Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 542(7642): 494-497, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28230119

RESUMO

Nucleic acids undergo naturally occurring chemical modifications. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified. Despite recent progress, the mechanism for the biosynthesis of most modifications is not fully understood, owing, in part, to the difficulty associated with reconstituting enzyme activity in vitro. Whereas some modifications can be efficiently formed with purified components, others may require more intricate pathways. A model for modification interdependence, in which one modification is a prerequisite for another, potentially explains a major hindrance in reconstituting enzymatic activity in vitro. This model was prompted by the earlier discovery of tRNA cytosine-to-uridine editing in eukaryotes, a reaction that has not been recapitulated in vitro and the mechanism of which remains unknown. Here we show that cytosine 32 in the anticodon loop of Trypanosoma brucei tRNAThr is methylated to 3-methylcytosine (m3C) as a pre-requisite for C-to-U deamination. Formation of m3C in vitro requires the presence of both the T. brucei m3C methyltransferase TRM140 and the deaminase ADAT2/3. Once formed, m3C is deaminated to 3-methyluridine (m3U) by the same set of enzymes. ADAT2/3 is a highly mutagenic enzyme, but we also show that when co-expressed with the methyltransferase its mutagenicity is kept in check. This helps to explain how T. brucei escapes 'wholesale deamination' of its genome while harbouring both enzymes in the nucleus. This observation has implications for the control of another mutagenic deaminase, human AID, and provides a rationale for its regulation.


Assuntos
Metiltransferases/metabolismo , Nucleosídeo Desaminases/metabolismo , Edição de RNA , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Anticódon/metabolismo , Sequência de Bases , Citosina/análogos & derivados , Citosina/metabolismo , Desaminação , Metilação , RNA de Transferência de Treonina/genética , Uridina/metabolismo
2.
Nucleic Acids Res ; 47(4): 2056-2074, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30541130

RESUMO

The tissue specificity of mitochondrial tRNA mutations remains largely elusive. In this study, we demonstrated the deleterious effects of tRNAThr 15927G>A mutation that contributed to pathogenesis of coronary artery disease. The m.15927G>A mutation abolished the highly conserved base-pairing (28C-42G) of anticodon stem of tRNAThr. Using molecular dynamics simulations, we showed that the m.15927G>A mutation caused unstable tRNAThr structure, supported by decreased melting temperature and slower electrophoretic mobility of mutated tRNA. Using cybrids constructed by transferring mitochondria from a Chinese family carrying the m.15927G>A mutation and a control into mitochondrial DNA (mtDNA)-less human umbilical vein endothelial cells, we demonstrated that the m.15927G>A mutation caused significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr. The aberrant tRNAThr metabolism yielded variable decreases in mtDNA-encoded polypeptides, respiratory deficiency, diminished membrane potential and increased the production of reactive oxygen species. The m.15927G>A mutation promoted the apoptosis, evidenced by elevated release of cytochrome c into cytosol and increased levels of apoptosis-activated proteins: caspases 3, 7, 9 and PARP. Moreover, the lower wound healing cells and perturbed tube formation were observed in mutant cybrids, indicating altered angiogenesis. Our findings provide new insights into the pathophysiology of coronary artery disease, which is manifested by tRNAThr mutation-induced alterations.


Assuntos
Mitocôndrias/genética , Neovascularização Patológica/genética , RNA de Transferência de Treonina/química , RNA de Transferência/genética , Apoptose/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , DNA Mitocondrial/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Mitocôndrias/patologia , Mutação , Conformação de Ácido Nucleico , RNA de Transferência de Treonina/genética , Espécies Reativas de Oxigênio/metabolismo
3.
Nucleic Acids Res ; 46(9): 4662-4676, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29648639

RESUMO

Six pathogenic mutations have been reported in human mitochondrial tRNAThr (hmtRNAThr); however, the pathogenic molecular mechanism remains unclear. Previously, we established an activity assay system for human mitochondrial threonyl-tRNA synthetase (hmThrRS). In the present study, we surveyed the structural and enzymatic effects of pathogenic mutations in hmtRNAThr and then focused on m.15915 G > A (G30A) and m.15923A > G (A38G). The harmful evolutionary gain of non-Watson-Crick base pair A29/C41 caused hmtRNAThr to be highly susceptible to mutations disrupting the G30-C40 base pair in various ways; for example, structural integrity maintenance, modification and aminoacylation of tRNAThr, and editing mischarged tRNAThr. A similar phenomenon was observed for hmtRNATrp with an A29/C41 non-Watson-Crick base pair, but not in bovine mtRNAThr with a natural G29-C41 base pair. The A38G mutation caused a severe reduction in Thr-acceptance and editing of hmThrRS. Importantly, A38 is a nucleotide determinant for the t6A modification at A37, which is essential for the coding properties of hmtRNAThr. In summary, our results revealed the crucial role of the G30-C40 base pair in maintaining the proper structure and function of hmtRNAThr because of A29/C41 non-Watson-Crick base pair and explained the molecular outcome of pathogenic G30A and A38G mutations.


Assuntos
Mutação , RNA Mitocondrial/química , RNA de Transferência de Treonina/química , Anticódon , Pareamento de Bases , Humanos , Mitocôndrias/enzimologia , Edição de RNA , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Treonina-tRNA Ligase/metabolismo , Aminoacilação de RNA de Transferência
4.
RNA ; 23(3): 406-419, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28003514

RESUMO

The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.


Assuntos
Anticódon/química , Citidina/análogos & derivados , Proteínas dos Microfilamentos/metabolismo , RNA de Transferência de Serina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/metabolismo , Anticódon/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Citidina/genética , Citidina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas dos Microfilamentos/genética , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Domínios Proteicos , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , tRNA Metiltransferases/genética
5.
Nucleic Acids Res ; 44(3): 1342-53, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26657638

RESUMO

Human polypyrimidine tract-binding protein PTB is a multifunctional RNA-binding protein with four RNA recognition motifs (RRM1 to RRM4). PTB is a nucleocytoplasmic shuttle protein that functions as a key regulator of alternative pre-mRNA splicing in the nucleoplasm and promotes internal ribosome entry site-mediated translation initiation of viral and cellular mRNAs in the cytoplasm. Here, we demonstrate that PTB and its paralogs, nPTB and ROD1, specifically interact with mitochondrial (mt) tRNA(Thr) both in human and mouse cells. In vivo and in vitro RNA-binding experiments demonstrate that PTB forms a direct interaction with the T-loop and the D-stem-loop of mt tRNA(Thr) using its N-terminal RRM1 and RRM2 motifs. RNA sequencing and cell fractionation experiments show that PTB associates with correctly processed and internally modified, mature mt tRNA(Thr) in the cytoplasm outside of mitochondria. Consistent with this, PTB activity is not required for mt tRNA(Thr) biogenesis or for correct mitochondrial protein synthesis. PTB association with mt tRNA(Thr) is largely increased upon induction of apoptosis, arguing for a potential role of the mt tRNA(Thr)/PTB complex in apoptosis. Our results lend strong support to the recently emerging conception that human mt tRNAs can participate in novel cytoplasmic processes independent from mitochondrial protein synthesis.


Assuntos
Citoplasma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA de Transferência de Treonina/metabolismo , Motivos de Aminoácidos/genética , Animais , Apoptose/genética , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitocôndrias/genética , Dados de Sequência Molecular , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Conformação de Ácido Nucleico , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica , Interferência de RNA , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética
6.
Nucleic Acids Res ; 44(3): 1428-39, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26704982

RESUMO

In mitochondria of Saccharomyces cerevisiae, a single aminoacyl-tRNA synthetase (aaRS), MST1, aminoacylates two isoacceptor tRNAs, tRNA1(Thr) and tRNA2(Thr), that harbor anticodon loops of different size and sequence. As a result of this promiscuity, reassignment of the CUN codon box from leucine to threonine is facilitated. However, the mechanism by which a single aaRS binds distinct anticodon loops with high specificity is not well understood. Herein, we present the crystal structure of MST1 in complex with the canonical tRNA2(Thr) and non-hydrolyzable analog of threonyl adenylate. Our structure reveals that the dimeric arrangement of MST1 is essential for binding the 5'-phosphate, the second base pair of the acceptor stem, the first two base pairs of the anticodon stem and the first nucleotide of the variable arm. Further, in contrast to the bacterial ortholog that 'reads' the entire anticodon sequence, MST1 recognizes bases in the second and third position and the nucleotide upstream of the anticodon sequence. We speculate that a flexible loop linking strands ß4 and ß5 may be allosteric regulator that establishes cross-subunit communication between the aminoacylation and tRNA-binding sites. We also propose that structural features of the anticodon-binding domain in MST1 permit binding of the enlarged anticodon loop of tRNA1(Thr).


Assuntos
Proteínas de Escherichia coli/metabolismo , RNA de Transferência de Treonina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Treonina-tRNA Ligase/metabolismo , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/genética
7.
J Biol Chem ; 291(46): 24293-24303, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27703015

RESUMO

Human NSun6 is an RNA methyltransferase that catalyzes the transfer of the methyl group from S-adenosyl-l-methionine (SAM) to C72 of tRNAThr and tRNACys In the current study, we used mass spectrometry to demonstrate that human NSun6 indeed introduces 5-methylcytosine (m5C) into tRNA, as expected. To further reveal the tRNA recognition mechanism of human NSun6, we measured the methylation activity of human NSun6 and its kinetic parameters for different tRNA substrates and their mutants. We showed that human NSun6 requires a well folded, full-length tRNA as its substrate. In the acceptor region, the CCA terminus, the target site C72, the discriminator base U73, and the second and third base pairs (2:71 and 3:70) of the acceptor stem are all important RNA recognition elements for human NSun6. In addition, two specific base pairs (11:24 and 12:23) in the D-stem of the tRNA substrate are involved in interacting with human NSun6. Together, our findings suggest that human NSun6 relies on a delicate network for RNA recognition, which involves both the primary sequence and tertiary structure of tRNA substrates.


Assuntos
Dobramento de Proteína , RNA de Transferência de Treonina/química , tRNA Metiltransferases/química , Humanos , Metilação , Domínios Proteicos , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
8.
J Biol Chem ; 290(9): 5912-25, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25593312

RESUMO

TrmI generates N(1)-methyladenosine at position 58 (m(1)A58) in tRNA. The Thermus thermophilus tRNA(Phe) transcript was methylated efficiently by T. thermophilus TrmI, whereas the yeast tRNA(Phe) transcript was poorly methylated. Fourteen chimeric tRNA transcripts derived from these two tRNAs revealed that TrmI recognized the combination of aminoacyl stem, variable region, and T-loop. This was confirmed by 10 deletion tRNA variants: TrmI methylated transcripts containing the aminoacyl stem, variable region, and T-arm. The requirement for the T-stem itself was confirmed by disrupting the T-stem. Disrupting the interaction between T- and D-arms accelerated the methylation, suggesting that this disruption is included in part of the reaction. Experiments with 17 point mutant transcripts elucidated the positive sequence determinants C56, purine 57, A58, and U60. Replacing A58 with inosine and 2-aminopurine completely abrogated methylation, demonstrating that the 6-amino group in A58 is recognized by TrmI. T. thermophilus tRNAGGU(Thr)GGU(Thr) contains C60 instead of U60. The tRNAGGU(Thr) transcript was poorly methylated by TrmI, and replacing C60 with U increased the methylation, consistent with the point mutation experiments. A gel shift assay revealed that tRNAGGU(Thr) had a low affinity for TrmI than tRNA(Phe). Furthermore, analysis of tRNAGGU(Thr) purified from the trmI gene disruptant strain revealed that the other modifications in tRNA accelerated the formation of m(1)A58 by TrmI. Moreover, nucleoside analysis of tRNAGGU(Thr) from the wild-type strain indicated that less than 50% of tRNAGG(Thr) contained m(1)A58. Thus, the results from the in vitro experiments were confirmed by the in vivo methylation patterns.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Eletroforese em Gel de Poliacrilamida , Cinética , Metilação , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , RNA Bacteriano/química , RNA Bacteriano/genética , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , tRNA Metiltransferases/química , tRNA Metiltransferases/genética
9.
Nucleic Acids Res ; 42(22): 13873-86, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25414329

RESUMO

Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNA(Thr)2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNA(Thr)1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine. This raises interesting questions about the aminoacylation fidelity of such ThrRSs and the possible contribution of the two tRNA(Thr)s during editing. Here, we found that, despite the absence of the editing domain, S. cerevisiae mitochondrial ThrRS (ScmtThrRS) harbors a tRNA-dependent pre-transfer editing activity. Remarkably, only the usual tRNA(Thr)2 stimulated pre-transfer editing, thus, establishing the first example of a synthetase exhibiting tRNA-isoacceptor specificity during pre-transfer editing. We also showed that the failure of tRNA(Thr)1 to stimulate tRNA-dependent pre-transfer editing was due to the lack of an editing domain. Using assays of the complementation of a ScmtThrRS gene knockout strain, we showed that the catalytic core and tRNA binding domain of ScmtThrRS co-evolved to recognize the unusual tRNA(Thr)1. In combination, the results provide insights into the tRNA-dependent editing process and suggest that tRNA-dependent pre-transfer editing takes place in the aminoacylation catalytic core.


Assuntos
Mitocôndrias/enzimologia , RNA de Transferência de Treonina/metabolismo , Treonina-tRNA Ligase/metabolismo , Aminoacilação de RNA de Transferência , Anticódon , Evolução Molecular , Deleção de Genes , Estrutura Terciária de Proteína , RNA de Transferência de Treonina/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/genética
10.
Nucleic Acids Res ; 42(14): 9350-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063302

RESUMO

Methylation is a versatile reaction involved in the synthesis and modification of biologically active molecules, including RNAs. N(6)-methyl-threonylcarbamoyl adenosine (m(6)t(6)A) is a post-transcriptional modification found at position 37 of tRNAs from bacteria, insect, plants, and mammals. Here, we report that in Escherichia coli, yaeB (renamed as trmO) encodes a tRNA methyltransferase responsible for the N(6)-methyl group of m(6)t(6)A in tRNA(Thr) specific for ACY codons. TrmO has a unique single-sheeted ß-barrel structure and does not belong to any known classes of methyltransferases. Recombinant TrmO employs S-adenosyl-L-methionine (AdoMet) as a methyl donor to methylate t(6)A to form m(6)t(6)A in tRNA(Thr). Therefore, TrmO/YaeB represents a novel category of AdoMet-dependent methyltransferase (Class VIII). In a ΔtrmO strain, m(6)t(6)A was converted to cyclic t(6)A (ct(6)A), suggesting that t(6)A is a common precursor for both m(6)t(6)A and ct(6)A. Furthermore, N(6)-methylation of t(6)A enhanced the attenuation activity of the thr operon, suggesting that TrmO ensures efficient decoding of ACY. We also identified a human homolog, TRMO, indicating that m(6)t(6)A plays a general role in fine-tuning of decoding in organisms from bacteria to mammals.


Assuntos
Adenosina/análogos & derivados , Proteínas de Escherichia coli/metabolismo , RNA de Transferência de Treonina/metabolismo , tRNA Metiltransferases/metabolismo , Adenosina/química , Adenosina/metabolismo , Sítios de Ligação , Códon , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Metilação , Proteínas/metabolismo , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Treonina/química , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/genética
11.
RNA ; 17(6): 1038-47, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21527672

RESUMO

The binding affinities between Escherichia coli EF-Tu and 34 single and double base-pair changes in the T stem of E. coli tRNA(Thr)(UGU) were compared with similar data obtained previously for several aa-tRNAs binding to Thermus thermophilus EF-Tu. With a single exception, the two proteins bound to mutations in three T-stem base pairs in a quantitatively identical manner. However, tRNA(Thr) differs from other tRNAs by also using its rare A52-C62 pair as a negative specificity determinant. Using a plasmid-based tRNA gene replacement strategy, we show that many of the tRNA(Thr)(UGU) T-stem changes are either unable to support growth of E. coli or are less effective than the wild-type sequence. Since the inviable T-stem sequences are often present in other E. coli tRNAs, it appears that T-stem sequences in each tRNA body have evolved to optimize function in a different way. Although mutations of tRNA(Thr) can substantially increase or decrease its affinity to EF-Tu, the observed affinities do not correlate with the growth phenotype of the mutations in any simple way. This may either reflect the different conditions used in the two assays or indicate that the T-stem mutants affect another step in the translation mechanism.


Assuntos
Escherichia coli/genética , Mutação , Fator Tu de Elongação de Peptídeos/metabolismo , RNA Bacteriano/química , RNA de Transferência de Treonina/química , Sequência de Bases , Escherichia coli/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/química , RNA Bacteriano/metabolismo , RNA de Transferência de Treonina/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
12.
Nucleic Acids Res ; 39(21): 9376-89, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21846775

RESUMO

In Crenarchaea, several tRNA genes are predicted to express precursor-tRNAs (pre-tRNAs) with canonical or non-canonical introns at various positions. We initially focused on the tRNA(Thr) species of hyperthermophilic crenarchaeon, Aeropyrum pernix (APE) and found that in the living APE cells three tRNA(Thr) species were transcribed and subsequently matured to functional tRNAs. During maturation, introns in two of them were cleaved from standard and non-standard positions. Biochemical studies revealed that the APE splicing endonuclease (APE-EndA) removed both types of introns, including the non-canonical introns, without any nucleotide modification. To clarify the underlying reasons for broad substrate specificity of APE-EndA, we determined the crystal structure of wild-type APE-EndA and subsequently compared its structure with that of Archaeaoglobus fulgidus (AFU)-EndA, which has narrow substrate specificity. Remarkably, structural comparison revealed that APE-EndA possesses a Crenarchaea specific loop (CSL). Introduction of CSL into AFU-EndA enhanced its intron-cleaving activity irrespective of the position or motif of the intron. Thus, our biochemical and crystallographic analyses of the chimera-EndA demonstrated that the CSL is responsible for the broad substrate specificity of APE-EndA. Furthermore, mutagenesis studies revealed that Lys44 in CSL functions as the RNA recognition site.


Assuntos
Aeropyrum/enzimologia , Proteínas Arqueais/química , Endorribonucleases/química , Precursores de RNA/metabolismo , Splicing de RNA , RNA de Transferência de Treonina/metabolismo , Aeropyrum/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Endorribonucleases/genética , Endorribonucleases/metabolismo , Genoma Arqueal , Íntrons , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Engenharia de Proteínas , Precursores de RNA/química , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , Especificidade por Substrato
13.
Nucleic Acids Res ; 39(11): 4866-74, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21321019

RESUMO

The standard genetic code is used by most living organisms, yet deviations have been observed in many genomes, suggesting that the genetic code has been evolving. In certain yeast mitochondria, CUN codons are reassigned from leucine to threonine, which requires an unusual tRNA(Thr) with an enlarged 8-nt anticodon loop ( ). To trace its evolutionary origin we performed a comprehensive phylogenetic analysis which revealed that evolved from yeast mitochondrial tRNA(His). To understand this tRNA identity change, we performed mutational and biochemical experiments. We show that Saccharomyces cerevisiae mitochondrial threonyl-tRNA synthetase (MST1) could attach threonine to both and the regular , but not to the wild-type tRNA(His). A loss of the first nucleotide (G(-1)) in tRNA(His) converts it to a substrate for MST1 with a K(m) value (0.7 µM) comparable to that of (0.3 µM), and addition of G(-1) to allows efficient histidylation by histidyl-tRNA synthetase. We also show that MST1 from Candida albicans, a yeast in which CUN codons remain assigned to leucine, could not threonylate , suggesting that MST1 has coevolved with . Our work provides the first clear example of a recent recoding event caused by alloacceptor tRNA gene recruitment.


Assuntos
RNA de Transferência de Histidina/química , RNA de Transferência de Treonina/química , RNA/química , Saccharomyces cerevisiae/genética , Treonina/metabolismo , Sequência de Bases , Códon , Evolução Molecular , Histidina-tRNA Ligase/metabolismo , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Filogenia , RNA/genética , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/metabolismo , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Treonina-tRNA Ligase/metabolismo
14.
Nat Commun ; 13(1): 209, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017528

RESUMO

Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


Assuntos
Anticódon/química , Metiltransferases/genética , Mitocôndrias/genética , RNA Mitocondrial/química , RNA de Transferência de Serina/química , RNA de Transferência de Treonina/química , Anticódon/metabolismo , Pareamento de Bases , Citosina/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Transdução de Sinais
15.
Nat Struct Mol Biol ; 13(4): 376-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16518398

RESUMO

The highly conserved ribonuclease RNase Z catalyzes the endonucleolytic removal of the 3' extension of the majority of tRNA precursors. Here we present the structure of the complex between Bacillus subtilis RNase Z and tRNA(Thr), the first structure of a ribonucleolytic processing enzyme bound to tRNA. Binding of tRNA to RNase Z causes conformational changes in both partners to promote reorganization of the catalytic site and tRNA cleavage.


Assuntos
Endorribonucleases/química , RNA Bacteriano/química , RNA de Transferência de Treonina/química , Bacillus subtilis/metabolismo , Domínio Catalítico , Endorribonucleases/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA de Transferência de Treonina/metabolismo
16.
Nucleic Acids Res ; 37(9): 2894-909, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19287007

RESUMO

Threonylcarbamoyladenosine (t(6)A) is a universal modification found at position 37 of ANN decoding tRNAs, which imparts a unique structure to the anticodon loop enhancing its binding to ribosomes in vitro. Using a combination of bioinformatic, genetic, structural and biochemical approaches, the universal protein family YrdC/Sua5 (COG0009) was shown to be involved in the biosynthesis of this hypermodified base. Contradictory reports on the essentiality of both the yrdC wild-type gene of Escherichia coli and the SUA5 wild-type gene of Saccharomyces cerevisiae led us to reconstruct null alleles for both genes and prove that yrdC is essential in E. coli, whereas SUA5 is dispensable in yeast but results in severe growth phenotypes. Structural and biochemical analyses revealed that the E. coli YrdC protein binds ATP and preferentially binds RNA(Thr) lacking only the t(6)A modification. This work lays the foundation for elucidating the function of a protein family found in every sequenced genome to date and understanding the role of t(6)A in vivo.


Assuntos
Adenosina/análogos & derivados , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , RNA de Transferência/química , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Genes Essenciais , Genômica , Dados de Sequência Molecular , RNA de Transferência/metabolismo , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
17.
Proc Biol Sci ; 277(1692): 2331-7, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20356891

RESUMO

During the Late Pleistocene, the woolly mammoth (Mammuthus primigenius) experienced a series of local extinctions generally attributed to human predation or environmental change. Some small and isolated populations did however survive far into the Holocene. Here, we investigated the genetic consequences of the isolation of the last remaining mammoth population on Wrangel Island. We analysed 741 bp of the mitochondrial DNA and found a loss of genetic variation in relation to the isolation event, probably caused by a demographic bottleneck or a founder event. However, in spite of ca 5000 years of isolation, we did not detect any further loss of genetic variation. Together with the relatively high number of mitochondrial haplotypes on Wrangel Island near the final disappearance, this suggests a sudden extinction of a rather stable population.


Assuntos
Extinção Biológica , Variação Genética/genética , Mamutes/genética , Animais , Simulação por Computador , Citocromos b/química , Citocromos b/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Evolução Molecular , Geografia , Haplótipos/genética , Reação em Cadeia da Polimerase , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , Sibéria
18.
Science ; 279(5357): 1665-70, 1998 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-9497276

RESUMO

The transfer RNA (tRNA) multigene family comprises 20 amino acid-accepting groups, many of which contain isoacceptors. The addition of isoacceptors to the tRNA repertoire was critical to establishing the genetic code, yet the origin of isoacceptors remains largely unexplored. A model of tRNA evolution, termed "tRNA gene recruitment," was formulated. It proposes that a tRNA gene can be recruited from one isoaccepting group to another by a point mutation that concurrently changes tRNA amino acid identity and messenger RNA coupling capacity. A test of the model showed that an Escherichia coli strain, in which the essential tRNAUGUThr gene was inactivated, was rendered viable when a tRNAArg with a point mutation that changed its anticodon from UCU to UGU (threonine) was expressed. Insertion of threonine at threonine codons by the "recruited" tRNAArg was corroborated by in vitro aminoacylation assays showing that its specificity had been changed from arginine to threonine. Therefore, the recruitment model may account for the evolution of some tRNA genes.


Assuntos
Anticódon/genética , Escherichia coli/genética , Evolução Molecular , Mutação Puntual , RNA de Transferência de Arginina/genética , RNA de Transferência de Treonina/genética , Arginina/metabolismo , Composição de Bases , Sequência de Bases , Genes Bacterianos , Haemophilus influenzae/genética , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Arginina/química , RNA de Transferência de Arginina/metabolismo , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/metabolismo , Recombinação Genética , Temperatura , Treonina/metabolismo , Transformação Bacteriana
19.
Am J Med Genet A ; 146A(10): 1248-58, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18386806

RESUMO

We report here on the clinical, genetic, and molecular characterization of three Han Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing loss. Clinical evaluation revealed the variable phenotype of hearing impairment including severity, age-at-onset, audiometric configuration in these subjects. The penetrance of hearing loss in WZD8, WZD9, and WZD10 pedigrees were 46%, 46%, and 50%, respectively, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrance of hearing loss in these pedigrees were 23%, 31%, and 37.5%, respectively. Mutational analysis of the complete mitochondrial genomes showed the homoplasmic A1555G mutation and distinct sets of mitochondrial DNA variants belonging to haplogroups D4b2b, B5b1, and F2, respectively. Of these, the tRNA(Cys) T5802C, tRNA(Thr) A15924C, and ND5 T12338C variants are of special interest as these variants occur at positions which are highly evolutionarily conserved nucleotides of tRNAs or amino acid of polypeptide. These homoplasmic mtDNA variants were absent among 156 unrelated Chinese controls. The T5802C and G15927A variants disrupted a highly conserved A-U or C-G base-pairing at the anticodon-stem of tRNA(Cys) or tRNA(Thr), while the ND5 T12338C mutation resulted in the replacement of the translation-initiating methionine with a threonine, and also located in two nucleotides adjacent to the 3' end of the tRNA(Leu(CUN)). Thus, mitochondrial dysfunctions, caused by the A1555G mutation, would be worsened by these mtDNA variants. Therefore, these mtDNA mutations may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated 12S rRNA A1555G mutation in those Chinese pedigrees.


Assuntos
DNA Mitocondrial/genética , Surdez/genética , Mutação , Linhagem , RNA Ribossômico/genética , Aminoglicosídeos/farmacologia , Sequência de Bases , China , Conexina 26 , Conexinas/genética , Surdez/induzido quimicamente , Surdez/fisiopatologia , Variação Genética , Haplótipos , Humanos , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Penetrância , Fenótipo , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , Índice de Gravidade de Doença , tRNA Metiltransferases/genética
20.
Gene ; 380(1): 14-20, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16842936

RESUMO

The mitochondrial genome of the Chinese big-headed turtle, Platysternon megacephalum, was obtained using polymerase chain reaction (PCR). The entire mtDNA sequence, the longest mitochondrial genome in turtles reported so far, is 19161 bp. This mitochondrial genome exhibits a novel gene order, which greatly differs from that of any other vertebrates. It is characterized by four distinctive features: 1) the translocation of a gene cluster including three tRNA genes (tRNAHis, tRNASer, tRNALeu(CUN)) and ND5 gene, 2) two tRNAThr pseudogenes, 3) a duplication of pseudo tRNAThr/tRNAPro/D-loop region and 4) 3 non-coding spacers. These unique identities represent a new mitogenomic gene order in vertebrates. The TDRL model was proposed to account for the generation of the gene order in P. megacephalum.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais , Tartarugas/genética , Animais , Sequência de Bases , Primers do DNA/genética , DNA Intergênico/genética , Duplicação Gênica , Rearranjo Gênico , Genoma , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , Pseudogenes , RNA de Transferência de Prolina/genética , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , Homologia de Sequência do Ácido Nucleico , Translocação Genética , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA