice experiments showed that silencing ENTPD7 had an inhibitory effect on lung cancer cells. CONCLUSIONS: ENTPD7 was overexpressed in lung cancer cells. Down-regulating ENTPD7 could inhibit lung cancer cell proliferation and promote apoptosis via inhibiting the Ras/Raf/MEK/ERK pathway.


Assuntos
Apirase/antagonistas & inibidores , Apirase/genética , Neoplasias Pulmonares/terapia , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Animais , Apoptose , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Plasmídeos , Análise de Sobrevida , Quinases raf/antagonistas & inibidores , Quinases raf/genética , Proteínas ras/efeitos dos fármacos , Proteínas ras/genética
16.
BMC Cancer ; 19(1): 502, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138163

RESUMO

BACKGROUND: Every biological experiment requires a choice of throughput balanced against physiological relevance. Most primary drug screens neglect critical parameters such as microenvironmental conditions, cell-cell heterogeneity, and specific readouts of cell fate for the sake of throughput. METHODS: Here we describe a methodology to quantify proliferation and viability of single cells in 3D culture conditions by leveraging automated microscopy and image analysis to facilitate reliable and high-throughput measurements. We detail experimental conditions that can be adjusted to increase either throughput or robustness of the assay, and we provide a stand alone image analysis program for users who wish to implement this 3D drug screening assay in high throughput. RESULTS: We demonstrate this approach by evaluating a combination of RAF and MEK inhibitors on melanoma cells, showing that cells cultured in 3D collagen-based matrices are more sensitive than cells grown in 2D culture, and that cell proliferation is much more sensitive than cell viability. We also find that cells grown in 3D cultured spheroids exhibit equivalent sensitivity to single cells grown in 3D collagen, suggesting that for the case of melanoma, a 3D single cell model may be equally effective for drug identification as 3D spheroids models. The single cell resolution of this approach enables stratification of heterogeneous populations of cells into differentially responsive subtypes upon drug treatment, which we demonstrate by determining the effect of RAK/MEK inhibition on melanoma cells co-cultured with fibroblasts. Furthermore, we show that spheroids grown from single cells exhibit dramatic heterogeneity to drug response, suggesting that heritable drug resistance can arise stochastically in single cells but be retained by subsequent generations. CONCLUSION: In summary, image-based analysis renders cell fate detection robust, sensitive, and high-throughput, enabling cell fate evaluation of single cells in more complex microenvironmental conditions.


Assuntos
Fibroblastos/citologia , Processamento de Imagem Assistida por Computador/métodos , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Esferoides Celulares/citologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Análise de Célula Única , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Microambiente Tumoral , Quinases raf/antagonistas & inibidores
17.
Bioorg Chem ; 93: 103349, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31627060

RESUMO

In the present work, a novel series of B-RAF kinase inhibitors having imidazo[2,1-b]oxazole scaffold was designed and synthesized based on the structures of the well-known B-RAF inhibitors. The twenty two final compounds were tested over A375 and SKMEL28 cell lines to determine the primary cytotoxic activity of these compounds, and their activities were compared with that of sorafenib as a standard. Compounds 11c, 11e, 11o, 11q, 11r, and 11u exhibited higher cellular activity compared to sorafenib with IC50 values of 7.25, 8.03, 9.81, 8.47, 4.70, and 9.04 µM, respectively and 10.38 µM for sorafenib. In addition, the target compounds were screened for their anticancer activity by the NCI-60 cell line assay. Compounds 11v and 11u were the most active compounds with percent inhibition reached 95.99% for 11v and 87.03% for 11u over K562 cell line at 10 µM concentration. Compound 11v was selected for 5-dose test mode. Furthermore, the kinase inhibitory activities of 11a, 11c, 11e, 11i, 11o, 11q, 11r, 11u, and 11v were determined against wild-type B-RAF, V600E-B-RAF, and RAF1. Compound 11o was the most potent against V600E-B-RAF with IC50 34 nM followed by 11q and 11u with IC50 92 and 93 nM, respectively.


Assuntos
Desenho de Fármacos , Imidazóis/química , Oxazóis/química , Oxazóis/farmacologia , Quinases raf/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Oxazóis/síntese química
18.
Biochem J ; 475(15): 2417-2433, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29934491

RESUMO

Sulfation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulfate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulfotransferases, including HS 2-O-sulfotransferase (HS2ST), which transfers sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the 2-O position of α-l-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulfation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors. In the present paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalysed oligosaccharide sulfation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set, to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell-permeable compounds in vitro, including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with the present study, we demonstrated that tyrosyl protein sulfotranferases are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small-molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulfation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST.


Assuntos
Proteínas Aviárias/química , Heparitina Sulfato/química , Oligossacarídeos/química , Inibidores de Proteínas Quinases/química , Sulfotransferases/química , Quinases raf/antagonistas & inibidores , Animais , Proteínas Aviárias/genética , Galinhas , Heparitina Sulfato/farmacologia , Humanos , Oligossacarídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfotransferases/genética , Suínos , Quinases raf/química
19.
Proc Natl Acad Sci U S A ; 113(43): 12126-12131, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27790998

RESUMO

Extracellular matrix stiffness influences biological functions of some tumors. However, it remains unclear how cancer subtypes with different oncogenic mutations respond to matrix stiffness. In addition, the relevance of matrix stiffness to in vivo tumor growth kinetics and drug efficacy remains elusive. Here, we designed 3D hydrogels with physical parameters relevant to hematopoietic tissues and adapted them to a quantitative high-throughput screening format to facilitate mechanistic investigations into the role of matrix stiffness on myeloid leukemias. Matrix stiffness regulates proliferation of some acute myeloid leukemia types, including MLL-AF9+ MOLM-14 cells, in a biphasic manner by autocrine regulation, whereas it decreases that of chronic myeloid leukemia BCR-ABL+ K-562 cells. Although Arg-Gly-Asp (RGD) integrin ligand and matrix softening confer resistance to a number of drugs, cells become sensitive to drugs against protein kinase B (PKB or AKT) and rapidly accelerated fibrosarcoma (RAF) proteins regardless of matrix stiffness when MLL-AF9 and BCR-ABL are overexpressed in K-562 and MOLM-14 cells, respectively. By adapting the same hydrogels to a xenograft model of extramedullary leukemias, we confirm the pathological relevance of matrix stiffness in growth kinetics and drug sensitivity against standard chemotherapy in vivo. The results thus demonstrate the importance of incorporating 3D mechanical cues into screening for anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Antineoplásicos/classificação , Linhagem Celular Tumoral , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Dureza , Ensaios de Triagem em Larga Escala , Humanos , Hidrogéis/química , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Oligopeptídeos/farmacologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/antagonistas & inibidores , Quinases raf/genética , Quinases raf/metabolismo
20.
Trends Biochem Sci ; 39(10): 465-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25239057

RESUMO

Mammalian cells have multiple regulatory mechanisms to deal with perturbations in cellular homeostasis, including feedback loops and crosstalk between the major signaling pathways. While these mechanisms are critically required to help cells survive under dynamic physiological circumstances, they also pose an impediment to the effective treatment of cancer. In this review, we describe what has been learned about interactions between receptor tyrosine kinase-dependent signaling pathways, and how this knowledge can be used to design rational and more effective combination therapies for cancer.


Assuntos
Neoplasias/tratamento farmacológico , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Antineoplásicos/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Quimioterapia Combinada/métodos , Retroalimentação , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Terapia de Alvo Molecular , Oncogenes/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Quinases raf/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA