Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(7): 4354-4362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38318717

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is responsible for 3.3 million deaths per annum. Efficacious therapeutic modalities or drug treatments for ALD have not yet been found, so it is urgent to seek new agents for preventing ALD and its related disease. Many experiments have indicated that modulating the gut microbiota and regulating the toll-like receptor 4 (TLR4)/nuclear transcription factor-κB (NF-κB) inflammatory pathway can provide a new target for prevention and treatment of ALD. Marine microalgae have their natural metabolic pathways to synthesize various of bioactive compounds as promising candidates for hepatoprotection. In this study, we investigated ethanol extracts from Isochrysis zhanjiangensis (EEIZ) to evaluate their ability to alleviate acute alcoholic liver injury, regulate TLR4/NF-κB inflammatory pathway and modulate intestinal bacteria dysbiosis in mice for ALD treatment. RESULTS: In the acute ALD mouse model, EEIZ reduced levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triacylglyceride, total cholesterol and low-density lipoprotein, while increasing the level of high-density lipoprotein. Besides, TLR4, myeloid differentiation factor 88, NF-κB and tumor necrosis factor-α expression levels in liver tissue were effectively downregulated by EEIZ. Furthermore, treatment with EEIZ enhanced intestinal homeostasis and significantly alleviated the damage caused by alcohol. CONCLUSION: EEIZ showed effective hepatoprotective activity against alcohol-induced acute liver injury in mice as it could alleviate hepatocyte damage, suppress the TLR4/NF-κB inflammatory pathway and regulate the intestinal flora structure. EEIZ could be a good candidate for preventing acute alcoholic liver injury. © 2024 Society of Chemical Industry.


Assuntos
Haptófitas , Hepatopatias Alcoólicas , Camundongos , Animais , Etanol/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Haptófitas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Disbiose/tratamento farmacológico , Disbiose/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/etiologia , Bactérias/metabolismo , Camundongos Endogâmicos C57BL
2.
Neuropsychobiology ; 82(3): 150-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990058

RESUMO

INTRODUCTION: Inflammation is closely associated with the pathogenesis of vascular dementia (VD). Dl-3-n-butylphthalide (NBP) is a small molecule compound extracted from the seeds of Chinese celery, which have anti-inflammatory properties in animal models of acute ischemia and patients with stroke. In this experiment, we studied the protective effects of NBP in a rat model of VD induced by permanent bilateral occlusion of the common carotid arteries and investigated the role of the TLR-4/NF-κB inflammatory signaling pathway in the pathology of VD. METHODS: The Morris water maze test was used to evaluate cognitive deficits in the VD rats. Western blot, immunohistochemistry, and PCR analyses were used to analyze the molecular basis of the inflammatory response. RESULTS: NBP significantly improved the learning and memory ability of VD rats. With regard to the protective mechanism, the results showed that NBP significantly downregulated the relative expression of Cleaved Cas-1/Cas-1 and Cleaved GSDMD/GSDMD. Moreover, NBP decreased the levels of the TLR-4 and NF-κB (P65) protein and phosphorylation of P65 in the hippocampus of VD rats via the TLR-4/NF-κB signaling pathway. CONCLUSION: These findings demonstrate that NBP protects against memory deficits in permanent bilateral common carotid artery occlusion-induced VD rats by attenuating pyroptosis via the TLR-4/NF-κB signaling pathway.


Assuntos
Demência Vascular , Fármacos Neuroprotetores , Ratos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Receptor 4 Toll-Like/uso terapêutico , Piroptose , Demência Vascular/tratamento farmacológico , Demência Vascular/prevenção & controle , Transdução de Sinais , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia
3.
BMC Musculoskelet Disord ; 24(1): 183, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906519

RESUMO

BACKGROUND: HMGB1 usually serves as a damage-associated molecular pattern (DAMP) molecule (also known as alarmin) that regulates the inflammatory and immune responses via different receptors or direct uptake. Numerous studies have reported the association between HMGB1 and inflammatory diseases; however, its role in temporomandibular joint (TMJ) osteoarthritis (OA) has not been elucidated. In this retrospective study, we aimed to investigate HMGB1 levels in the synovial fluid (SF) in patients with TMJOA and TMID, their correlation with TMJOA and TMID severity, and the therapeutic effect of sodium hyaluronate (hyaluronic acid, HA) on TMJOA. METHODS: SF samples were analyzed for 30 patients with TMJ internal derangement (TMJID) and TMJOA, along with visual analog scale (VAS) scores, radiographic stages, and mandibular functional limitations. The SF levels of HMGB1, IL-1ß, IL-18, PGE2, RAGE, TLR4, and iNOS were determined via an enzyme-linked immunosorbent assay. To evaluate the therapeutic effects of HA, pre-treatment and post-treatment clinical symptoms were also compared in patients of the TMJOA group who had received an intra-articular injection of HA. RESULTS: VAS and Jaw Functional Limitation Scale (JFLS) scores were significantly higher in the TMJOA group than in the TMNID group, as were SF levels of HMGB1, TLR4, IL-1ß, IL-18, PGE2, and iNOS. The synovial HMGB1 level was positively correlated with the VAS score (r = 0.5512, p = 0.0016) and mandibular functional limitations (r = 0.4684, p = 0.0054). The cut-off value for the HMGB1 level as a diagnostic biomarker was 986.8 pg/ml. The SF level of HMGB1 yielded an area under the curve value (AUC) of 0.8344 for predicting TMJOA. HA alleviated TMJ disorders by significantly reducing the VAS score and improving the maximum extent of mouth opening in both the TMJID and TMJOA groups (p < 0.05). Moreover, patients in both the TMJID and TMJOA groups exhibited significant improvement in the JFLS score following HA treatment. CONCLUSIONS: Our results indicate that HMGB1 is a potential marker for predicting the severity of TMJOA. Intra-articular HA injection exerts a positive therapeutic effect on TMJOA; however, further investigations are warranted to validate its therapeutic effect in the late phase of visco-supplementation treatment.


Assuntos
Proteína HMGB1 , Osteoartrite , Transtornos da Articulação Temporomandibular , Humanos , Líquido Sinovial , Interleucina-18/uso terapêutico , Estudos Retrospectivos , Dinoprostona , Receptor 4 Toll-Like/uso terapêutico , Articulação Temporomandibular , Osteoartrite/tratamento farmacológico , Ácido Hialurônico
4.
J Obstet Gynaecol Res ; 49(1): 128-140, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36288911

RESUMO

AIM: Preeclampsia (PE) is a common medical complication of pregnancy characterized by high blood pressure and proteinuria after the 20th gestational week. This study aimed to investigate the potency of the combination of curcumin and aspirin in the treatment of PE and explore the underlying mechanisms. MATERIAL AND METHODS: The PE model was constructed in female rats by administering 0.5 mg/mL N-nitro-L-arginine methyl ester from gestational days (GDs) 6 to 16. The pregnant female rats were divided into five groups according to the drug treatment. The curcumin or aspirin was given to the rats by tail vein injection (0.36 mg/kg) or gavage treatment (1.5 mg/kg BW/day) from GD4 to GD18. RESULTS: Treatment with curcumin and aspirin combination significantly reduced the systolic blood pressure and proteinuria in the PE rats. Meanwhile, in comparison to the PE rats treated with single-dose curcumin or aspirin, the rats treated with combined curcumin and aspirin showed significantly decreased sFlt-1, increased placental growth factor, and alleviated oxidative stress in both blood and placental tissues, which are abnormal in no-treated PE rats. Furthermore, dramatically decreased inflammatory cytokines secretion and TLR4 and NF-κB p65 expression in placental tissues were also observed in the PE rats with combined treatment compared to those of no-treated, signal-dose curcumin or aspirin-treated PE rats. CONCLUSIONS: Our results suggested that the combined treatment of curcumin and aspirin significantly ameliorates the symptoms of PE in rats, which is most likely due to the inhibition of the placental TLR4/NF-κB p65 signaling pathway.


Assuntos
Curcumina , Pré-Eclâmpsia , Humanos , Ratos , Feminino , Gravidez , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , NF-kappa B/metabolismo , Placenta/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Curcumina/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Fator de Crescimento Placentário/metabolismo , Transdução de Sinais , Proteinúria/tratamento farmacológico
5.
Chem Biodivers ; 20(2): e202200089, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36653304

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory gastrointestinal disease mainly associated with immune dysfunction and microbiota disturbance. Cinnamaldehyde (CIN) is an active ingredient of Cinnamomum cassia with immunomodulatory and anti-inflammatory properties. However, the therapeutic effect and detailed mechanism of CIN on UC remains unclear, and warrant further dissection. In this study, network pharmacology and molecular docking analyses were introduced to predict the potential targets and mechanism of CIN against UC. The therapeutic effect and the predicted targets of CIN on UC were further validated by in vivo and in vitro experiments. Seven intersection targets shared by CIN and UC were obtained, and four hub targets, i. e., toll-like receptor 4 (TLR4), transcription factor p65 (NF-κB), NF-kappa-B inhibitor alpha (IκBα), prostaglandin G/H synthase 2 (COX2) were acquired, which were mainly involved in NF-κB, tumor necrosis factor (TNF), Toll-like receptor and NOD-like receptor signaling pathways. CIN alleviated the symptoms of dextran sulfate sodium (DSS)-induced colitis by decreasing the disease active index (DAI), restoring colon length, and relieving colonic pathology. CIN attenuated systemic inflammation by reducing serum myeloperoxidase (MPO), TNF-α, interleukin-6 (IL-6), and interleukin-1ß (IL-1ß), down-regulating TLR4, phosphorylated-NF-κB (p-NF-κB), phosphorylated-IκBα (p-IκBα), and COX2 expression in colonic tissues, and decreasing NOD-like receptor protein 3 (NLRP3), Caspase-1, and IL-1ß protein expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. These results indicate that CIN alleviates DSS-induced colitis inflammation by modulating TLR4/NF-κB signaling pathway and NLRP3 inflammasome activation.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , NF-kappa B/metabolismo , Inflamassomos , Fator de Transcrição RelA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sulfato de Dextrana , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Inibidor de NF-kappaB alfa/uso terapêutico , Proteínas NLR , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Transdução de Sinais , Colite Ulcerativa/tratamento farmacológico , Inflamação , Modelos Animais de Doenças
6.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139364

RESUMO

This study assessed the safety and efficacy of OncoTherad® (MRB-CFI-1) nanoimmunotherapy for non-muscle invasive bladder cancer (NMIBC) patients unresponsive to Bacillus Calmette-Guérin (BCG) and explored its mechanisms of action in a bladder cancer microenvironment. A single-arm phase I/II study was conducted with 44 patients with NMIBC who were unresponsive to BCG treatment. Primary outcomes were pathological complete response (pCR) and relapse-free survival (RFS). Secondary outcomes comprised response duration and therapy safety. Patients' mean age was 65 years; 59.1% of them were refractory, 31.8% relapsed, and 9.1% were intolerant to BCG. Moreover, the pCR rate after 24 months reached 72.7% (95% CI), whereas the mean RFS reached 21.4 months. Mean response duration in the pCR group was 14.3 months. No patient developed muscle-invasive or metastatic disease during treatment. Treatment-related adverse events occurred in 77.3% of patients, mostly grade 1-2 events. OncoTherad® activated the innate immune system through toll-like receptor 4, leading to increased interferon signaling. This activation played a crucial role in activating CX3CR1+ CD8 T cells, decreasing immune checkpoint molecules, and reversing immunosuppression in the bladder microenvironment. OncoTherad® has proved to be a safe and effective therapeutic option for patients with BCG-unresponsive NMIBC, besides showing likely advantages in tumor relapse prevention processes.


Assuntos
Imunoterapia , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Idoso , Humanos , Adjuvantes Imunológicos/uso terapêutico , Administração Intravesical , Vacina BCG/uso terapêutico , Receptor 1 de Quimiocina CX3C , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias não Músculo Invasivas da Bexiga/terapia , Transdução de Sinais , Receptor 4 Toll-Like/uso terapêutico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Imunoterapia/métodos , Sistemas de Liberação de Fármacos por Nanopartículas
7.
J Sci Food Agric ; 103(3): 1550-1560, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36208473

RESUMO

BACKGROUND: Lipopolysaccharides (LPS) are the main pathogenic substances in Gram-negative bacteria. The aim of this study was to investigate the preventive effects of dietary curcumin (CUR) on LPS toxicity in the duck ileum. The duck diet was supplemented with CUR (0.5 g kg-1 ) for 28 days, while the birds were injected with LPS (0.5 mg kg-1 body weight per injection, administered as seven injections in the last week of the experimental period). RESULTS: LPS significantly decreased the ileal villus-to-crypt ratio in the non-supplemented CUR group. Dietary CUR alleviated LPS-induced morphological damage to the ileum. Moreover, dietary CUR alleviated oxidative stress by increasing the levels of total superoxide dismutase (T-SOD) (P < 0.05) and glutathione S-transferase (GST) (P < 0.05) and decreasing the production of malonic dialdehyde (MDA) (P < 0.05) in control ducks and LPS-challenged ducks. Dietary CUR significantly inhibited the LPS-induced massive production of inflammatory factors (IL-1ß, IL-6, and TNF-α) (P < 0.05). CUR induced the inhibition of TLR4 and activation of Nrf2 to reduce the expression of inflammation-related genes (TLR4, NF-κB, IKK, TXNIP, NLRP3, caspase-1, IL-1ß, IL-6, and TNF-α). Moreover, dietary CUR ameliorated the decrease in claudin-1 and occludin expression (P < 0.05) and improved ZO-1 expression in the duck ileum (P < 0.05). CONCLUSION: In conclusion, dietary CUR has beneficial effects on LPS-induced ileal damage, oxidative damage, and inflammatory response by inhibiting the TLR/NF-κB and activating the Nrf2 signaling pathways in ducks. This study provides valuable information regarding the therapeutic uses of CUR in duck ileitis. © 2022 Society of Chemical Industry.


Assuntos
Curcumina , Ileíte , Animais , Lipopolissacarídeos/efeitos adversos , Patos/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Estresse Oxidativo , Ileíte/induzido quimicamente , Ileíte/genética , Ileíte/prevenção & controle
8.
Apoptosis ; 27(7-8): 561-576, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674851

RESUMO

Inflammatory reaction and neuronal apoptosis are the major pathophysiological mechanisms involved in cerebral ischemia-reperfusion injury (CI/RI). It has been reported that Zhongfeng Capsules (ZFCs), which contain Panax notoginseng, Hirudo, Red ginseng, Eupolyphaga sinensis, Pangolin scales, Rhubarb, and Radix Salvia miltiorrhizae, have a definite therapeutic effect on CI/RI. However, the specific molecular mechanisms of ZFCs are unclear. In this study, the effects of ZFCs on middle cerebral artery occlusion were investigated in rats. Our results showed that neurological impairment and neuronal apoptosis were alleviated in ZFC-treated rats. Additionally, infarct volume and cerebral edema decreased and there was an improvement in histopathological features. Furthermore, the expression levels of IL-1ß, IL-6, and TNF-α were downregulated in ZFC-treated rats. TLR 4, NF-κB, Bax, and Caspase-3 expression also tended to decrease, whereas the expression of Bcl-2, p-PI3K, p-Akt, and I-κBα increased. The results indicate that the ZFCs effectively protected the rats against CI/RI possibly via the TLR4/NF-κB signaling pathway. Additionally, the formulation regulated the transcriptional activity of NF-κB, secretion of downstream inflammatory factors, and the expression of Bcl-2-Bax proteins in the PI3K/Akt pathway. Our findings suggest that ZFCs suppress neuronal apoptosis and inflammatory reaction via the PI3K/Akt and TLR4/NF-κB signaling pathways, respectively. Moreover, activation of the PI3K/Akt pathway may result in the inhibition of proinflammatory cytokine secretion, which may be another mechanism by which ZFCs alleviate CI/RI.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Cápsulas/farmacologia , Cápsulas/uso terapêutico , Inflamação/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Proteína X Associada a bcl-2/metabolismo
9.
Br J Anaesth ; 129(6): 959-969, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243579

RESUMO

BACKGROUND: Repetitive opioid use does not always alleviate basal pain, procedural pain, or both after burn injury. Mitigation of burn injury-site pain can be achieved by GTS-21 stimulation of α7-acetylcholine nicotinic receptors (α7AChRs) and reduced microglia activation in rat. We tested the hypothesis that morphine exaggerates burn injury-site pain and GTS-21 alleviates both morphine-induced aggravated burn injury pain and microglia activation. METHODS: Young rats with dorsal paw burn injury or sham-burn received intraperitoneal saline, morphine, GTS-21, or a combination twice daily for 14 days. Ipsilateral plantar pain thresholds were tested every other day before morning drugs from days 0-20. Spinal microglia activation, evidenced as pain-transducer (tumour necrosis factor-α [TNF-α], interleukin [IL]-6, IL-1ß, nuclear factor kappa B [NF-κB], Toll-like receptor 4 [TLR4]) expression, was examined using immunohistochemistry and immunoblot. In cultured microglia, morphine-induced cytokine expression was measured (quantitative polymerase chain reaction/enzyme-linked immunosorbent assay [qPCR/ELISA]). RESULTS: Morphine aggravated allodynia at day 5 in sham-burn (P=0.039, n=8-11) but significantly aggravated burn injury site allodynia by day 3 (P=0.010, n=8-11). Microgliosis paralleled nociceptive behaviour changes where burn injury with morphine had highest microgliosis compared with burn injury, morphine alone, or controls (number of cells per field [SD]: 33.8 [2.4], 18.0 [4.1], 8.2 [1.9], and 4.8 [2.0], respectively; P<0.001, n=4-5]. GTS-21 reversed the morphine-induced pain component in sham-burn and burn injury rats together with reduced microgliosis and spinal pain-transducer expression (TNF-α, IL-6, IL-1ß, NF-κB, and TLR4). Morphine-exposed microglial cells showed increased cytokine expression, which was mitigated by GTS-21. CONCLUSIONS: Morphine or burn injury alone increases pain together with microgliosis and pain-transducer expression. Morphine administration augments burn injury-site nociception sooner and aggravated spinal microgliosis and inflammatory pain-transducer expression. GTS-21 has the potential to treat morphine-induced pain in burn injury.


Assuntos
Queimaduras , Morfina , Animais , Ratos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/uso terapêutico , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Agonistas Colinérgicos/metabolismo , Hiperalgesia/induzido quimicamente , Microglia/metabolismo , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Dor/tratamento farmacológico , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Fator de Necrose Tumoral alfa
10.
J Enzyme Inhib Med Chem ; 37(1): 2589-2597, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36128868

RESUMO

It is significant to design, synthesise and optimise flavonoid derivatives with better anti-inflammatory activity. This study aims to design and synthesise a series of novel 2-phenyl-4H-chromen-4-one compounds with anti-inflammatory; among them, compound 8 was discovered as the best one. And then, the effects of compound 8 on the TLR4/MAPK signalling pathway was carried out in vivo, the results indicated that compound 8 could downregulate NO, IL-6, and TNF-α expression, and suppress LPS-induced inflammation by inhibiting the TLR4/MAPK pathways. Furthermore, compound 8 reduced inflammation by a mouse model of LPS-induced inflammatory disease in vivo. The results suggest that compound 8 has the potential against inflammation through regulating TLR4/MAPK pathway and can be assessed further for drug development.


Assuntos
Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Flavonoides , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-6 , Lipopolissacarídeos/farmacologia , Camundongos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico
11.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955865

RESUMO

Autism spectrum disorder (ASD) identifies a neurodevelopmental disease defined by social impairments and repetitive or stereotyped behaviors. The etiology of ASD remains unclear; it primarily affects the brain, but a link between gastrointestinal (GI) diseases, inflammatory mucosal pathology and this disorder has been suggested. In particular, a central role seems to be played by an imbalance in pro-and anti-inflammatory cytokines, oxidative stress, and apoptosis. Toll-like receptor 4 (TLR4) is a protein of innate immunity responsible for the regulation and maintenance of intestinal homeostasis. Through histochemical and immunohistochemical evaluations we analyzed the intestinal morphology and the immunopositivity of TLR4 and of other pro-inflammatory and apoptotic proteins in BTBR T+Itpr3tf/J mice. Morphological data showed that the mucosal tunica presented longer intestinal villi. The length of the villi and the epithelial surface determine the exchanges of the intestinal mucosa with luminal contents, modifying the microbiota composition. The biochemical and immunohistochemical results indicated a close relationship among the increase of TLR4 and the activation of NF-kB subunits (p65 and p50) and pro-inflammatory and apoptotic proteins, such as cyclooxygenase-2, interleukin-1ß, inducible nitric oxide synthase, tumor nuclear factor-alpha, caspase-3, caspase-8. These preliminary results require more in-depth study but they suggest the TLR4 signaling pathway as a possible target for therapeutic approaches to reduce GI disorders in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Receptor 4 Toll-Like/uso terapêutico
12.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430244

RESUMO

Proton pump inhibitors (PPIs) are one of the most prescribed drugs around the world. PPIs induce microbiota modulation such as obesity both in humans and in animal models. However, since PPIs can induce microbiota modulation despite the absence of a high-fat diet or weight gain, it is an interesting model to correlate microbiota modulation with the establishment of non-alcoholic fatty liver disease (NAFLD). We investigated the effect of pantoprazole treatment on TLR4 signaling and liver histology in C57BL/6J mice for 60 days, trying to correlate microbiota modulation with some aspects of liver injury. We performed glucose (GTT) and insulin (ITT) tolerance tests, serum lipopolysaccharide (LPS) dosage, liver histology, liver and intestine extraction for Western blot and qPCR. Fecal microbiota were investigated via metagenomics. Chronic treatment with pantoprazole induced microbiota modulation and impaired ileum barrier integrity, without an association with insulin resistance. Furthermore, increased circulating LPS and increased Toll-like receptor 4 (TLR4) and TGFß downstream signaling may have an important role in the development of the observed liver microvesicular steatosis and fibrosis. Finally, this model of PPI-induced changes in microbiota might be useful to investigate liver microvesicular steatosis and fibrosis.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Receptor 4 Toll-Like/uso terapêutico , Pantoprazol/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Inibidores da Bomba de Prótons/uso terapêutico , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Fibrose
13.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232673

RESUMO

Atopic dermatitis (AD) is a chronic and recurrent inflammatory skin disease, characterized by severe itching and recurrent skin lesions. We hypothesized that a novel treatment involving calcium-based antimicrobial peptide compounds (CAPCS), a combination of natural calcium extracted from marine shellfish, and a variety of antimicrobial peptides, may be beneficial for AD. We established a dinitrofluorobenzene (DNFB)-induced AD model in BALB/c mice to test our hypothesis. We observed mouse behavior and conducted histopathological and immunohistochemical analyses on skin lesions before and after CAPCS treatment. We also characterized the changes in the levels of cytokines, inflammatory mediators, and Toll-like receptors (TLRs) in plasma and skin lesions. The results showed that (i) topical application of CAPCS ameliorated AD-like skin lesions and reduced scratching behavior in BALB/c mice; (ii) CAPCS suppressed infiltration of inflammatory cells and inhibited the expression of inflammatory cytokines in AD-like skin lesions; (iii) CAPCS reduced plasma levels of inflammatory cytokines; and (iv) CAPCS inhibited TLR2 and TLR4 protein expression in skin lesions. Topical application of CAPCS exhibits a therapeutic effect on AD by inhibiting inflammatory immune responses via recruiting helper T cells and engaging the TLR2 and TLR4 signaling pathways. Therefore, CAPCS may be useful for the treatment of AD.


Assuntos
Dermatite Atópica , Animais , Peptídeos Antimicrobianos , Cálcio/farmacologia , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dinitrofluorbenzeno/farmacologia , Mediadores da Inflamação/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Pele/patologia , Linfócitos T Auxiliares-Indutores/metabolismo , Receptor 2 Toll-Like , Receptor 4 Toll-Like/uso terapêutico
14.
Europace ; 23(11): 1837-1846, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33837408

RESUMO

AIMS: Inflammation plays a role in the pathogenesis of atrial fibrillation (AF). Pericarditis enhanced atrial arrhythmogenesis, but the role of the pericardium remains unclear in AF. Activation of the toll-like receptor 4 (TLR4) by binding to lipopolysaccharide (LPS) promotes cardiac electrical remodelling. In this study, we hypothesized that pericarditis may induce atrial arrhythmogenesis via pericardium-myocardium interactions by TLR4 signalling. METHODS AND RESULTS: Pericarditis was induced in rabbits by injecting LPS (1-2 mg/kg) into the pericardium. Conventional microelectrodes were used to record the action potentials of left atrial (LA) posterior walls (LAPWs) and LA appendages (LAAs) with and without attached pericardium in the control or pericarditis-induced rabbits. Cytokine array was used to measure the expression levels of proinflammatory cytokines in control and LPS-treated pericardium. Compared with the controls, the LPS-treated pericardium had higher expressions of IL-1α, IL-8, and MIP-1ß. Rapid atrial pacing-induced burst firing in LPS-treated LAPWs and LAAs, and in control LAPWs (but not in LAAs). The incidence of pacing-induced spontaneous activity and burst firing was increased by LPS-treated pericardium but was attenuated by the control pericardium. Moreover, burst firing induced by LPS-treated pericardium was blocked upon administration of the TLR4 inhibitor, TAK-242 (100 ng/mL), ryanodine receptor inhibitor (ryanodine, 3 µM), or calmodulin kinase II inhibitor (KN-93, 1 µM). CONCLUSIONS: Healthy and inflamed pericardium differently modulate LPS-induced atrial arrhythmogenesis. Targeting pericardium via TLR4 signalling may be a novel therapeutic strategy for AF.


Assuntos
Fibrilação Atrial , Lipopolissacarídeos , Animais , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/tratamento farmacológico , Humanos , Lipopolissacarídeos/efeitos adversos , Miocárdio/metabolismo , Pericárdio , Coelhos , Receptor 4 Toll-Like/uso terapêutico
15.
Support Care Cancer ; 29(11): 6841-6850, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34003380

RESUMO

BACKGROUND AND OBJECTIVES: Chemotherapy-induced peripheral neuropathy (CIPN) is considered one of the most common sequelae in patients with cancer who experience consistent abnormal sensations or pain symptoms during or after paclitaxel (PAC) chemotherapy. Transient receptor potential vanilloid 1 (TRPV1) and toll-like receptor 4 (TLR4) have been reported to interact in the nervous system in patients with CIPN. The antinociceptive effects of hyperbaric oxygen therapy (HBOT) on CIPN was demonstrated in this study through behavior tests. Using a CIPN rat model, we examined the effects of simultaneous HBOT (SHBOT) administration during chemotherapy and discovered that SHBOT achieved better reversal effects than chemotherapy alone. MATERIALS AND METHODS: Twenty-four rats were randomly allocated to four groups: control, PAC, SHBOT, and HBOT after PAC groups. Behavior tests were performed to evaluate mechanical allodynia and thermal hyperalgesia status. Tissues from the spinal cord and dorsal root ganglions were collected, and TLR4 and TRPV1 expression and microglial activation were investigated through immunofluorescence (IF) staining. RESULTS: The mechanical and thermal behavior tests revealed that HBOT intervention during PAC treatment led to the early alleviation of CIPN symptoms and inhibited CIPN deterioration. IF staining revealed that TLR4, TRPV1, and microglial activation were all upregulated in PAC-injected rats and exhibited early and significant downregulation in SHBOT-treated rats. CONCLUSION: This study is the first to demonstrate that the use of SHBOT during PAC treatment has potential for the early suppression of CIPN initiation and deterioration, indicating that it can alleviate CIPN symptoms and may reverse CIPN in patients undergoing systemic chemotherapy.


Assuntos
Antineoplásicos , Oxigenoterapia Hiperbárica , Doenças do Sistema Nervoso Periférico , Animais , Antineoplásicos/uso terapêutico , Gânglios Espinais/metabolismo , Humanos , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/terapia , Ratos , Canais de Cátion TRPV/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico
16.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576137

RESUMO

Hemolysis is a physiological condition in which red blood cells (RBCs) lyse, releasing their contents into the extracellular environment. Hemolysis can be a manifestation of several diseases and conditions, such as sickle cell disease, hemorrhagic stroke, and trauma. Heme and hemoglobin are among the unique contents of RBCs that are released into the environment. Although these contents can cause oxidative stress, especially when oxidized in the extracellular environment, they can also initiate a proinflammatory response because they bind to receptors such as the Toll-like receptor (TLR) family. This review seeks to clarify the mechanism by which TLRs initiate a proinflammatory response to heme, hemoglobin, and their oxidized derivatives, as well as the possibility of using soluble TLRs (sTLRs) as therapeutic agents. Furthermore, this review explores the possibility of using sTLRs in hemorrhagic disorders in which mitigating inflammation is essential for clinical outcomes, including hemorrhagic stroke and its subtypes, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH).


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Receptor 2 Toll-Like/uso terapêutico , Receptor 4 Toll-Like/uso terapêutico , Animais , Humanos , Proteômica , Solubilidade
17.
ACS Biomater Sci Eng ; 10(3): 1530-1543, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38372216

RESUMO

Atherosclerosis management heavily relies on the suppression of the inflammatory response of macrophages. Colchicine's potent anti-inflammatory properties make it a promising candidate for secondary prevention against cardiovascular disease. However, its high toxicity and numerous adverse effects limit its clinical use. To address this, there is an urgent need for specific drug delivery systems to boost the level of accumulation of colchicine within atherosclerotic plaques. In this study, the cluster of differentiation-44 receptor was verified to be overexpressed in inflammatory macrophages within plaques both in vitro and in vivo. Subsequently, a Prussian blue-based nanomedical loading system with hyaluronic acid (HA) coating was constructed, and its effects were observed on the atherosclerosis regression. Colchicine and Cy5.5 were encapsulated within Prussian blue nanoparticles through self-assembly, followed by conjugation with hyaluronic acid to create col@PBNP@HA. The formulated col@PBNP@HA displayed a cubic shape and scattered distribution. Importantly, col@PBNP@HA demonstrated specific cellular uptake into lipopolysaccharide-stimulated macrophages. In vitro experiments showed that col@PBNP@HA more effectively inhibited expression of inflammatory factors and scavenged reactive oxygen species compared with the control group, which were treated with colchicine. Furthermore, col@PBNP@HA exhibited its specific and higher accumulation in aortic plaque analysis via fluorescence imaging of aortas. After 4 weeks, administration of col@PBNP@HA resulted in significant atherosclerosis regression in the mice model, with therapeutic effects superior to those of free colchicine. Similar to colchicine, col@PBNP@HA inhibited the secretion of inflammation factors and scavenged ROS through the regulation of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (Myd88)/nuclear factor kappa-B (NF-κB) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. In summary, col@PBNP@HA demonstrated specific targeting ability to inflammatory plaques and exerted beneficial effects on atherosclerosis regression through TLR4/Myd88/NF-κB and PGC-1α modulation.


Assuntos
Aterosclerose , Ferrocianetos , Nanopartículas , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Ácido Hialurônico , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Fator 88 de Diferenciação Mieloide/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo
18.
Sci China Life Sci ; 67(3): 475-487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37219765

RESUMO

Cardiopulmonary bypass has been speculated to elicit systemic inflammation to initiate acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), in patients after cardiac surgery. We previously found that post-operative patients showed an increase in endothelial cell-derived extracellular vesicles (eEVs) with components of coagulation and acute inflammatory responses. However, the mechanism underlying the onset of ALI owing to the release of eEVs after cardiopulmonary bypass, remains unclear. Plasma plasminogen-activated inhibitor-1 (PAI-1) and eEV levels were measured in patients with cardiopulmonary bypass. Endothelial cells and mice (C57BL/6, Toll-like receptor 4 knockout (TLR4-/-) and inducible nitric oxide synthase knockout (iNOS-/-)) were challenged with eEVs isolated from PAI-1-stimulated endothelial cells. Plasma PAI-1 and eEVs were remarkably enhanced after cardiopulmonary bypass. Plasma PAI-1 elevation was positively correlated with the increase in eEVs. The increase in plasma PAI-1 and eEV levels was associated with post-operative ARDS. The eEVs derived from PAI-1-stimulated endothelial cells could recognize TLR4 to stimulate a downstream signaling cascade identified as the Janus kinase 2/3 (JAK2/3)-signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 1 (IRF-1) pathway, along with iNOS induction, and cytokine/chemokine production in vascular endothelial cells and C57BL/6 mice, ultimately contributing to ALI. ALI could be attenuated by JAK2/3 or STAT3 inhibitors (AG490 or S3I-201, respectively), and was relieved in TLR4-/- and iNOS-/- mice. eEVs activate the TLR4/JAK3/STAT3/IRF-1 signaling pathway to induce ALI/ARDS by delivering follistatin-like protein 1 (FSTL1), and FSTL1 knockdown in eEVs alleviates eEV-induced ALI/ARDS. Our data thus demonstrate that cardiopulmonary bypass may increase plasma PAI-1 levels to induce FSTL1-enriched eEVs, which target the TLR4-mediated JAK2/3/STAT3/IRF-1 signaling cascade and form a positive feedback loop, leading to ALI/ARDS after cardiac surgery. Our findings provide new insight into the molecular mechanisms and therapeutic targets for ALI/ARDS after cardiac surgery.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Proteínas Relacionadas à Folistatina , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Proteínas Relacionadas à Folistatina/uso terapêutico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/uso terapêutico , Síndrome do Desconforto Respiratório/etiologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico
19.
Eur J Med Res ; 29(1): 65, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245791

RESUMO

Asthma represents a significant global challenge that affects individuals across all age groups and imposes substantial social and economic burden. Due to heterogeneity of the disease, not all patients obtain benefit with current treatments. The objective of this study was to explore the impact of MD2 on the progression of asthma using L6H21, a novel MD2 inhibitor, to identify potential targets and drug candidates for asthma treatment. To establish an asthma-related murine model and evaluate the effects of L6H21, ovalbumin (OVA) was used to sensitize and challenge mice. Pathological changes were examined with various staining techniques, such as H&E staining, glycogen staining, and Masson staining. Inflammatory cell infiltration and excessive cytokine secretion were evaluated by analyzing BALF cell count, RT-PCR, and ELISA. The TLR4/MD2 complex formation, as well as the activation of the MAPK and NF-кB pathways, was examined using western blot and co-IP. Treatment with L6H21 demonstrated alleviation of increased airway resistance, lung tissue injury, inflammatory cell infiltration and excessive cytokine secretion triggered by OVA. In addition, it also ameliorated mucus production and collagen deposition. In the L6H21 treatment group, inhibition of MAPK and NF-кB activation was observed, along with the disruption of TLR4/MD2 complex formation, in contrast to the model group. Thus, L6H21 effectively reduced the formation of the MD2 and TLR4 complex induced by OVA in a dose-dependent manner. This reduction resulted in the attenuation of MAPKs/NF-κB activation, enhanced suppression of inflammatory factor secretion, reduced excessive recruitment of inflammatory cells, and ultimately mitigated airway damage. MD2 emerges as a crucial target for asthma treatment, and L6H21, as an MD2 inhibitor, shows promise as a potential drug candidate for the treatment of asthma.


Assuntos
Asma , Chalcona , Chalconas , Humanos , Camundongos , Animais , Chalcona/uso terapêutico , Ovalbumina/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Chalconas/farmacologia , Chalconas/uso terapêutico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Pulmão/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
20.
Semin Pediatr Surg ; 32(3): 151309, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37290338

RESUMO

Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disorder in premature infants that causes significant morbidity and mortality. Research efforts into the pathogenesis of NEC have discovered a pivotal role for the gram-negative bacterial receptor, Toll-like receptor 4 (TLR4), in its development. TLR4 is activated by dysbiotic microbes within the intestinal lumen, which leads to an exaggerated inflammatory response within the developing intestine, resulting in mucosal injury. More recently, studies have identified that the impaired intestinal motility that occurs early in NEC has a causative role in disease development, as strategies to enhance intestinal motility can reverse NEC in preclinical models. There has also been broad appreciation that NEC also contributes to significant neuroinflammation, which we have linked to the effects of gut-derived pro-inflammatory molecules and immune cells which activate microglia in the developing brain, resulting in white matter injury. These findings suggest that the management of the intestinal inflammation may secondarily be neuroprotective. Importantly, despite the significant burden of NEC on premature infants, these and other studies have provided a strong rationale for the development of small molecules with the capability of reducing NEC severity in pre-clinical models, thus guiding the development of specific anti-NEC therapies. This review summarizes the roles of TLR4 signaling in the premature gut in the pathogenesis of NEC, and provides insights into optimal clinical management strategies based upon findings from laboratory studies.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Lactente , Recém-Nascido , Humanos , Mucosa Intestinal/patologia , Receptor 4 Toll-Like/uso terapêutico , Enterocolite Necrosante/terapia , Enterocolite Necrosante/microbiologia , Intestinos , Recém-Nascido Prematuro , Doenças do Recém-Nascido/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA