Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Obes (Lond) ; 45(12): 2638-2647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34446844

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have been implicated in various important biological processes, however, its role in energy balance and obesity remains largely unknown. METHODS: Differentially expressed lncRNAs in the hypothalamus of diet-induced obesity (DIO) mice versus chow-fed mice were identified by RNA sequencing. Lentivirus-mediated overexpression and knockdown of a novel lncRNA, AK044061, were used to assess its role in energy balance and the development of DIO. RNA immunoprecipitation (RIP) and pull down assays were carried out to analyze the interaction between lncRNA AK044061 and RelA, an NF-κB subunit. RESULTS: LncRNA AK044061 was upregulated in the hypothalamus of DIO mice. Acute intracerebroventricular (i.c.v.) infusion of glucose reduced the expression of lncRNA AK044061, whereas an overnight of fasting enhanced its expression. RNA in situ hybridization data showed that AK044061 was expressed in the neurons of the arcuate nucleus (ARC). Lentivirus-mediated overexpression of AK044061 in ARC cells, or in the neurons of the ARC nucleus led to an obesity-like phenotype and related metabolic disorders. Furthermore, knockdown of lncRNA AK044061 in Agouti-related peptide (AgRP)-expressing neurons mitigated DIO and its related metabolic dysregulations. In mechanism, we showed that lncRNA AK044061 was associated with RelA and could enhance the NF-κB reporter activity. The effect of lncRNA AK044061 on energy balance is mediated by NF-κB. CONCLUSIONS: Our findings suggest that excessive lncRNA AK044061 in the ARC nucleus leads to energy imbalance and obesity. LncRNA AK044061 expressed in the AgRP neurons is important in the development of dietary obesity in mice.


Assuntos
Hipotálamo/fisiologia , Obesidade/genética , RNA Longo não Codificante/efeitos adversos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos/metabolismo , RNA Longo não Codificante/uso terapêutico
2.
J Biomed Sci ; 25(1): 4, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338713

RESUMO

BACKGROUND: Aseptic loosening of artificial hip joint is a major complication affecting the long-term use of the artificial hip joint, and is the main cause of joint replacement failure. However, the mechanism of aseptic loosening of THR has not yet cleared. The aim of this study was to investigate the underlying mechanism of DANCR in osteoblast differentiation (OD). METHODS: We detected the expressions of DANCR and FOXO1 in clinical samples and mesenchymal stem cells (MSCs) by qRT-PCR and western blotting. The effects of polymethylmethacrylate (PMMA) on OD of MSCs were examined by alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) staining. The expressions of OD markers were measured by qRT-PCR and western blotting. The mechanism of DANCR in OD was detected by RNA pull-down, RNA immunoprecipitation (RIP) assay and ubiquitination assays. RESULTS: Compared with the surrounding normal tissues, DANCR expression was up-regulated and FOXO1 expression was down-regulated in periprosthetic tissues. PMMA suppressed ALP activity, increased DANCR expression, and decreased the expressions of FOXO1, Runx2, Osterix (Ostx) and osteocalcin (OCN). ARS staining showed that PMMA inhibited the OD of MSCs. Knockdown of DANCR attenuated the inhibitory effect of PMMA on OD. Knockdown of FOXO1 could reverse the effect of si-DANC. RNA pull-down and RIP assay implicated that DANCR bound to FOXO1. Ubiquitination assay indicated that si-DANCR could repress Skp2-mediated ubiquitination of FOXO1. CONCLUSION: LncRNA DANCR could inhibit OD by regulating FOXO1 expression.


Assuntos
Artroplastia de Quadril/efeitos adversos , Proteína Forkhead Box O1/genética , Osteoblastos/fisiologia , Osteólise/genética , Complicações Pós-Operatórias/fisiopatologia , RNA Longo não Codificante/genética , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Feminino , Proteína Forkhead Box O1/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteólise/etiologia , Osteólise/fisiopatologia , RNA Longo não Codificante/efeitos adversos
3.
Cardiovasc Res ; 117(3): 674-693, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32215566

RESUMO

A growing body of evidence indicates that cardiac regeneration after myocardial infarction can be achieved by stimulating the endogenous capacity of cardiomyocytes (CMs) to replicate. This process is controlled, both positively and negatively, by a large set of non-coding RNAs (ncRNAs). Some of the microRNAs (miRNAs) that can stimulate CM proliferation is expressed in embryonic stem cells and is required to maintain pluripotency (e.g. the miR-302∼367 cluster). Others also govern the proliferation of different cell types, including cancer cells (e.g. the miR-17∼92 cluster). Additional miRNAs were discovered through systematic screenings (e.g. miR-199a-3p and miR-590-3p). Several miRNAs instead suppress CM proliferation and are involved in the withdrawal of CMs from the cell cycle after birth (e.g. the let-7 and miR-15 families). Similar regulatory roles on CM proliferation are also exerted by a few long ncRNAs. This body of information has obvious therapeutic implications, as miRNAs with activator function or short antisense oligonucleotides against inhibitory miRNAs or lncRNAs can be administered to stimulate cardiac regeneration. Expression of miRNAs can be achieved by gene therapy using adeno-associated vectors, which transduce CMs with high efficiency. More effective and safer for therapeutic purposes, small nucleic acid therapeutics can be obtained as chemically modified, synthetic molecules, which can be administered through lipofection or inclusion in lipid or polymer nanoparticles for efficient cardiac delivery. The notion that it is possible to reprogramme CMs into a regenerative state and that this property can be enhanced by ncRNA therapeutics remains exciting, however extensive experimentation in large mammals and rigorous assessment of safety are required to advance towards clinical application.


Assuntos
Proliferação de Células/efeitos dos fármacos , Terapia Genética , Cardiopatias/terapia , MicroRNAs/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , RNA Longo não Codificante/uso terapêutico , Regeneração/efeitos dos fármacos , Animais , Regulação da Expressão Gênica , Terapia Genética/efeitos adversos , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , MicroRNAs/efeitos adversos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Longo não Codificante/efeitos adversos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais
4.
Cell Death Dis ; 11(6): 456, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541691

RESUMO

Inflammatory bowel disease (IBD), a chronic relapsing gastrointestinal inflammatory disease, mainly comprises ulcerative colitis (UC) and Crohn's disease (CD). Although the mechanisms and pathways of IBD have been widely examined in recent decades, its exact pathogenesis remains unclear. Studies have focused on the discovery of new therapeutic targets and application of precision medicine. Recently, a strong connection between IBD and noncoding RNAs (ncRNAs) has been reported. ncRNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). The contributions of lncRNAs and circRNAs in IBD are less well-studied compared with those of miRNAs. However, lncRNAs and circRNAs are likely to drive personalized therapy for IBD. They will enable accurate diagnosis, prognosis, and prediction of therapeutic responses and promote IBD therapy. Herein, we briefly describe the molecular functions of lncRNAs and circRNAs and provide an overview of the current knowledge of the altered expression profiles of lncRNAs and circRNAs in patients with IBD. Further, we discuss how these RNAs are involved in the nosogenesis of IBD and are emerging as biomarkers.


Assuntos
Doenças Inflamatórias Intestinais/genética , RNA Circular/efeitos adversos , RNA Longo não Codificante/efeitos adversos , Humanos , Doenças Inflamatórias Intestinais/metabolismo , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo
5.
An. Facultad Med. (Univ. Repúb. Urug., En línea) ; 6(1): 12-47, jun. 2019. ilus, graf
Artigo em Espanhol | LILACS, BNUY, UY-BNMED | ID: biblio-1088689

RESUMO

Si bien la porción del genoma destinada a la síntesis de proteínas es muy pequeña, actualmente se sabe que casi todo el genoma se expresa bajo forma de ARNs no codificantes. Entre dichos ARNs se encuentran los ARNs no codificantes largos (lncRNAs). Aunque los lncRNAs han sido muy poco estudiados, recientemente han comenzado a centrar la atención de los investigadores, al descubrirse que los mismos pueden desempeñar diversas funciones en la regulación de la expresión génica. Además, su vinculación con patologías ha comenzado a ser puesta de manifiesto. Curiosamente, la cantidad de lncRNAs presentes en el testículo es abrumadoramente mayor que en cualquier otro órgano o tejido estudiado. Los perfiles de expresión de estos lncRNAs varían significativamente a lo largo de la espermatogénesis, y algunas evidencias sugieren que al menos algunos de ellos podrían participar en el proceso de formación de células germinales masculinas. No obstante, el conocimiento sobre el tema es aún muy escaso. En este trabajo revisamos la información disponible sobre la expresión de lncRNAs en el testículo y sus posibles funciones. Asimismo, analizamos algunos ejemplos que ilustran la participación de lncRNAs en el desarrollo de patologías como la infertilidad y el cáncer testicular.


Although the portion of the genome devoted to protein synthesis is very small, it is now known that almost the entire genome is expressed as non-coding RNAs. Among them, there are long noncoding RNAs (lncRNAs). Despite that lncRNAs have been very poorly studied, they have recently started to focus the attention of researchers, as it has been found out that lncRNAs can perform diverse functions in the regulation of gene expression. Besides, their involvement in pathologies is being revealed. Intriguingly, the amount of lncRNAs in the testis is overwhelmingly higher than in any other analyzed organ or tissue. LncRNA expression profiles significantly vary along spermatogenesis, and some evidence suggests that at least some of them could participate in the formation of male germ cells. However, knowledge on the subject is still very scarce. In this work we review the available information on the expression of lncRNAs in testis and their possible roles. We also analyze some examples that illustrate the participation of lncRNAs in the development of pathologies such as infertility and testicular cancer.


Embora a porção do genoma usada para a síntese proteica seja muito pequena, sabe-se agora que quase todo o genoma é expresso na forma de RNAs não-codificantes. Entre esses RNAs estão os longos RNAs não codificantes (lncRNAs). Embora os lncRNAs tenham sido pouco estudados, eles recentemente começaram a focar a atenção dos pesquisadores, ao descobrirem que podem desempenhar diversas funções na regulação da expressão gênica. Além disso, sua ligação com as patologias começou a ser revelada. Curiosamente, a quantidade de lncRNAs presentes nos testículos é esmagadoramente maior do que em qualquer outro órgão ou tecido estudado. Os perfis de expressão destes lncRNAs variam significativamente ao longo da espermatogênese, e algumas evidências sugerem que pelo menos alguns deles poderiam participar no processo de formação de células germinativas masculinas. No entanto, o conhecimento sobre o assunto ainda é muito escasso. Neste trabalho, revisamos as informações disponíveis sobre a expressão de lncRNAs no testículo e suas possíveis funções. Também analisamos alguns exemplos que ilustram a participação dos lncRNAs no desenvolvimento de patologias como infertilidade e câncer testicular.


Assuntos
Humanos , Doenças Testiculares/genética , RNA Longo não Codificante/efeitos adversos , Torção do Cordão Espermático/genética , Neoplasias Testiculares/genética , Azoospermia/genética
6.
São Paulo; s.n; s.n; 2019. 122 p. tab, graf.
Tese em Português | LILACS | ID: biblio-1049921

RESUMO

O lincRNA PVT1 (Plasmacytoma Variant Translocation 1) é um RNA longo não codificador de proteínas (ncRNA) descrito como um oncogene sendo superexpresso em vários tipos de cânceres. LincRNA PVT1 está localizado na região genômica 8q24, também conhecida como 'gene desert'. O nível de expressão do lincRNA PVT1 está associado ao aumento do risco de câncer de próstata (PCa) e está correlacionado com os níveis de expressão do receptor de andrógeno (AR). No entanto, o mecanismo do envolvimento do lincRNA PVT1 com o AR no desenvolvimento de câncer de próstata ainda não está bem esclarecido. Aqui, nós testamos a hipótese que a formação do complexo AR-EZH2-PVT1 participa na regulação da expressão gênica em câncer de próstata, nas células LNCaP. A imunoprecipitação de ribonucleoproteínas seguida de PCR quantitativo (RIP-qPCR) revelou que o lincRNA PVT1 está associado fisicamente ao AR (12% do input) e à metiltransferase EZH2, proteína componente do complexo repressor Polycomb 2 (36% do input) sob condições suplementadas com andrógeno (+R1881). O lincRNA PVT1 também está associado fisicamente ao AR (10% de input) e à EZH2 (42% de input) em condições de privação de andrógeno (-R1881). Assim, a associação física entre lincRNA PVT1, AR e EZH2 é independente do hormônio andrógeno. Usando uma abordagem de estudo em larga-escala de perda e ganho de função, nossos resultados mostraram que o silenciamento do lincRNA PVT1 em células LNCaP na presença de andrógeno restaura a expressão parcialmente, totalmente ou causa superexpressão de 160 genes que tiveram a expressão inibida por andrógeno. Entre esses genes, destacamos genes envolvidos na regulação da diferenciação celular, em componentes da junção célula-célula, na inibição da migração e invasão celular e no desencadeamento da via apoptótica. Imunoprecipitação da cromatina seguida de PCR quantitativo (ChIP-qPCR), em cultura de células LNCaP suplementada com andrógeno sob silenciamento do lincRNA PVT1, mostrou aumento significativo na ocupação pela marca de histona ativadora H3K27Ac do promotor do gene NOV, um dos genes que tiveram sua expressão aumentada com o silenciamento de PVT1. O ChIP-qPCR também mostrou, após o silenciamento do lincRNA PVT1, um aumento significativo da marca H3K27me3 na região enhancer do gene NOV, uma característica de enhancers poised (prontos para ativação). Em conclusão, nós fornecemos a primeira evidência experimental para um mecanismo de ação do oncogene lincRNA PVT1 em células de câncer de próstata e demonstramos que sua ação inibidora da expressão afeta genes alvo que facilitam a proliferação e migração de células do câncer de próstata, sugerindo que o lincRNA PVT1 é um novo agente no complexo mecanismo de repressão transcricional envolvendo um RNA silenciador, o receptor de andrógeno (AR) e o potenciador de Zeste homólogo 2 (EZH2) no remodelamento da cromatina em células LNCaP


Long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) is an oncogene known to be overexpressed in various types of cancer. PVT1 lincRNA is located in the wellknown cancer-related genomic region 8q24, also known as 'gene desert. PVT1 lincRNA level of expression is associated with increased prostate cancer (PCa) risk and is correlated with androgen receptor (AR) expression levels. However, the mechanism of PVT1 and AR involvement in the development of prostate cancer is still unclear. Here, we tested the hypothesis that formation of the complex AR-EZH2-PVT1 participates in the regulation of gene expression in prostate cancer, in LNCaP cells. Ribonucleoprotein immunoprecipitation followed by quantitative PCR (RIP-qPCR) revealed that PVT1 lincRNA binds both the AR (12 % of PVT1 input) and the methyltransferase EZH2 from the Polycomb repressive complex 2 (36 % of input) under androgen-supplemented conditions (+R1881). PVT1 also binds both AR (10 % of input) and EZH2 (42 % of input) under androgen-deprived conditions (-R1881). Thus, PVT1 binding to AR and EZH2 is independent of the androgen hormone. Using a large-scale loss and gain of function approach, our results show that PVT1 knockdown (KD) in LNCaP in the presence of androgen restores the expression partially, fully or causes overexpression of 160 genes that are inhibited by androgen. Among these genes, we highlight genes involved in regulation of cell differentiation, in components of cell-cell junction, in inhibition of cell migration and invasion and in triggering of the apoptotic pathway. Chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) with LNCaP cells in androgen-supplemented cultures under PVT1 lincRNA knockdown showed a significant increase in occupancy by the histone activation mark H3K27Ac of the promoter region of the NOV gene, one of the genes that had an increased expression upon PVT1 silencing. ChIPqPCR also showed a significant increase upon PVT1 lincRNA silencing of the H3K27me3 histone mark in the enhancer region of the NOV gene, a distinct feature of poised enhancers. In conclusion, we provide first experimental evidence for a mechanism of action of PVT1 lincRNA oncogene in prostate cancer cells, and show that its inhibitory action affects targetgenes that facilitate proliferation and migration of prostate cancer cells, thus suggesting PVT1 lincRNA as a novel lncRNA player in the complex mechanism of transcriptional repression involving a silencer RNA, the androgen receptor (AR) and the Enhancer of zeste homolog 2 (EZH2) in chromatin remodeling in LNCaP cells


Assuntos
Plasmocitoma , RNA Longo não Codificante/efeitos adversos , Proteína Potenciadora do Homólogo 2 de Zeste/análise , Androgênios/análise , Neoplasias da Próstata/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA