Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.499
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(43): 12162-12167, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791003

RESUMO

G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 µs in total) to investigate structural dynamics of the M2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.


Assuntos
Arecolina/química , Isoxazóis/química , Compostos de Amônio Quaternário/química , Quinuclidinil Benzilato/química , Receptor Muscarínico M2/agonistas , Anticorpos de Domínio Único/química , Arecolina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Isoxazóis/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Compostos de Amônio Quaternário/metabolismo , Quinuclidinil Benzilato/metabolismo , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Anticorpos de Domínio Único/metabolismo , Termodinâmica
2.
J Neurochem ; 147(3): 361-379, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102779

RESUMO

Complete thoracic spinal cord transection (SCT) impairs excitatory cholinergic inputs to ankle extensor (soleus; Sol) but not to flexor (tibialis anterior; TA) α-motoneurons (MNs) modifiable by locomotor training applied post-transection. The purpose of this study was to investigate whether Sol and TA MNs adapt to changes in cholinergic environment by differential regulation of their muscarinic receptors M2 (M2R). We examined Chrm2 (M2R gene) transcript level, high-affinity 3-quinuclidinyl benzilate-3 H ([3 H]QNB) ligand binding, distribution and density of M2R immunolabeling in lumbar (L) segments in intact and SCT rats, with or without inclusion of 5-week treadmill locomotor training. We show that at the second week after SCT the levels of Chrm2 transcript are reduced in the L3-6 segments, with [3 H]QNB binding decreased selectively in the L5-6 segments, where ankle extensor MNs are predominantly located. At 5 weeks after SCT, [3 H]QNB binding differences between the L3-4 and L5-6 segments are maintained, accompanied by higher density of M2R immunolabeling in the plasma membrane and cytoplasm of TA than Sol MNs and by enriched synaptic versus extrasynaptic M2R pools (52% TA vs. 25% Sol MNs). Training normalized M2R in TA MNs, improved locomotion, and reduced frequency of clonic episodes. Our findings indicate higher sensitivity of TA than Sol MNs to cholinergic signaling after SCT, which might shorten flexor twitches duration and contribute to generation of clonic movements. Synaptic enrichment in M2R density may reflect a compensatory mechanism activated in TA and Sol MNs to different extent in response to reduced strength of cholinergic signaling to each MN pool. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Locomoção , Neurônios Motores/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/métodos , Receptor Muscarínico M2/biossíntese , Receptor Muscarínico M2/genética , Traumatismos da Medula Espinal/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Citoplasma/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Membro Posterior/inervação , Masculino , Quinuclidinil Benzilato/metabolismo , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação
3.
Nature ; 482(7386): 547-51, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22278061

RESUMO

The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.


Assuntos
Antagonistas Colinérgicos/química , Antagonistas Colinérgicos/farmacologia , Quinuclidinil Benzilato/análogos & derivados , Quinuclidinil Benzilato/química , Quinuclidinil Benzilato/farmacologia , Receptor Muscarínico M2/antagonistas & inibidores , Receptor Muscarínico M2/química , Acetilcolina/análogos & derivados , Acetilcolina/química , Acetilcolina/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Regulação Alostérica , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Antagonistas Colinérgicos/metabolismo , Cristalografia por Raios X , Evolução Molecular , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Quinuclidinil Benzilato/metabolismo , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Tirosina/química , Tirosina/metabolismo
4.
J Recept Signal Transduct Res ; 35(4): 319-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053513

RESUMO

Muscarinic agonists induce the activation of the airway smooth muscle (ASM) leading to smooth muscle contraction, important in asthma. This activation is mediated through M2/M3 muscarinic acetylcholine receptors (mAChRs). Muscarinic receptor activity, expressed as [(3)H]QNB binding at plasma membranes from bovine tracheal smooth muscle (BTSM), increased with cGMP and was augmented significantly cGMP plus ATP but diminished with the PKG-II inhibitor, Sp-8-pCPT-cGMPS. The [(3)H]-QNB binding was accelerated by okadaic acid, (OKA), a protein phosphatase (PPase) inhibitor. These two results indicated the involvement of a membrane-bound PPase. Moreover, a cGMP-dependent-[(32)P]γATP phosphorylation of plasma membranes from BTSM was stimulated at low concentrations of muscarinic agonist carbamylcholine (CC). However, higher amounts of CC produced a significant decrement of [(32)P]-labeling. A selective M3mAChR antagonist, 4-DAMP produced a dramatic inhibition of the basal and CC-dependent [(32)P]-labeling. The [(32)P] labeled membrane sediments were detergent solubilized and immunoprecipitated with specific M2/M3mAChR antibodies. The M3mAChR immuno-precipitates exhibited the highest cGMP-dependent [(32)P]-labeling, indicating it is a PKG-II substrate. Experiments using synthetic peptides from the C-terminal of the third intracellular loop (i3) of both M2mAChR (356-369) and M3mAChR (480-493) as external PKG-II substrates resulted in the i3M3-peptide being heavily phosphorylated. These results indicated that PKG-II phosphorylated the M3mAChR at the i3M3 domain ((480)MSLIKEKK(485)), suggesting that Ser(481) may be the target. Finally, this phosphorylation site seems to be regulated by a membrane-bound PPase linked to muscarinic receptor. These findings are important to understand the role of M3mAChR in the patho-physiology of ASM involved in asthma and COPD.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Asma/etiologia , Asma/fisiopatologia , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Retroalimentação Fisiológica , Humanos , Técnicas In Vitro , Agonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Quinuclidinil Benzilato/metabolismo , Quinuclidinil Benzilato/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Tionucleotídeos/farmacologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo
5.
Mol Membr Biol ; 30(8): 403-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24175711

RESUMO

Muscarinic acetylcholine receptors MAChRs from Bovine Tracheal Smooth Muscle (BTSM) plasma membranes are responsible for the cGMP rise and signal-amplitude peaks associated with smooth muscle contraction present in bronchial asthma. These MAChRs bind [(3)H]QNB and exhibit the classic G Protein Coupled-Receptor (GPCR) behavior towards muscarinic agonist and antagonists that is sensitive to sensitive to GTP analogs. Interestingly, the [(3)H]QNB binding activity was stimulated by cGMP and ATP, and was enhanced by IBMX and Zaprinast, inhibitors of cGMP-PDE. Cyclic GMP plus ATP affected the agonist-antagonist muscarinic binding activities. Thus, the high affinity agonist (Carbamylcholine) binding sites disappeared, whereas, 4-DAMP, a M3 selective antagonist displayed an additional high affinity-binding site. In contrast, non-selective (atropine) and M2-selective (methoctramine and gallamine) antagonists revealed one low binding site. Moreover, the 4-DAMP-mustard alkylation of the MAChRs blocked the cGMP effect indicating that the M3AChR is the main receptor target of cGMP. Interestingly, these cGMP effects were potentiated by an activator (Sp-8-pCPT-cGMPS), and diminished by an inhibitor (Rp-8-pCPT-CGMPS), of cGMP-dependent protein kinase (PKG-II), which was detected by Western blotting using specific PKG II antibodies. Finally, plasma membrane M3AChRs were phosphorylated in a cGMP-dependent manner and this novel post-translational reversible modification at M3AChRs may act as a feedback mechanism to terminate the cGMP dependent muscarinic signal transduction cascades at the sarcolema of BTSM.


Assuntos
GMP Cíclico/metabolismo , Músculo Liso/metabolismo , Receptores Muscarínicos/metabolismo , Transdução de Sinais , Traqueia/metabolismo , Animais , Bovinos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteína Quinase Dependente de GMP Cíclico Tipo II/imunologia , Retroalimentação Fisiológica , Agonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/metabolismo , Piperidinas/metabolismo , Processamento de Proteína Pós-Traducional , Quinuclidinil Benzilato/metabolismo
6.
J Pharmacol Toxicol Methods ; 127: 107518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797366

RESUMO

Receptor occupancy is an indicator of antipsychotic efficacy and safety. It is desirable to simultaneously determine the occupancy of multiple brain receptors as an indicator of the efficacy and central side effects of antipsychotics because many of these drugs have binding affinities for various receptors, such as dopamine 2 (D2), histamine 1 (H1), and muscarinic acetylcholine (mACh) receptors. The purpose of this study was to develop a method for the simultaneous measurement of multiple receptor occupancies in the brain by the simultaneous quantification of unlabeled tracer levels using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rats were pre-administered with a vehicle, displacer, or olanzapine, and mixed solutions of raclopride, doxepin, and 3-quinuclidinyl benzilate (3-QNB) were administered (3, 10, and 30 µg/kg). The brain tissue and plasma tracer concentrations were quantified 45 min later using LC-MS/MS, and the binding potential was calculated. The highest binding potential was observed at 3 µg/kg raclopride, 10 µg/kg doxepin, and 30 µg/kg 3-QNB. Tracer-specific binding at these optimal tracer doses in the cerebral cortex was markedly reduced by pre-administration of displacers. D2, H1, and mACh receptor occupancy by olanzapine increased in a dose-dependent manner, reaching 70-95%, 19-43%, and 12-45%, respectively, at an olanzapine dose range of 3-10 mg/kg. These results suggest that simultaneous determination of in vivo D2, H1, and mACh receptor occupancy is possible using LC-MS/MS.


Assuntos
Antipsicóticos , Olanzapina , Ratos Sprague-Dawley , Receptores de Dopamina D2 , Receptores Histamínicos H1 , Receptores Muscarínicos , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Ratos , Masculino , Antipsicóticos/administração & dosagem , Cromatografia Líquida/métodos , Receptores de Dopamina D2/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Olanzapina/farmacocinética , Olanzapina/administração & dosagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Benzodiazepinas/análise , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacocinética , Racloprida/metabolismo , Doxepina/farmacocinética , Quinuclidinil Benzilato/metabolismo , Relação Dose-Resposta a Droga
7.
Basic Clin Pharmacol Toxicol ; 129(3): 246-255, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34145973

RESUMO

3-Quinuclidinyl benzilate (BZ) ranks among incapacitating military warfare agents. It acts as a competitive inhibitor on muscarinic receptors leading to non-lethal mental impairment. The present study aimed to investigate toxicokinetics of BZ in rats. Moreover, BZ can be exploited to produce a pharmacological model of Alzheimer's disease; thus, this paper focuses mainly on the BZ distribution to the brain. Wistar rats were administered i.p. with BZ (2 and 10 mg/kg). The BZ concentration was determined using LC-MS/MS in plasma, urine, bile, brain, kidney and liver. The sample preparation was based on a solid phase extraction (liquids) or protein precipitation (organ homogenates). The plasma concentration peaked at 3 min (204.5 ± 55.4 and 2185.5 ± 465.4 ng/ml). The maximal concentration in the brain was reached several minutes later. Plasma elimination half-life was 67.9 ± 3.4 in the 2 mg/kg group and 96.6 ± 27.9 in the 10 mg/kg group. BZ concentrations remained steady in the brain, with slow elimination (t1/2 506.9 ± 359.5 min). Agent BZ is excreted mainly via the urine. Steady BZ concentration in the brain could explain the previously published duration of the significant impairment in passive avoidance tasks in rats after an injection of BZ.


Assuntos
Antagonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/toxicidade , Quinuclidinil Benzilato/metabolismo , Quinuclidinil Benzilato/toxicidade , Animais , Bile/metabolismo , Encéfalo/metabolismo , Masculino , Metaboloma , Antagonistas Muscarínicos/sangue , Antagonistas Muscarínicos/urina , Quinuclidinil Benzilato/sangue , Quinuclidinil Benzilato/urina , Ratos , Ratos Wistar , Toxicocinética , Urina
8.
J Pharmacol Sci ; 112(4): 444-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20424384

RESUMO

Muscarinic acetylcholine receptors (mAChRs) of rat cerebral cortex were evaluated using a tissue segment radioligand binding assay. [(3)H]-Quinuclidinyl benzilate (QNB, a hydrophobic ligand) specifically bound to mAChRs in the cortex segments. The total mAChRs level was approximately 2,000 fmol/mg protein, which was estimated after incubation for 120 min at 37 degrees C or for 8 h at 4 degrees C. These mAChRs were a mixture of high- and low-affinity sites for N-methylscopolamine (NMS) in a 70:30 ratio. In contrast, only a single high-affinity site for NMS was detected following incubation for 30 min at 37 degrees C, whose abundance was about 70% of that of the total mAChRs. Atropine showed a single affinity for mAChRs under all conditions. These indicate that mAChRs are constitutively expressed not only on plasma membrane sites but also at intracellular sites in rat cerebral cortex and that the receptors at both sites have different affinities for NMS. Acetylcholine completely inhibited [(3)H]-QNB binding to both mAChRs without any change in the subcellular distribution, suggesting the possibility that acetylcholine can access, and bind to, both mAChRs in intact tissue. Two different affinity states for acetylcholine were detected only in plasma membrane mAChRs at 37 degrees C. The present study demonstrates a unique subcellular distribution, and distinct pharmacological profiles, of mAChRs in rat cerebral cortex.


Assuntos
Córtex Cerebral/metabolismo , Receptores Muscarínicos/metabolismo , Acetilcolina/farmacologia , Animais , Atropina/farmacologia , Córtex Cerebral/efeitos dos fármacos , Técnicas In Vitro , Masculino , N-Metilescopolamina/farmacologia , Quinuclidinil Benzilato/metabolismo , Ensaio Radioligante , Ratos , Ratos Wistar
9.
J Neurochem ; 108(3): 821-34, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19187099

RESUMO

Neurotransmitters are considered part of the signaling system active in nervous system development and we have previously reported that acetylcholine (ACh) is capable of enhancing neuronal differentiation in cultures of sensory neurons and N18TG2 neuroblastoma cells. To study the mechanism of ACh action, in this study, we demonstrate the ability of choline acetyltransferase-transfected N18TG2 clones (e.g. 2/4 clone) to release ACh. Analysis of muscarinic receptors showed the presence of M1-M4 subtypes and the activation of both IP(3) and cAMP signal transduction pathways. Muscarinic receptor activation increases early growth response factor-1 (EGR-1) levels and treatments with agonists, antagonists, and signal transduction enzyme inhibitors suggest a role for M3 subtype in EGR-1 induction. The role of EGR-1 in the enhancement of differentiation was investigated transfecting in N18TG2 cells a construct for EGR-1. EGR-1 clones show increased neurite extension and a decrease in Repressor Element-1 silencing transcription factor (REST) expression: both these features have also been observed for the 2/4 clone. Transfection of this latter with EGR zinc-finger domain, a dominant negative inhibitor of EGR-1 action, increases REST expression, and decreases fiber outgrowth. The data reported suggest that progression of the clone 2/4 in the developmental program is dependent on ACh release and the ensuing activation of muscarinic receptors, which in turn modulate the level of EGR-1 and REST transcription factors.


Assuntos
Acetilcolina/farmacologia , Neoplasias Encefálicas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Agonistas Muscarínicos , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Receptores Muscarínicos/efeitos dos fármacos , Proteínas Repressoras/biossíntese , Acetilcolina/metabolismo , Acetilcolina/fisiologia , Ligação Competitiva/efeitos dos fármacos , Western Blotting , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Tamanho Celular , AMP Cíclico/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Humanos , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Quinuclidinil Benzilato/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção
10.
J Pharmacol Exp Ther ; 328(3): 893-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19029429

RESUMO

Recent studies have described muscarinic receptors on the mucosa and the detrusor of the human urinary bladder. Muscarinic receptor antagonists are effective in the treatment of overactive bladder (OAB), but their site(s) of action and actual therapeutic target are unclear. Our aim was to compare, in human bladder mucosa and detrusor, the radioligand binding characteristics of newer, clinically effective agents: darifenacin, its hydroxylated metabolite UK-148,993, fesoterodine, solifenacin, tolterodine, and trospium. Specimens were collected from asymptomatic patients (50-72 years old) undergoing open bladder surgery. Radioligand binding studies with the muscarinic antagonist [3H]quinuclidinyl benzilate (QNB) were performed separately on detrusor and mucosal membranes. All antagonists displayed high affinity when competing for [3H]QNB binding in both detrusor and mucosa. Inhibition constants were also obtained for all antagonists against individual muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Here, fesoterodine showed anomalous binding results, suggesting that some conversion to its metabolite had occurred. Global nonlinear regression analysis of bladder binding data with five antagonists demonstrated 82% low-affinity sites in mucosa and 78% low-affinity sites in detrusor, probably representing M(2)/M(4) receptors. There was an excellent correlation (r(2) = 0.99) of low-affinity global estimates between detrusor and mucosa, whereas the corresponding high-affinity estimates ( approximately 20% of sites) were dissimilar. In conclusion, commonly used and clinically effective muscarinic receptor antagonists bind to receptors located on the bladder mucosa and the detrusor, providing support for the hypothesis that muscarinic receptors in the mucosa may represent an important site of action for these agents in OAB.


Assuntos
Mucosa/metabolismo , Antagonistas Muscarínicos/farmacologia , Receptores Muscarínicos/metabolismo , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária/metabolismo , Idoso , Compostos Benzidrílicos/farmacologia , Benzofuranos/farmacologia , Cresóis/farmacologia , Cistectomia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenilpropanolamina/farmacologia , Prostatectomia , Pirrolidinas/farmacologia , Quinuclidinas/farmacologia , Quinuclidinil Benzilato/metabolismo , Ensaio Radioligante , Succinato de Solifenacina , Tetra-Hidroisoquinolinas/farmacologia , Tartarato de Tolterodina
11.
J Cell Biol ; 91(3 Pt 1): 781-9, 1981 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7328121

RESUMO

Electrolyte and fluid secretion by the avian salt gland is regulated by activation of muscarinic acetylcholine receptors (R). In this study, these receptors were characterized and quantitated in homogenates of salt gland from domestic ducks adapted to conditions of low (freshwater, FW) and high (saltwater, SW) salt stress using the cholinergic antagonist [3H]-quinuclidinyl benzilate (QNB). Specific binding of the antagonist to receptors in both FW- and SW-adapted glands reveals a single population of high affinity binding sites (KdFW = 40.1 +/- 3.0 pM; KdSW = 35.1 +/- 2.1 pM). Binding is saturable; RLmaxFW = 1.73 +/- 0.10 fmol/micrograms DNA; RLmaxSW = 4.16 +/- 0.31 fmol/micrograms DNA (where L is [3H]QNB and RL the high affinity complex). Calculated average cellular receptor populations of 5,800 sites/cell in FW-adapted glands and 14,100 sites/cell in SW-adapted glands demonstrate that upward regulation of acetylcholine receptors in the secretory epithelium follows chronic salt stress. The receptor exhibits typical pharmacological specificities for muscarinic cholinergic antagonists (QNB, atropine, scopolamine) and agonists (oxotremorine, methacholine, carbachol). In addition, the loop diuretic furosemide, which interferes with ion transport processes in the salt gland, competitively inhibits [3H]QNB binding. Preliminary studies of furosemide effects on [3H]QNB binding to rat exorbital lacrimal gland membranes showed a similar inhibition, although the diuretic had no effect on antagonist binding to rat brain or atrial receptors.


Assuntos
Receptores Colinérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Glândula de Sal/metabolismo , Adaptação Fisiológica , Animais , Ligação Competitiva , Furosemida/farmacologia , Hipertrofia , Microscopia Eletrônica , Quinuclidinil Benzilato/metabolismo , Glândula de Sal/patologia , Glândula de Sal/fisiologia , Equilíbrio Hidroeletrolítico
12.
J Cell Biol ; 86(1): 6-20, 1980 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-6968315

RESUMO

At many synapses, neurotransmitter receptor molecules in the postsynaptic membrane are selectively concentrated at a site directly opposite the presynaptic nerve terminal. In this paper, I examine acetylcholine (ACh) receptor distribution in cardiac muscle in relatin to the distribution of presynaptic axonal varicosities. The density of varicosities, stained with zinc iodide and osmium, ranges from 0.7/100 micrometer 2 in ventricle to 1.9/100 micrometer 2 in sinus venosus. It is estimated that < 3% of the muscle surface is apposed to presynaptic varicosities. ACh receptors, however, are randomly distributed on the muscle surface and not concentrated in patche. ACh receptor distribution was determined by iontophoretic application of ACh and mapping of ACh sensitivity and by [3H]QNB (quinuclidinyl benzilate) binding and autoradiography [3H]QNB binds with > 90% specificity to a single, saturable, high-affinity (Kd = 11.1 pM at 21 degrees C) class of binding sites. QNB binding sites are thought to correspond to ACh receptors, because muscarinic agonists compete for [3H]QNB binding and produce a hyperpolarization in the sinus venosus with the same order of potency. The concentrations of QNB binding sites in the sinus and atria are about twice those found in ventricle. The receptor density corresponds to the density of innervation measured by zinc iodide and osmium staining. Autoradiographic experiments show that [3H]QNB binding sites are distributed randomly over the entire surface of the muscle. This distribution of ACh receptors in cardiac muscle has important implications for the function of the cardiac neuroeffector junction.


Assuntos
Coração/inervação , Receptores Colinérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Acetilcolina/farmacologia , Animais , Coração/fisiologia , Ligantes , Potenciais da Membrana/efeitos dos fármacos , Terminações Nervosas/metabolismo , Quinuclidinil Benzilato/metabolismo , Rana pipiens , Membranas Sinápticas/metabolismo , Xenopus
13.
J Cell Biol ; 100(4): 1073-81, 1985 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2858487

RESUMO

In this report we characterize muscarinic cholinergic receptor on embryonic cells. We established dose-response curves by fluorometric measurement of Ca2+ mobilization in cell suspensions of whole chick embryos stage 23/24. Ca2+ mobilization was quantitated by standardization of chlorotetracycline (CTC) fluorescence changes after stimulation with muscarinic agonists. We determined ED50 values for the agonists acetylcholine and carbachol as 3.4 X 10(-6) and 2.7 X 10(-5) M, respectively. Pilocarpine and oxotremorine were found to act as reversible competitive antagonists with inhibition constants (Kl) of 5.0 X 10(-6) and 1.4 X 10(-6) M, respectively. Bethanechol, which induced only 23% of the maximal effect obtained by acetylcholine, was a partial agonist with an ED50 of 4.8 X 10(-4) M. Its antagonistic component is expressed by an inhibition constant of 1.9 X 10(-4) M. In parallel, binding studies were performed in a competition assay with [3H]-quinuclidinylbenzilate. For the agonists acetylcholine and carbachol, binding parameters were best fitted by a "two binding-sites model." Comparison with dose-response curves indicated that Ca2+ mobilization was triggered via the high-affinity binding site. The inhibition constants of antagonists derived from the shift of dose-response curves corresponded to the fitted KD values of the binding studies when a "one binding-site model" was applied. Combination of dose-response and binding data showed close proportionality between receptor occupancy and calcium mobilization. No spare receptors were present.


Assuntos
Cálcio/metabolismo , Receptores Muscarínicos/fisiologia , Acetilcolina/farmacologia , Animais , Betanecol , Compostos de Betanecol/farmacologia , Ligação Competitiva , Carbacol/farmacologia , Embrião de Galinha , Relação Dose-Resposta a Droga , Oxotremorina/farmacologia , Pilocarpina/farmacologia , Quinuclidinil Benzilato/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Espectrometria de Fluorescência
14.
Science ; 269(5229): 1446-50, 1995 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-7660131

RESUMO

Muscarinic cholinergic activity in the human arcuate nucleus at the ventral medullary surface is postulated to be involved in cardiopulmonary control. A significant decrease in [3H]quinuclidinyl benzilate binding to muscarinic receptors in the arcuate nucleus is now shown to occur in sudden infant death syndrome (SIDS) infants, compared to infants dying acutely of known causes. In infants with chronic oxygenation abnormalities, binding is low in other nuclei, as well as in the arcuate nucleus. The binding deficit in the arcuate nucleus of SIDS infants might contribute to a failure of responses to cardiopulmonary challenges during sleep.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Quinuclidinil Benzilato/metabolismo , Receptores Muscarínicos/metabolismo , Morte Súbita do Lactente/etiologia , Doença Aguda , Autorradiografia , Tronco Encefálico/metabolismo , Doença Crônica , Humanos , Hipóxia/metabolismo , Lactente , Recém-Nascido
15.
Science ; 223(4633): 291-3, 1984 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-6608148

RESUMO

A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.


Assuntos
Química Encefálica , Receptores Muscarínicos/análise , Animais , Gatos , Núcleo Caudado/análise , Cerebelo/análise , Cães , Humanos , Putamen/análise , Quinuclidinas/metabolismo , Quinuclidinil Benzilato/metabolismo , Ensaio Radioligante , Ratos , Receptores Muscarínicos/metabolismo , Tomografia Computadorizada de Emissão
16.
Science ; 236(4801): 600-5, 1987 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-3107123

RESUMO

A partial amino acid sequence obtained for porcine atrial muscarinic acetylcholine receptor was used to isolate complementary DNA clones containing the complete receptor coding region. The deduced 466-amino acid polypeptide exhibits extensive structural and sequence homology with other receptors coupled to guanine nucleotide binding (G) proteins (for example, the beta-adrenergic receptor and rhodopsins); this similarity predicts a structure of seven membrane-spanning regions distinguished by the disposition of a large cytoplasmic domain. Stable transfection of the Chinese hamster ovary cell line with the atrial receptor complementary DNA leads to the binding of muscarinic antagonists in these cells with affinities characteristic of the M2 receptor subtype. The atrial muscarinic receptor is encoded by a unique gene consisting of a single coding exon and multiple, alternatively spliced 5' noncoding regions. The atrial receptor is distinct from the cerebral muscarinic receptor gene product, sharing only 38% overall amino acid homology and possessing a completely nonhomologous large cytoplasmic domain, suggesting a role for the latter region in differential effector coupling.


Assuntos
Receptores Muscarínicos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , DNA/genética , Éxons , Proteínas de Ligação ao GTP/metabolismo , Átrios do Coração/análise , Técnicas de Imunoadsorção , Proteínas de Membrana , Peso Molecular , Hibridização de Ácido Nucleico , Fragmentos de Peptídeos/metabolismo , Quinuclidinil Benzilato/metabolismo , Receptores Muscarínicos/metabolismo , Homologia de Sequência do Ácido Nucleico , Suínos , Transfecção
17.
Mol Pharmacol ; 74(4): 1119-31, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18628403

RESUMO

The M4 muscarinic acetylcholine (ACh) receptor (mAChR) is a potential therapeutic target but characterized by a lack of subtype-selective ligands. We recently generated "designer receptors exclusively activated by a designer drug" (DREADDs), which contained mutations of two conserved orthosteric-site residues (Y113C/A203G in the M4 mAChR) that caused a loss of ACh activity but a gain in responsiveness to clozapine-N-oxide (CNO). The current study characterized the interactions of the wild type and the M4 DREADD with a range of agonists, antagonists, and the recently discovered M4 mAChR allosteric potentiator, 3-amino-5-chloro-6-methoxy-4-methyl-thieno[2,3-b]pyridine-2-carboxylic acid cyclopropylamide (LY2033298). LY2033298 displayed positive binding cooperativity with ACh, neutral cooperativity with the antagonist, [3H]quinuclidinyl benzilate, and agonism for activation of phosphorylated extracellular signal-regulated kinase (ERK) 1/2 at the wild-type M4 mAChR. LY2033298's cooperativity with clozapine or CNO was weakly positive with respect to binding but profoundly negative with respect to LY2033298 signaling. Although the DREADD mutations increased the binding and function of clozapine-like compounds, all other agonists lost the ability to activate the mutant; for the orthosteric agonists ACh and pilocarpine, this was due partly to a reduced affinity, whereas the affinity of LY2033298 or the atypical agonist 4-I-[3-chlorophenyl]carbamoyloxy)-2-butynyltrimethylammnonium chloride was unaltered. The interaction between LY2033298 and clozapine-like compounds reverted to neutral cooperativity on the DREADD, whereas LY2033298 caused a striking functional rescue of ACh potency and efficacy at the DREADD. These results provide conclusive evidence for the retention of a functional allosteric site on the M4 DREADD and highlight a role for residues Tyr113 and Ala203 in the transmission of cooperativity.


Assuntos
Ácidos Nicotínicos/metabolismo , Ácidos Nicotínicos/farmacologia , Receptor Muscarínico M4/fisiologia , Tiofenos/metabolismo , Tiofenos/farmacologia , Acetilcolina/química , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Regulação Alostérica/fisiologia , Sítio Alostérico/fisiologia , Animais , Células CHO , Clozapina/análogos & derivados , Clozapina/química , Clozapina/metabolismo , Clozapina/farmacologia , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Estrutura Molecular , Mutação , Ácidos Nicotínicos/química , Ácidos Nicotínicos/genética , Fosforilação/efeitos dos fármacos , Quinuclidinil Benzilato/metabolismo , Quinuclidinil Benzilato/farmacologia , Ensaio Radioligante , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/antagonistas & inibidores , Transdução de Sinais , Tiofenos/química
18.
J Biomol Screen ; 13(8): 748-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18460694

RESUMO

The measurement of ligand receptor binding parameters for G-protein-coupled receptors is indispensable in the drug discovery process. Traditional ligand receptor binding assays require scale-up of cells and membrane preparations, which is an expensive and time-consuming process. In this report, the authors describe the development of a homogeneous live-cell binding assay for GPCRs using a fluorophore-labeled nonpeptide ligand. The model assay used Cy3B-labeled telenzepine and Chinese hamster ovary cells expressing M1 muscarinic acetylcholine receptors. This homogeneous live-cell fluorescence binding assay format is superior to the traditional binding methods because it measures binding of a ligand to intact receptors on living cells. The assay requires no washing or separation steps, thereby allowing a real-time kinetic readout for the determination of ligand association and dissociation from the intact receptors. The results also suggest that miniaturization is feasible without compromising the data quality.


Assuntos
Bioensaio/métodos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Atropina/metabolismo , Benzenossulfonatos/metabolismo , Células CHO , Carbocianinas/metabolismo , Cricetinae , Cricetulus , Corantes Fluorescentes/metabolismo , Ligantes , Miniaturização , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/metabolismo , Parassimpatolíticos/metabolismo , Pirenzepina/análogos & derivados , Pirenzepina/metabolismo , Quinuclidinil Benzilato/química , Quinuclidinil Benzilato/metabolismo , Receptor Muscarínico M1/metabolismo , Receptores Acoplados a Proteínas G/genética
19.
Eur J Pharmacol ; 588(2-3): 248-50, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18499095

RESUMO

Asymmetries in muscarinic receptor binding were investigated in the hippocampus of female rats by in vitro autoradiography. Coronal sections from 18 brains were incubated with the muscarinic receptor antagonist [3H]quinuclidinyl benzilate, the muscarinic M1 receptor antagonist [3H]pirenzepine, or the muscarinic M2 receptor antagonist [3H]AF-DX 384. Binding of these radioligands was higher on the right than the left side of CA1, CA3, and dentate gyrus in almost every brain confirming hemispheric asymmetry at the neurochemical level. The ovarian hormone, estradiol, did not alter the asymmetry in muscarinic binding. Neurochemical asymmetries within hippocampal subfields may have implications for physiological and behavioral functions.


Assuntos
Hipocampo/metabolismo , Pirenzepina/análogos & derivados , Pirenzepina/metabolismo , Quinuclidinil Benzilato/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Autorradiografia , Feminino , Ratos , Ratos Sprague-Dawley
20.
Naunyn Schmiedebergs Arch Pharmacol ; 377(4-6): 463-71, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18074121

RESUMO

The present study was undertaken to characterize in vivo muscarinic receptors in peripheral tissues (urinary bladder, submaxillary gland, colon, stomach, heart) of mice, and further to evaluate bladder-selectivity of anticholinergic agents to treat overactive bladder. Following i.v. injection of [3H]QNB in mice, the radioactivity in peripheral tissues was exclusively detected as the unchanged form. The in vivo specific [3H]QNB binding in particulate fraction of tissue homogenates of mice showed a pharmacological specificity which characterized muscarinic receptors. Binding parameters (Kd and Bmax) for in vivo specific [3H]QNB binding differed between mouse tissues. Oral administration of oxybutynin attenuated significantly in vivo specific [3H]QNB binding in all tissues of mice. From ratios of AUCurinary bladder/AUCother tissues of time-dependent muscarinic receptor occupancy, oral oxybutynin has been shown to exert little urinary bladder selectivity. Following oral administration of propiverine, there was a significant reduction of in vivo specific [3H]QNB binding in the urinary bladder, colon and submaxillary gland, but not in the stomach and heart. From the ratios of AUCurinary bladder to AUCsubmaxillary gland or AUCheart, it has been shown that oral propiverine exerts higher selectivity to muscarinic receptors in the urinary bladder than in the submaxillary gland and heart. Similarly, tolterodine displayed high selectivity to muscarinic receptors in the urinary bladder than in the submaxillary gland. Thus, the present study has demonstrated that [3H]QNB may be a useful ligand for in vivo characterization of muscarinic receptor binding of anticholinergic agents to treat overactive bladder. Propiverine and tolterodine have exhibited in vivo selectivity of muscarinic receptor in the mouse urinary bladder rather than in the submaxillary gland, and such receptor binding specificity may be the reason of lower incidence of dry mouth.


Assuntos
Antagonistas Colinérgicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Receptores Muscarínicos/efeitos dos fármacos , Bexiga Urinária Hiperativa/tratamento farmacológico , Administração Oral , Animais , Área Sob a Curva , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Benzilatos/farmacologia , Benzilatos/uso terapêutico , Antagonistas Colinérgicos/uso terapêutico , Cresóis/farmacologia , Cresóis/uso terapêutico , Masculino , Ácidos Mandélicos/farmacologia , Ácidos Mandélicos/uso terapêutico , Camundongos , Antagonistas Muscarínicos/uso terapêutico , Fenilpropanolamina/farmacologia , Fenilpropanolamina/uso terapêutico , Ligação Proteica , Quinuclidinil Benzilato/análogos & derivados , Quinuclidinil Benzilato/metabolismo , Receptores Muscarínicos/metabolismo , Fatores de Tempo , Tartarato de Tolterodina , Bexiga Urinária Hiperativa/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA