Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 64(6): 1135-1143, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27867008

RESUMO

RNA polymerase I (Pol I) is a 14-subunit enzyme that solely synthesizes pre-ribosomal RNA. Recently, the crystal structure of apo Pol I gave unprecedented insight into its molecular architecture. Here, we present three cryo-EM structures of elongating Pol I, two at 4.0 Å and one at 4.6 Å resolution, and a Pol I open complex at 3.8 Å resolution. Two modules in Pol I mediate the narrowing of the DNA-binding cleft by closing the clamp domain. The DNA is bound by the clamp head and by the protrusion domain, allowing visualization of the upstream and downstream DNA duplexes in one of the elongation complexes. During formation of the Pol I elongation complex, the bridge helix progressively folds, while the A12.2 C-terminal domain is displaced from the active site. Our results reveal the conformational changes associated with elongation complex formation and provide additional insight into the Pol I transcription cycle.


Assuntos
DNA/química , Subunidades Proteicas/química , RNA Polimerase I/química , RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , RNA/genética , RNA/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/isolamento & purificação , RNA Polimerase I/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nucleic Acids Res ; 43(8): 4163-78, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25813043

RESUMO

Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Subunidades Proteicas/química , RNA Polimerase III/química , RNA Polimerase I/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/isolamento & purificação , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Subunidades Proteicas/isolamento & purificação , RNA Polimerase I/genética , RNA Polimerase I/imunologia , RNA Polimerase I/isolamento & purificação , RNA Polimerase III/genética , RNA Polimerase III/imunologia , RNA Polimerase III/isolamento & purificação , Terminologia como Assunto
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2570-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286842

RESUMO

Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Šresolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.


Assuntos
Modelos Moleculares , RNA Polimerase I/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X , DNA/metabolismo , Conformação Proteica , Multimerização Proteica , RNA Polimerase I/genética , RNA Polimerase I/isolamento & purificação , RNA Polimerase I/metabolismo
4.
Mol Cell Biol ; 27(17): 6254-63, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17606628

RESUMO

A unique characteristic of the protistan parasite Trypanosoma brucei is a multifunctional RNA polymerase I which, in addition to synthesizing rRNA as in other eukaryotes, transcribes gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. Thus far, purification of this enzyme has revealed nine orthologues of known subunits but no active enzyme. Here, we have epitope tagged the specific subunit RPB6z and tandem affinity purified RNA polymerase I from crude extract. The purified enzyme was active in both a nonspecific and a promoter-dependent transcription assay and exhibited enriched protein bands with apparent sizes of 31, 29, and 27 kDa. p31 and its trypanosomatid orthologues were identified, but their amino acid sequences have no similarity to proteins of other eukaryotes, nor do they contain a conserved sequence motif. Nevertheless, p31 cosedimented with purified RNA polymerase I, and RNA interferance-mediated silencing of p31 was lethal, affecting the abundance of rRNA. Moreover, extract of p31-silenced cells exhibited a specific defect in transcription of class I templates, which was remedied by the addition of purified RNA polymerase I, and an anti-p31 serum completely blocked RNA polymerase I-mediated transcription. We therefore dubbed this novel functional component of T. brucei RNA polymerase I TbRPA31.


Assuntos
Subunidades Proteicas/metabolismo , Proteínas de Protozoários/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Subunidades Proteicas/genética , Proteínas de Protozoários/genética , Interferência de RNA , RNA Polimerase I/genética , RNA Polimerase I/isolamento & purificação , RNA Ribossômico , Alinhamento de Sequência , Trypanosoma brucei brucei/genética
5.
Tsitologiia ; 50(4): 338-46, 2008.
Artigo em Russo | MEDLINE | ID: mdl-18664117

RESUMO

In this work we describe how the nucleolus reacts to inhibition of protein synthesis as revealed by labeling with a new monoclonal antibody A3. In normal cells A3 antigen is observed as numerous foci within the nucleolus. During mitosis A3 antigen is located in a few foci on chromosomes. Regions of A3 localization are susceptible to pepsin treatment but are not susceptible to RNAse A treatment. This fact indicates that A3 antigen is of protein nature. On the ultra structural level, A3 antigen is localized primarily at the periphery of fibrillar centers. Taken together these properties of A3 antigen suggest that it's a component of the RNA polymerase I transcription machinery. A3 antigen has an intriguing property, namely, an ability to migrate from the nucleolus to the nucleoplasm upon inhibition of protein synthesis with anisomycin, puromycin or cycloheximide. The obtained results show that the localization of A3 antigen revealed by the new monoclonal antibody may serve as a cytological indicator of the overall level of protein synthesis in vitro.


Assuntos
Nucléolo Celular/química , Proteínas Nucleares/isolamento & purificação , Biossíntese de Proteínas , RNA Polimerase I/isolamento & purificação , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Nucléolo Celular/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica
6.
Mol Cell Biol ; 14(7): 5010-21, 1994 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8007994

RESUMO

Factor C* is the component of the RNA polymerase I holoenzyme (factor C) that allows specific transcriptional initiation on a factor D (SL1)- and UBF-activated rRNA gene promoter. The in vitro transcriptional capacity of a preincubated rDNA promoter complex becomes exhausted very rapidly upon initiation of transcription. This is due to the rapid depletion of C* activity. In contrast, C* activity is not unstable in the absence of transcription, even in the presence of nucleoside triphosphates (NTPs). By using 3'dNTPs to specifically halt elongation, C* is seen to remain active through transcription complex assembly, initiation, and the first approximately 37 nucleotides of elongation, but it is inactivated before synthesis proceeds beyond approximately 40 nucleotides. When elongation is halted before this critical distance, the C* remains active and on that template complex, greatly extending the kinetics of transcription and generating manyfold more transcripts than would have been synthesized if elongation had proceeded past the critical distance where C* is inactivated. In complementary in vivo analysis under conditions where C* activity is not replenished, C* activity becomes depleted from cells, but this also occurs only when there is ongoing rDNA transcription. Thus, both in vitro and in vivo, the specific initiation-conferring component of the RNA polymerase I holoenzyme is used stoichiometrically in the transcription process.


Assuntos
Leucemia L1210/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Animais , Cicloeximida/farmacologia , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Dactinomicina/farmacologia , Cinética , Camundongos , Regiões Promotoras Genéticas , Puromicina/farmacologia , RNA Polimerase I/isolamento & purificação , RNA Ribossômico/biossíntese , Moldes Genéticos , Células Tumorais Cultivadas , Xenopus laevis
7.
Mol Cell Biol ; 19(1): 796-806, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9858602

RESUMO

Mounting evidence suggests that eukaryotic RNA polymerases preassociate with multiple transcription factors in the absence of DNA, forming RNA polymerase holoenzyme complexes. We have purified an apparent RNA polymerase I (Pol I) holoenzyme from Xenopus laevis cells by sequential chromatography on five columns: DEAE-Sepharose, Biorex 70, Sephacryl S300, Mono Q, and DNA-cellulose. Single fractions from every column programmed accurate promoter-dependent transcription. Upon gel filtration chromatography, the Pol I holoenzyme elutes at a position overlapping the peak of Blue Dextran, suggesting a molecular mass in the range of approximately 2 MDa. Consistent with its large mass, Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels reveal approximately 55 proteins in fractions purified to near homogeneity. Western blotting shows that TATA-binding protein precisely copurifies with holoenzyme activity, whereas the abundant Pol I transactivator upstream binding factor does not. Also copurifying with the holoenzyme are casein kinase II and a histone acetyltransferase activity with a substrate preference for histone H3. These results extend to Pol I the suggestion that signal transduction and chromatin-modifying activities are associated with eukaryotic RNA polymerases.


Assuntos
Acetiltransferases/metabolismo , Holoenzimas/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae , Transcrição Gênica , Acetiltransferases/isolamento & purificação , Animais , Fracionamento Celular , Proteínas de Ligação a DNA/isolamento & purificação , Histona Acetiltransferases , Holoenzimas/isolamento & purificação , Proteínas Quinases/isolamento & purificação , RNA Polimerase I/isolamento & purificação , Proteína de Ligação a TATA-Box , Fatores de Transcrição/isolamento & purificação , Xenopus laevis
8.
Mol Cell Biol ; 16(11): 6436-43, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8887672

RESUMO

We report the cloning of RRN11, a gene coding for a 66-kDa protein essential for transcription initiation by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Rrn11 specifically complexes with two previously identified transcription factors, Rrn6 and Rrn7 (D. A. Keys, J. S. Steffan, J. A. Dodd, R. T. Yamamoto, Y. Nogi, and M. Nomura, Genes Dev. 8:2349-2362, 1994). The Rrn11-Rrn6-Rrn7 complex also binds the TATA-binding protein and is required for transcription by the core domain of the Pol I promoter. Therefore, we have designated the Rrn11-Rrn6-Rrn7-TATA-binding protein complex the yeast Pol I core factor. A two-hybrid assay was used to demonstrate involvement of short leucine heptad repeats on both Rrn11 and Rrn6 in the in vivo association of these two proteins. This assay also verified the previously described strong association between Rrn6 and Rrn7, independent of the Rrn6 leucine repeat.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Dados de Sequência Molecular , Peso Molecular , RNA Polimerase I/isolamento & purificação , Proteína de Ligação a TATA-Box , Moldes Genéticos , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação , Vertebrados
9.
Mol Cell Biol ; 22(3): 750-61, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11784852

RESUMO

In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Fatores de Transcrição/metabolismo , Acanthamoeba/genética , Acanthamoeba/metabolismo , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Genes de Protozoários , Substâncias Macromoleculares , Regiões Promotoras Genéticas , Estrutura Quaternária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , RNA Polimerase I/química , RNA Polimerase I/isolamento & purificação , RNA de Protozoário/genética , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação
10.
Mol Biochem Parasitol ; 149(1): 27-37, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16730080

RESUMO

Trypanosoma brucei harbors a unique multifunctional RNA polymerase (pol) I which transcribes, in addition to ribosomal RNA genes, the gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. In consequence, this RNA pol I is recruited to three structurally different types of promoters and sequestered to two distinct nuclear locations, namely the nucleolus and the expression site body. This versatility may require parasite-specific protein-protein interactions, subunits or subunit domains. Thus far, data mining of trypanosomatid genomes have revealed 13 potential RNA pol I subunits which include two paralogous sets of RPB5, RPB6, and RPB10. Here, we analyzed a cDNA library prepared from procyclic insect form T. brucei and found that all 13 candidate subunits are co-expressed. Moreover, we PTP-tagged the largest subunit TbRPA1, tandem affinity-purified the enzyme complex to homogeneity, and determined its subunit composition. In addition to the already known subunits RPA1, RPA2, RPC40, 1RPB5, and RPA12, the complex contained RPC19, RPB8, and 1RPB10. Finally, to evaluate the absence of RPB6 in our purifications, we used a combination of epitope-tagging and reciprocal coimmunoprecipitation to demonstrate that 1RPB6 but not 2RPB6 binds to RNA pol I albeit in an unstable manner. Collectively, our data strongly suggest that T. brucei RNA pol I binds a distinct set of the RPB5, RPB6, and RPB10 paralogs.


Assuntos
RNA Polimerase I/química , RNA Polimerase I/isolamento & purificação , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Cromatografia de Afinidade , DNA Complementar , Dados de Sequência Molecular , Filogenia , Ligação Proteica , RNA Polimerase I/metabolismo , Alinhamento de Sequência , Trypanosoma brucei brucei/genética
11.
Nucleic Acids Res ; 27(18): 3720-7, 1999 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10471742

RESUMO

Traditional models for transcription initiation by RNA polymerase I include a stepwise assembly of basic transcription factors/regulatory proteins on the core promoter to form a preinitiation complex. In contrast, we have identified a preassembled RNA polymerase I (RPI) complex that contains all the factors necessary and sufficient to initiate transcription from the rDNA promoter in vitro. The purified RPI holoenzyme contains the RPI homolog of TFIID, SL-1 and the rDNA transcription terminator factor (TTF-1), but lacks UBF, an activator of rDNA transcription. Certain components of the DNA repair/replication system, including Ku70/80, DNA topoisomerase I and PCNA, are also associated with the RPI complex. We have found that the holo-enzyme supported specific transcription and that specific transcription was stimulated by the RPI transcription activator UBF. These results support the hypothesis that a fraction of the RPI exists as a preassembled, transcriptionally competent complex that is readily recruited to the rDNA promoter, i.e. as a holoenzyme, and provide important new insights into the mechanisms governing initiation by RPI.


Assuntos
Antígenos Nucleares , DNA Helicases , Reparo do DNA , Replicação do DNA , Complexos Multienzimáticos/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/química , RNA Polimerase I/isolamento & purificação , Fatores de Transcrição/isolamento & purificação , Animais , Reparo do DNA/genética , Replicação do DNA/genética , DNA Topoisomerases Tipo I/isolamento & purificação , DNA Topoisomerases Tipo I/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Holoenzimas/química , Holoenzimas/isolamento & purificação , Holoenzimas/metabolismo , Autoantígeno Ku , Peso Molecular , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Polimerase I/metabolismo , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Células Tumorais Cultivadas
12.
Methods Mol Biol ; 1455: 85-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27576712

RESUMO

Purification of RNA polymerase (Pol) I is essential for functional as well as for structural studies. The product needs to be extremely pure in order to exclude secondary effects, e.g., caused by copurified nucleic acids in subsequent experiments. For this purpose, the method presented here was originally introduced nearly a decade ago but underwent constant optimization [1]. The polymerase is extracted from its endogenous source, since no overexpression system for the entire 590 kDa, 14-subunit complex is available thus far. Following yeast cultivation, a number of standard protein purification techniques are applied and combined to a robust but elaborate procedure that takes 3 days. In brief, a yeast strain with histidine-tagged RNA polymerase I is fermented, cells are broken by bead beating, and cell debris is removed by a two-step centrifugation. The lysate is then dialyzed, the Pol-I-containing pellet resuspended, and polymerase I enriched by a His-trap affinity step, followed by sequential purification via anion and cation exchange and a final size exclusion chromatography.


Assuntos
RNA Polimerase I/química , RNA Polimerase I/isolamento & purificação , Saccharomyces cerevisiae/enzimologia , Cromatografia de Afinidade , Cromatografia em Gel , Cristalização , Fermentação , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
13.
Biochim Biophys Acta ; 520(3): 598-611, 1978 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-718915

RESUMO

Crude nuclei were isolated from trunks of 13-day-old chicken embryos under conditions which prevent leakage of RNA polymerases from nuclei. RNA polymerases were solubilized by subsequent incubation in alkaline buffer and sonication at high salt concentration. Purification of RNA polymerases A, B, and C was achieved by conventional column chromatographic procedures. RNA polymerase B was freed from an UTP:polynucleotidyl exotransferase by chromatography on a tRNA-Sepharose column. Purified RNA polymerase A contained six putative subunits with molecular weights 190 000 (A1), 117 000 (A2), 57 000 (A3), 50 000 (A4), 25 000 (A5), 19 000 (A6); RNA polymerase B contained eight putative subunits with molecular weights 98 000 (B2'), 86 000 (B2''), 155 000 (B3), 44 000 (B4), 31 000 (B5), 28 000 (B6), 26 000 (B7), 19 000 (B8); RNA polymerase C contained nine putative subunits with molecular weights 170 000 (C1), 117 000 (C2), 84 000 (C3), 60 000 (C4), 49 000 (C5), 36 000 (C6), 33 000 (C7), 22 000 (C8), 19 000 (C9).


Assuntos
RNA Polimerases Dirigidas por DNA/isolamento & purificação , Amanitinas/farmacologia , Animais , Núcleo Celular/enzimologia , Embrião de Galinha , Substâncias Macromoleculares , Métodos , Peso Molecular , RNA Polimerase I/isolamento & purificação , RNA Polimerase II/isolamento & purificação , RNA Polimerase III/isolamento & purificação
14.
Biochim Biophys Acta ; 479(1): 80-90, 1977 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-911851

RESUMO

DNA-dependent RNA polymerase I (or A) (nucleoside triphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) was purified from Ehrlich ascites cells after solubilization from isolated nuclei. The purification was accomplished by a procedure involving initial precipitation with ammonium sulfate, following by chromatographies on DEAE-Sephadex and phosphocellulose ion exchange resins and gel filtration on Sepharose 6B. A chromatographically homogeneous enzyme was obtained which was purified about 2300-fold relative to nuclear extracts. The specific activity of the most purified enzyme fraction was 230 nmol of [3H]UTP incorporated into RNA per mg of protein in 10 min at 37 degrees C, which is similar to those reported for the highly purified RNA polymerase I from mouse myeloma and calf thymus. The elution position on Sepharose 6B gel filtration indicated a molecular weight of approx. 580 000. Analysis of the purified enzyme by polyacrylamide gel electrophoresis under nondenaturing conditions revealed only one protein band. Certain heterogeneity in the RNA polymerase I fractions was found in the early chromatographic steps, but not in the most purified fractions.


Assuntos
Carcinoma de Ehrlich/enzimologia , RNA Polimerases Dirigidas por DNA , RNA Polimerase I , Animais , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Magnésio/farmacologia , Manganês/farmacologia , Camundongos , Peso Molecular , RNA Polimerase I/isolamento & purificação , RNA Polimerase I/metabolismo
15.
Biochim Biophys Acta ; 565(2): 275-92, 1979 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-518881

RESUMO

Spermatogenesis is a complex developmental process which sequentially generates several different germ cell types. These cell types from rainbow trout (Salmo gairdnerii) testis were separated by sedimentation in serum albumin gradients and characterized on the basis of their physical properties, chronological appearance, and protein synthesis. The rate of RNA synthesis, the types of RNA made, and the RNA polymerase activities present were determined for each cell type. The rate of RNA synthesis decreased from a high level in spermatogonia and spermatocytes to a low level in early spermatids and was absent in late spermatids and mature spermatozoa. Newly synthesized RNA in spermatogonia and spermatocytes consisted of a variety of molecular weight species, including 18 S and 28 S ribosomal RNAs. The synthesis of high molecular weight RNAs, especially ribosomal RNAs, decreased drastically in early spermatids, leading to the synthesis of only small molecular weight RNAs. RNA polymerase I and II were present in all cell types but the activities of both showed large decreases between spermatocytes and middle spermatids. Both RNA polymerase activities were almost absent from spermatozoa. The activities of RNA polymerase I and II from unfractionated testis cells at different stages of hormone-induced spermatogenesis were quantitated by fractionation of the solubilized extract on DEAE-cellulose. Both polymerases showed major decreases in activity which began near the chronological mid-point of development. For polymerase I the decrease in activity was over 400 fold, for polymerase II over 200 fold. The number of RNA polymerase II molecules per testis cell, quantitated by the binding of [3H]amanitin to cell extracts, also decreased markedly during spermatogenesis. The reduction in polymerase II activity was accompanied by a parallel 200-fold decrease in[3H]amanitin binding. The reduction in polymerase activity appears, therefore, to be due to an actual reduction in the cellular content of RNA polymerase II molecules. These results suggest that transcription in maturing testes is regulated, at least in part, by the concentrations of the RNA polymerases.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , RNA/biossíntese , Espermatozoides/metabolismo , Amanitinas/metabolismo , Animais , Masculino , RNA Polimerase I/isolamento & purificação , RNA Polimerase II/isolamento & purificação , Espermatogênese , Testículo/metabolismo , Truta/metabolismo
16.
Biochim Biophys Acta ; 739(1): 105-13, 1983 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-6187363

RESUMO

The interaction between antibodies directed against RNA polymerase I purified from Morris hepatoma 3924A and homologous RNA polymerase II was investigated. The activity of partially purified polymerase II was inhibited by the antibodies. In contrast, the reaction catalyzed by the purified enzyme was not affected. Partially purified polymerase II preparations contained a protein kinase activity. Sucrose gradient centrifugation in the presence of 0.3 M KCl resulted in complete separation of RNA polymerase II from protein kinase as well as in complete loss of sensitivity to the anti-RNA polymerase I antibodies. The protein kinase possessed reaction characteristics similar to those of the NII protein kinase (Rose, K.M., Bell, L.E., Siefken, D.A. and Jacob, S.T. (1981) J. Biol. Chem. 256, 7468-7477) which is associated with hepatoma RNA polymerase I (Rose, K.M., Stetler, D.A. and Jacob, S.T. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2833-2837). The activities of both kinases were inhibited to the same extent by anti-RNA polymerase I antibodies and polypeptides of Mr 42 000 and 25 000, present in both kinase preparations, formed immune complexes with the antisera. Readdition of protein kinase NII to purified polymerase II resulted in phosphorylation of the polymerase and a concomitant enhancement of RNA synthesis. After addition of the kinase, RNA polymerase II activity was again sensitive to anti-RNA polymerase I antibodies. Upon reacting with protein kinase NII, RNA polymerase II polypeptides could be detected in immune complexes with anti-RNA polymerase I antibodies. These data indicate that protein kinase NII is associated with RNA polymerase II during early stages of purification and is at least partially responsible for the immunological cross-reactivity of RNA polymerases I and II.


Assuntos
RNA Polimerases Dirigidas por DNA/imunologia , Proteínas Quinases/imunologia , RNA Polimerase II/imunologia , RNA Polimerase I/imunologia , Animais , Complexo Antígeno-Anticorpo , Reações Cruzadas , Epitopos/análise , Cinética , Neoplasias Hepáticas Experimentais/enzimologia , Proteínas Quinases/isolamento & purificação , RNA Polimerase I/isolamento & purificação , RNA Polimerase II/isolamento & purificação , Ratos
17.
Biochim Biophys Acta ; 520(2): 393-403, 1978 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-708742

RESUMO

DNA-dependent RNA polymerases were solubilized from developing wings of the oak silkmoth, Antheraea pernyi, and partially purified by ion-exchange chromatography and sucrose gradient sedimentation. Four enzyme species were resolved on the basis of chromatographic behavior, divalent cation requirements, ionic strength optima, template preference and alpha-amanitin sensitivity. Each class (i.e. RNA polymerase I and II) was present in two forms termed IA, IB and IIA, IIB on the basis of their elution pattern from the column. Both class I enzymes were sensitive to high concentrations of alpha-amanitin but this may be due to general toxicity rather than specific inhibition. The intraclass variants did not differ significantly in enzymatic properties although form IIB was more sensitive to alpha-amanitin (50% inhibition at 2 . 10(-9) M) than form IIA (3 . 10(-8)M).


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Isoenzimas/metabolismo , Lepidópteros/enzimologia , Mariposas/enzimologia , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Amanitinas/farmacologia , Animais , Isoenzimas/isolamento & purificação , Cinética , Magnésio/farmacologia , Manganês/farmacologia , RNA Polimerase I/isolamento & purificação , RNA Polimerase II/isolamento & purificação , Pele/enzimologia
18.
J Mol Biol ; 275(1): 43-53, 1998 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-9451438

RESUMO

Transcription initiation of ribosomal RNA genes requires RNA polymerase I (Pol I) and auxiliary factors which either bind directly to the rDNA promoter, e.g. TIF-IB/SL1 and UBF, or are assembled into productive transcription initiation complexes via interaction with Pol I, e.g. TIF-IA, and TIF-IC. Here we show that all components required for specific rDNA transcription initiation are capable of physical interaction with Pol I in the absence of DNA and can be co-immunoprecipitated with antibodies against defined subunits of murine Pol I. Sucrose gradient centrifugation and fractionation on gel filtration columns reveals that approximately 10% of cellular Pol I elutes as a defined complex with an apparent molecular mass of > 2000 kDa. The large Pol I complex contains saturating levels of TIF-IA, TIF-IB and UBF, but limiting amounts of TIF-IC. In support of the existence of a functional complex between Pol I and basal factors, the large complex is transcriptionally active after complementation with TIF-IC. The results suggest that, analogous to class II gene transcription, a pre-assembled complex, the "Pol I holoenzyme", exists that appears to be the initiation-competent form of Pol I.


Assuntos
Coenzimas/isolamento & purificação , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/isolamento & purificação , Animais , Coenzimas/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade , Substâncias Macromoleculares , Camundongos , Peso Molecular , Testes de Precipitina , RNA Polimerase I/metabolismo , Soluções , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
19.
Gene Expr ; 12(4-6): 259-71, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16358415

RESUMO

Large amounts of energy are expended for the construction of the ribosome during both transcription and processing, so it is of utmost importance for the cell to efficiently regulate ribosome production. Understanding how this regulation occurs will provide important insights into cellular growth control and into the coordination of gene expression mediated by all three transcription systems. Ribosomal RNA (rRNA) transcription rates closely parallel the need for protein synthesis; as a cell approaches stationary phase or encounters conditions that negatively affect either growth rate or protein synthesis, rRNA transcription is decreased. In eukaryotes, the interaction of RNA polymerase I (pol I) with the essential transcription initiation factor IA (TIF-IA) has been implicated in this downregulation of transcription. In agreement with the first observation that rRNA transcription is regulated by altering recruitment of pol I to the promoter in Acanthamoeba castellanii, we show here that pol I and an 80-kDa homologue of TIF-IA are found tightly associated in pol I fractions competent for specific transcription. Disruption of the pol I-TIF-IA complex is mediated by a specific dephosphorylation of either pol I or TIF-IA. Phosphatase treatment of TIF-IA-containing A. castellanii pol I fractions results in a downregulation of both transcriptional activity and promoter binding, reminiscent of the inactive pol I fractions purified from encysted cells. The fraction of pol I competent for promoter recruitment is enriched in TIF-IA relative to that not bound by immobilized promoter DNA. This downregulation coincides with an altered electrophoretic mobility of TIF-IA, suggesting at least it is phosphorylated.


Assuntos
Acanthamoeba castellanii/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Acanthamoeba castellanii/enzimologia , Fosfatase Alcalina/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Ligação Proteica/fisiologia , RNA Polimerase I/isolamento & purificação , Transcrição Gênica
20.
Mol Biosyst ; 1(1): 53-6, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16880963

RESUMO

The rapid isolation of protein complexes is critical to the goal of establishing protein interaction networks. High-throughput methods for identifying protein binding partners in a way suitable for mass spectrometric identification and structural analysis are required and small molecule/peptide interactions provide the key. We have now shown that a redesigned resin derivatized with a bisarsenical dye can be used to isolate the Shewanella oneidensis RNA polymerase core enzyme with a tetracysteine-tagged RNA polymerase A as bait protein. A critical advantage of this method is the ability to release the intact complex using a mild, one-step procedure with a competing dithiol. In addition to the identification of the core complex, additional interaction partners, including universal stress protein, were identified. These results provide a path forward to identifying how changes in critical protein complexes over time modulate cell function.


Assuntos
RNA Polimerase I/isolamento & purificação , Resinas Sintéticas , Shewanella/química , Cisteína/química , Espectrometria de Massas , Tolueno/análogos & derivados , Tolueno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA