Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(40): e2208844119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36179047

RESUMO

Aberrant fibroblast growth factor 19 (FGF19) signaling mediated by its receptor, FGF receptor 4 (FGFR4), and coreceptor, klotho ß (KLB), is a driver of hepatocellular carcinoma (HCC). Several potent FGFR4-selective inhibitors have been developed but have exhibited limited efficacy in HCC clinical trials. Here, by using HCC cell line models from the Cancer Cell Line Encyclopedia (CCLE) and the Liver Cancer Model Repository (LIMORE), we show that selective FGFR4 inactivation was not sufficient to inhibit cancer cell proliferation and tumor growth in FGF19-positive HCC. Moreover, genetic inactivation of KLB in these HCC cells resulted in a fitness defect more severe than that resulting from inactivation of FGFR4. By a combination of biochemical and genetic approaches, we found that KLB associated with FGFR3 and FGFR4 to mediate the prosurvival functions of FGF19. KLB mutants defective in interacting with FGFR3 or FGFR4 could not support the growth or survival of HCC cells. Genome-wide CRISPR loss-of-function screening revealed that FGFR3 restricted the activity of FGFR4-selective inhibitors in inducing cell death; the pan-FGFR inhibitor erdafitinib displayed superior potency than FGFR4-selective inhibitors in suppressing the growth and survival of FGF19-positive HCC cells. Among FGF19-positive HCC cases from The Cancer Genome Atlas (TCGA), FGFR3 is prevalently coexpressed with FGFR4 and KLB, suggesting that FGFR redundancy may be a common mechanism underlying the de novo resistance to FGFR4 inhibitors. Our study provides a rationale for clinical testing of pan-FGFR inhibitors as a treatment strategy for FGF19-positive HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
2.
Br J Cancer ; 131(1): 77-89, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796598

RESUMO

BACKGROUND: Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS: Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS: We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS: Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.


Assuntos
Processamento Alternativo , Carcinogênese , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Camundongos , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Prognóstico , Camundongos Nus
3.
Br J Cancer ; 131(1): 11-22, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38627607

RESUMO

Breast cancer (BCa) is a complex and heterogeneous disease, with different intrinsic molecular subtypes that have distinct clinical outcomes and responses to therapy. Although intrinsic subtyping provides guidance for treatment decisions, it is now widely recognised that, in some cases, the switch of the BCa intrinsic subtype (which embodies cellular plasticity), may be responsible for therapy failure and disease progression. Aberrant FGFR4 signalling has been implicated in various cancers, including BCa, where it had been shown to be associated with aggressive subtypes, such as HER2-enriched BCa, and poor prognosis. More importantly, FGFR4 is also emerging as a potential driver of BCa intrinsic subtype switching, and an essential promoter of brain metastases, particularly in the HER2-positive BCa. Although the available data are still limited, the findings may have far-reaching clinical implications. Here, we provide an updated summary of the existing both pre- and clinical studies of the role of FGFR4 in BCa, with a special focus on its contribution to subtype switching during metastatic spread and/or induced by therapy. We also discuss a potential clinical benefit of targeting FGFR4 in the development of new treatment strategies.


Assuntos
Neoplasias da Mama , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Humanos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Transdução de Sinais
4.
J Transl Med ; 22(1): 379, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650006

RESUMO

BACKGROUND: TAS-102 (Lonsurf®) is an oral fluoropyrimidine consisting of a combination of trifluridine (a thymidine analog) and tipiracil (a thymidine phosphorylation inhibitor). The drug is effective in metastatic colorectal cancer (mCRC) patients refractory to fluorouracil, irinotecan and oxaliplatin. This study is a real-world analysis, investigating the interplay of genotype/phenotype in relation to TAS-102 sensitivity. METHODS: Forty-seven consecutive mCRC patients were treated with TAS-102 at the National Cancer Institute of Naples from March 2019 to March 2021, at a dosage of 35 mg/m2, twice a day, in cycles of 28 days (from day 1 to 5 and from day 8 to 12). Clinical-pathological parameters were described. Activity was evaluated with RECIST criteria (v1.1) and toxicity with NCI-CTC (v5.0). Survival was depicted through the Kaplan-Meyer curves. Genetic features of patients were evaluated with Next Generation Sequencing (NGS) through the Illumina NovaSeq 6000 platform and TruSigt™Oncology 500 kit. RESULTS: Median age of patients was 65 years (range: 46-77). Forty-one patients had 2 or more metastatic sites and 38 patients underwent to more than 2 previous lines of therapies. ECOG (Eastern Cooperative Oncology Group) Performance Status (PS) was 2 in 19 patients. The median number of TAS-102 cycles was 4 (range: 2-12). The most frequent toxic event was neutropenia (G3/G4 in 16 patients). There were no severe (> 3) non-haematological toxicities or treatment-related deaths. Twenty-six patients experienced progressive disease (PD), 21 stable disease (SD). Three patients with long-lasting disease control (DC: complete, partial responses or stable disease) shared an FGFR4 (p.Gly388Arg) mutation. Patients experiencing DC had more frequently a low tumour growth rate (P = 0.0306) and an FGFR4 p.G388R variant (P < 0.0001). The FGFR4 Arg388 genotype was associated with better survival (median: 6.4 months) compared to the Gly388 genotype (median: 4 months); the HR was 0.25 (95% CI 0.12- 0.51; P = 0.0001 at Log-Rank test). CONCLUSIONS: This phenotype/genotype investigation suggests that the FGFR4 p.G388R variant may serve as a new marker for identifying patients who are responsive to TAS-102. A mechanistic hypothesis is proposed to interpret these findings.


Assuntos
Neoplasias Colorretais , Combinação de Medicamentos , Metástase Neoplásica , Pirrolidinas , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Timina , Trifluridina , Uracila , Humanos , Trifluridina/uso terapêutico , Trifluridina/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Pirrolidinas/uso terapêutico , Masculino , Feminino , Uracila/análogos & derivados , Uracila/uso terapêutico , Uracila/efeitos adversos , Pessoa de Meia-Idade , Idoso , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Polimorfismo de Nucleotídeo Único/genética
5.
Int J Cancer ; 152(1): 79-89, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062503

RESUMO

Immune checkpoint inhibitors (ICIs), which represent the new standard of care for advanced nonsmall cell lung cancer (NCSLC), are not effective in many patients. Biomarkers are needed to guide treatment. Sequencing data of an ICI-treated cohort were analyzed to identify genomic signatures predicting ICI efficacy, followed by validation using multiple independent cohorts. Their predictive mechanism was explored by evaluating the tumor immune microenvironment and tumor mutational burden (TMB). In the discovery cohort, patients carrying FGFR4 alterations (FGFR4altered ) had a better objective response rate (ORR) (50.0% vs 19.4%; P = .057) and improved median progression-free survival (mPFS) (13.17 vs 3.17 months; HR 0.37; 95% CI 0.14-1; P = .04) than wild-type patients (FGFR4wt ). In the publicly available validation cohorts, FGFR4 alterations correlated with higher ORR (100% vs 31%; P = .028), longer median overall survival (mOS) (not reached [NR] vs 11 months; HR 0.28, 95% CI 0.09-0.89, P = .02), and mPFS (NR vs 6.07 months; HR 0.05, 95% CI 0-3.94, P = .039). FGFR4 alterations were confirmed as an independent predictor of superior PFS (P = .014) and OS (P = .005). FGFR4altered patients also exhibited a significantly improved disease control rate (100% vs 60%, P = .045) and prolonged mPFS (9.70 vs 3.16 months; P = .095) compared to FGFR4wt patients in our Shanghai Pulmonary Hospital cohort. FGFR4 alterations associated with a higher TMB levels, more CD8+ T cells in the tumor stroma, and a higher M1/M2 ratio for tumor-associated macrophages in the tumor center and stroma. Thus, FGFR4 alterations may serve as a potential independent predictor of ICI efficacy in NSCLC.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfócitos T CD8-Positivos , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Mutação , China , Biomarcadores Tumorais/genética , Microambiente Tumoral , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética
6.
J Hepatol ; 79(1): 109-125, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36907560

RESUMO

BACKGROUND & AIMS: Metastasis remains the major reason for the high mortality of patients with hepatocellular carcinoma (HCC). This study was designed to investigate the role of E-twenty-six-specific sequence variant 4 (ETV4) in promoting HCC metastasis and to explore a new combination therapy strategy for ETV4-mediated HCC metastasis. METHODS: PLC/PRF/5, MHCC97H, Hepa1-6, and H22 cells were used to establish orthotopic HCC models. Clodronate liposomes were used to clear macrophages in C57BL/6 mice. Gr-1 monoclonal antibody was used to clear myeloid-derived suppressor cells (MDSCs) in C57BL/6 mice. Flow cytometry and immunofluorescence were used to detect the changes of key immune cells in the tumour microenvironment. RESULTS: ETV4 expression was positively related to higher tumour-node-metastasis (TNM) stage, poor tumour differentiation, microvascular invasion, and poor prognosis in human HCC. Overexpression of ETV4 in HCC cells transactivated PD-L1 and CCL2 expression, which increased tumour-associated macrophage (TAM) and MDSC infiltration and inhibited CD8+ T-cell accumulation. Knockdown of CCL2 by lentivirus or CCR2 inhibitor CCX872 treatment impaired ETV4-induced TAM and MDSC infiltration and HCC metastasis. Furthermore, FGF19/FGFR4 and HGF/c-MET jointly upregulated ETV4 expression through the ERK1/2 pathway. Additionally, ETV4 upregulated FGFR4 expression, and downregulation of FGFR4 decreased ETV4-enhanced HCC metastasis, which created a FGF19-ETV4-FGFR4 positive feedback loop. Finally, anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib prominently inhibited FGF19-ETV4 signalling-induced HCC metastasis. CONCLUSIONS: ETV4 is a prognostic biomarker, and anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib may be effective strategies to inhibit HCC metastasis. IMPACT AND IMPLICATIONS: Here, we reported that ETV4 increased PD-L1 and chemokine CCL2 expression in HCC cells, which resulted in TAM and MDSC accumulation and CD8+ T-cell inhibition to facilitate HCC metastasis. More importantly, we found that anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib markedly inhibited FGF19-ETV4 signalling-mediated HCC metastasis. This preclinical study will provide a theoretical basis for the development of new combination immunotherapy strategies for patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Macrófagos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Quimiocina CCL2 , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
7.
Gastroenterology ; 163(3): 620-636.e9, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35588797

RESUMO

BACKGROUND & AIMS: Helicobacter pylori (H pylori) infection is the main risk factor for gastric cancer. The role of fibroblast growth factor receptors (FGRFs) in H pylori-mediated gastric tumorigenesis remains largely unknown. This study investigated the molecular and mechanistic links between H pylori, inflammation, and FGFR4 in gastric cancer. METHODS: Cell lines, human and mouse gastric tissue samples, and gastric organoids models were implemented. Infection with H pylori was performed using in vitro and in vivo models. Western blot, real-time quantitative reverse-transcription polymerase chain reaction, flow cytometry, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation, and luciferase reporter assays were used for molecular, mechanistic, and functional studies. RESULTS: Analysis of FGFR family members using The Cancer Genome Atlas data, followed by validation, indicated that FGFR4 messenger (m)RNA was the most significantly overexpressed member in human gastric cancer tissue samples (P < .001). We also detected high levels of Fgfr4 mRNA and protein in gastric dysplasia and adenocarcinoma lesions in mouse models. Infection with J166, 7.13, and PMSS1 cytotoxin-associated gene A (CagA)+ H pylori strains induced FGFR4 mRNA and protein expression in in vitro and in vivo models. This was associated with a concordant activation of signal transducer and activator of transcription 3 (STAT3). Analysis of the FGFR4 promoter suggested several putative binding sites for STAT3. Using chromatin immunoprecipitation assay and an FGFR-promoter luciferase reporter containing putative STAT3 binding sites and their mutants, we confirmed a direct functional binding of STAT3 on the FGFR4 promoter. Mechanistically, we also discovered a feedforward activation loop between FGFR4 and STAT3 where the fibroblast growth factor 19­FGFR4 axis played an essential role in activating STAT3 in a SRC proto-oncogene non-receptor tyrosine kinase dependent manner. Functionally, we found that FGFR4 protected against H pylori-induced DNA damage and cell death. CONCLUSIONS: Our findings demonstrated a link between infection, inflammation, and FGFR4 activation, where a feedforward activation loop between FGFR4 and STAT3 is established via SRC proto-oncogene non-receptor tyrosine kinase in response to H pylori infection. Given the relevance of FGFR4 to the etiology and biology of gastric cancer, we propose FGFR4 as a druggable molecular vulnerability that can be tested in patients with gastric cancer.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Esteroides , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas , Animais , Mucosa Gástrica/patologia , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Humanos , Inflamação/metabolismo , Camundongos , RNA Mensageiro/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptores de Esteroides/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
8.
BMC Cancer ; 23(1): 170, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803783

RESUMO

BACKGROUND: Several clear cell renal cell carcinoma (ccRCC) cases harbour fibroblast growth factor receptor 4 (FGFR4) gene copy number (CN) gains. In this study, we investigated the functional contribution of FGFR4 CN amplification in ccRCC. METHODS: The correlation between FGFR4 CN determined via real-time PCR and protein expression evaluated using western blotting and immunohistochemistry was assessed in ccRCC cell lines (A498, A704, and 769-P), a papillary RCC cell line (ACHN), and clinical ccRCC specimens. The effect of FGFR4 inhibition on ccRCC cell proliferation and survival was assessed via either RNA interference or using the selective FGFR4 inhibitor BLU9931, followed by MTS assays, western blotting, and flow cytometry. To investigate whether FGFR4 is a potential therapeutic target, a xenograft mouse model was administered BLU9931. RESULTS: 60% of ccRCC surgical specimens harboured an FGFR4 CN amplification. FGFR4 CN was positively correlated with its protein expression. All ccRCC cell lines harboured FGFR4 CN amplifications, whereas ACHN did not. FGFR4 silencing or inhibition attenuated intracellular signal transduction pathways, resulting in apoptosis and suppressed proliferation in ccRCC cell lines. BLU9931 suppressed tumours at a tolerable dose in the mouse model. CONCLUSION: FGFR4 contributes to ccRCC cell proliferation and survival following FGFR4 amplification, making it a potential therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Carcinoma de Células Renais/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Renais/patologia , Regulação Neoplásica da Expressão Gênica
9.
J Invertebr Pathol ; 196: 107865, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36436575

RESUMO

FGFRs involved multiple physiological processes, such as endocrine homeostasis, wound repair, and cellular behaviors including proliferation, differentiation and survival. In the present study, the homologs of fibroblast growth factor receptor 4 (FGFR4) were identified and characterized from the red swamp crayfish Procambarus clarkii for the first time. The full-length cDNAs of pcFGFR4 were 2878 bp with 2451 bp open reading frame (ORF), respectively. The deduced pcFGFR4 protein contained an immunoglobulin, two immunoglobulin C-2 Type, a transmembrane region and a catalytic domain. Real-time PCR analysis showed that pcFGFR4 were highly expressed in muscle and hemocyte. Moreover, the expression levels of pcFGFR4 in the hepatopancreas and hemocyte were positively stimulated after challenge with Aeromonas hydrophila and WSSV, implying the involvement of pcFGFR4 against bacterial and viral infections in innate immune responses. While pcFGFR4 were silenced in vivo, the expression levels of antimicrobial peptide (AMP) genes (pcALF1-5,8 and pcCrustin1-2) and NF-κB signaling components (pcDrosal and pcRelish) were significantly reduced. Additionally, NF-κB signaling could be markedly activated by overexpression of pcFGFR4 in HEK293T cells. Finally, our results indicated that pcFGFR4 regulated crayfish's innate immunity by modulating NF-κB signaling. These findings may provide new insights into pcFGFR4-mediated signaling cascades in crustaceans and provide a better understanding of crustacean innate immune system.


Assuntos
Antivirais , Astacoidea , Animais , Humanos , Astacoidea/microbiologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , NF-kappa B/genética , Células HEK293 , Perfilação da Expressão Gênica , Imunidade Inata/genética , Proteínas de Artrópodes
10.
J Cell Biochem ; 123(3): 568-580, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981854

RESUMO

Recent advances in targeted treatment for cholangiocarcinoma have focused on fibroblast growth factor (FGF) signaling. There are four receptor tyrosine kinases that respond to FGFs, and posttranslational processing has been demonstrated for each FGF receptor. Here, we investigated the role of N-linked glycosylation on the processing and function of FGFR4. We altered glycosylation through enzymatic deglycosylation, small molecule inhibition of glycosyltransferases, or through site-directed mutagenesis of selected asparagine residues in FGFR4. Signaling was tested through caspase activation, migration, and subcellular localization of FGFR4. Our data demonstrate that FGFR4 has multiple glycoforms, with predominant bands relating to the full-length receptor that has a high mannose- or hybrid-type form and a complex-type glycan form. We further identified a set of faster migrating FGFR4 bands that correspond to the intracellular kinase domain, termed FGFR4 intracellular domain (R4-ICD). These glycoforms and R4-ICD were detected in human cholangiocarcinoma tumor samples, where R4-ICD was predominant. Removal of glycans in intact cells by enzymatic deglycosylation resulted in increased processing to R4-ICD. Inhibition of glycosylation using NGI-1, an oligosaccharyltransferase inhibitor, reduced both high mannose- or hybrid- and complex-type glycan forms of FGFR4, increased processing and sensitized to apoptosis. Mutation of Asn-112, Asn-258, Asn-290, or Asn-311 to glutamine modestly reduced apoptosis resistance, while mutation of Asn-322 or simultaneous mutation of the other four asparagine residues caused a loss of cytoprotection by FGFR4. None of the glycomutants altered the migration of cancer cells. Finally, mutation of Asn-112 caused a partial localization of FGFR4 to the Golgi. Overall, preventing glycosylation at individual residues reduced the cell survival function of FGFR4 and receptor glycosylation may regulate access to an extracellular protease or proteolytic susceptibility of FGFR4.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Asparagina/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glicosilação , Humanos , Manose/metabolismo , Polissacarídeos/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
11.
Br J Cancer ; 127(11): 1939-1953, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36097178

RESUMO

BACKGROUND: Rhabdomyosarcoma (RMS) is a paediatric cancer driven either by fusion proteins (e.g., PAX3-FOXO1) or by mutations in key signalling molecules (e.g., RAS or FGFR4). Despite the latter providing opportunities for precision medicine approaches in RMS, there are currently no such treatments implemented in the clinic. METHODS: We evaluated biologic properties and targeting strategies for the FGFR4 V550L activating mutation in RMS559 cells, which have a high allelic fraction of this mutation and are oncogenically dependent on FGFR4 signalling. Signalling and trafficking of FGFR4 V550L were characterised by confocal microscopy and proteomics. Drug effects were determined by live-cell imaging, MTS assay, and in a mouse model. RESULTS: Among recently developed FGFR4-specific inhibitors, FGF401 inhibited FGFR4 V550L-dependent signalling and cell proliferation at low nanomolar concentrations. Two other FGFR4 inhibitors, BLU9931 and H3B6527, lacked potent activity against FGFR4 V550L. Alternate targeting strategies were identified by RMS559 phosphoproteomic analyses, demonstrating that RAS/MAPK and PI3K/AKT are essential druggable pathways downstream of FGFR4 V550L. Furthermore, we found that FGFR4 V550L is HSP90-dependent, and HSP90 inhibitors efficiently impeded RMS559 proliferation. In a RMS559 mouse xenograft model, the pan-FGFR inhibitor, LY2874455, did not efficiently inhibit growth, whereas FGF401 potently abrogated growth. CONCLUSIONS: Our results pave the way for precision medicine approaches against FGFR4 V550L-driven RMS.


Assuntos
Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Humanos , Camundongos , Animais , Fosfatidilinositol 3-Quinases , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
12.
Hepatology ; 73(6): 2206-2222, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32965675

RESUMO

BACKGROUND AND AIMS: Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin-binding sites (FGF1△HBS ) against NAFLD. APPROACH AND RESULTS: FGF1△HBS administration was effective in 9-month-old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45-related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD-like oxidative damage and lipid accumulation could be reversed by FGF1△HBS . In palmitate-treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver-specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high-fat/high-sucrose diet-induced hepatic steatosis. Moreover, FGF1△HBS improved high-fat/high-cholesterol diet-induced steatohepatitis and fibrosis in apolipoprotein E knockout mice. CONCLUSIONS: These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo , Palmitatos/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética
13.
Pathol Int ; 72(9): 457-463, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35801418

RESUMO

Angiosarcoma is a rare malignant tumor derived from vascular endothelial cells and has a poor prognosis. We have experienced a case of multiple breast angiosarcoma for which multiple resections had been performed during the course of its progression over a period of more than 15 years, allowing comprehensive genetic mutation analysis. Somatic mutations in several cancer-related genes were detected, but no previously reported driver gene mutations of angiosarcoma were evident. Several germline mutations associated with malignancy, such as single nucleotide polymorphisms in Fibroblast Growth Factor Receptor 4 (FGFR4) (p.Gly388Arg, rs351855), Kinase Insert Domain Receptor (KDR) (Gln472His, rs1870377) and tumor protein p53 (TP53) (p.Pro72Arg, rs1042522) were detected. Common signatures and genetic mutations were scarce in the tumor samples subjected to genetic mutational analysis. These findings suggested that this case was very probably a multiprimary angiosarcoma.


Assuntos
Hemangiossarcoma , Neoplasias da Mama , Células Endoteliais/patologia , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Humanos , Mutação , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Proteína Supressora de Tumor p53/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
14.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142417

RESUMO

While fibroblast growth factor receptors (FGFRs) are involved in several biological pathways and FGFR inhibitors may be useful in the treatment of squamous non-small cell lung cancer (Sq-NSCLC), FGFR aberrations are not well characterized in Sq-NSCLC. We comprehensively evaluated FGFR expression, fusions, and variants in 40 fresh-frozen primary Sq-NSCLC (stage IA3−IV) samples and tumor-adjacent normal tissues using real-time PCR and next-generation sequencing (NGS). Protein expression of FGFR1−3 and amplification of FGFR1 were also analyzed. FGFR1 and FGFR4 median gene expression was significantly (p < 0.001) decreased in tumors compared with normal tissue. Increased FGFR3 expression enhanced the recurrence risk (hazard ratio 4.72, p = 0.029), while high FGFR4 expression was associated with lymph node metastasis (p = 0.036). Enhanced FGFR1 gene expression was correlated with FGFR1 protein overexpression (r = 0.75, p = 0.0003), but not with FGFR1 amplification. NGS revealed known pathogenic FGFR2,3 variants, an FGFR3::TACC3 fusion, and a novel TACC1::FGFR1 fusion together with FGFR1,2 variants of uncertain significance not previously reported in Sq-NSCLC. These findings expand our knowledge of the Sq-NSCLC molecular background and show that combining different methods increases the rate of FGFR aberrations detection, which may improve patient selection for FGFRi treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Associadas aos Microtúbulos
15.
Cell Tissue Res ; 383(2): 865-879, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33151453

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) has been indicated as a potential "oncogene" in various types of cancer. However, the effects and underlying mechanisms of FGFR4 on uterine leiomyosarcoma (ULMS) progression remain unclear. In this study, we firstly discovered that FGFR4 was upregulated in ULMS specimens and cell lines and closely associated with poor prognosis of ULMS patients. Cell viability and apoptosis assays showed that FGFR4 deletion inhibited cell proliferation and promoted cell apoptosis. Moreover, FGFR4 silence increased cytoplasmic GABP (GA binding protein) expression, while it decreased the nuclear GABP level to inhibit nuclear localization of GABP. Mechanistically, the inhibition ability of FGFR4 silence on nuclear localization of GABP was mediated via mammalian Ste20-like kinases 1 (MST1) activation, which could promote phosphorylation of large tumor suppressor 1 (LATS1) to reduce nuclear localization of GABP. Gain- and loss-of-functional assays indicated that FGFR4 promoted nuclear localization of GABP to inhibit cell apoptosis in ULMS. In conclusion, our findings indicated that FGFR4 inhibited cell apoptosis in ULMS via the promotion of MST1/LATS1-mediated GABP nuclear localization, shedding light on the underlying mechanism of FGFR4-induced ULMS progression.


Assuntos
Apoptose , Núcleo Celular/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Leiomiossarcoma/genética , Pessoa de Meia-Idade , Modelos Biológicos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Regulação para Cima/genética , Neoplasias Uterinas/genética
16.
Hepatology ; 71(5): 1712-1731, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31529503

RESUMO

BACKGROUND AND AIMS: The poor prognosis of patients with hepatocellular carcinoma (HCC) is mainly attributed to its high rate of metastasis and recurrence. However, the molecular mechanisms underlying HCC metastasis need to be elucidated. The SRY-related high-mobility group box (SOX) family proteins, which are a group of highly conserved transcription factors, play important roles in cancer initiation and progression. Here, we report on a role of SOX18, a member of the SOX family, in promoting HCC invasion and metastasis. APPROACH AND RESULTS: The elevated expression of SOX18 was positively correlated with poor tumor differentiation, higher tumor-node-metastasis (TNM) stage, and poor prognosis. Overexpression of SOX18 promoted HCC metastasis by up-regulating metastasis-related genes, including fibroblast growth factor receptor 4 (FGFR4) and fms-related tyrosine kinase 4 (FLT4). Knockdown of both FGFR4 and FLT4 significantly decreased SOX18-mediated HCC invasion and metastasis, whereas the stable overexpression of FGFR4 and FLT4 reversed the decrease in cell invasion and metastasis that was induced by inhibition of SOX18. Fibroblast growth factor 19 (FGF19), which is the ligand of FGFR4, up-regulated SOX18 expression. A mechanistic investigation indicated that the up-regulation of SOX18 that was mediated by the FGF19-FGFR4 pathway relied on the phosphorylated (p)-fibroblast growth factor receptor substrate 2/p-glycogen synthase kinase 3 beta/ß-catenin pathway. SOX18 knockdown significantly reduced FGF19-enhanced HCC invasion and metastasis. Furthermore, BLU9931, a specific FGFR4 inhibitor, significantly reduced SOX18-mediated HCC invasion and metastasis. In human HCC tissues, SOX18 expression was positively correlated with FGF19, FGFR4, and FLT4 expression, and patients that coexpressed FGF19/SOX18, SOX18/FGFR4, or SOX18/FLT4 had the worst prognosis. CONCLUSIONS: We defined a FGF19-SOX18-FGFR4 positive feedback loop that played a pivotal role in HCC metastasis, and targeting this pathway may be a promising therapeutic option for the clinical management of HCC.


Assuntos
Carcinoma Hepatocelular/secundário , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição SOXF/metabolismo , Adulto , Animais , Carcinoma Hepatocelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Am J Nephrol ; 52(10-11): 808-816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34673637

RESUMO

INTRODUCTION: High plasma fibroblast growth factor 23 (FGF-23) predicts cardiovascular events in chronic kidney disease (CKD) patients. Experimental evidence suggests FGF receptor 4 (FGFR4) activation by FGF-23, and deficiency of the soluble form of its co-receptor Klotho promotes left-ventricular hypertrophy (LVH). To evaluate the clinical relevance of these findings, a Mendelian randomization study analyzed the association of genetic variants of FGFR4 and Klotho with echocardiographic parameters and cardiac events in CKD patients. METHODS: The prospective Cardiovascular and Renal Outcome in CKD 2-4 Patients-The Fourth Homburg Evaluation study recruited CKD G2-G4 patients, of whom 519 consented to SNP genotyping (FGFR4: rs351855; Klotho: rs9536314). Echocardiographic examinations at baseline and 5 years later assessed prevalence of LVH by measurement of left-ventricular mass index (LVMI). Patients were followed for 5.1 ± 2.1 years for the primary endpoints of cardiac decompensation and atherosclerotic cardiovascular disease (ASCVD). RESULTS: Carriers of the different alleles did neither differ in baseline LVMI (rs351855: p = 0.861; rs9536314: p = 0.379) nor in LVMI changes between baseline and follow-up (rs351855: p = 0.181; rs9536314: p = 0.995). Hundred and four patients suffered cardiac decompensation, and 144 patients had ASCVD. Time to cardiac decompensation (rs351855: p = 0.316; rs9536314: p = 0.765) and ASCVD (p = 0.508 and p = 0.800, respectively) did not differ between carriers of different alleles. DISCUSSION/CONCLUSION: rs351855 and rs9536314 were not associated with LVMI or cardiac events. These findings do not provide evidence for a relevant clinical role of either FGFR4 stimulation or soluble form of Klotho deficiency in LVH development.


Assuntos
Doenças Cardiovasculares/etiologia , Proteínas Klotho/genética , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Idoso , Feminino , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade
18.
Nature ; 528(7581): 272-5, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26595272

RESUMO

Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.


Assuntos
Autofagia/fisiologia , Desenvolvimento Ósseo/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Desenvolvimento Ósseo/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Embrião de Mamíferos , Matriz Extracelular/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Lâmina de Crescimento/citologia , Lâmina de Crescimento/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
19.
Nature ; 528(7583): 570-4, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26675719

RESUMO

Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G>A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.


Assuntos
Membrana Celular/metabolismo , Mutação em Linhagem Germinativa , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição STAT3/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Éxons/genética , Feminino , Técnicas de Introdução de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Fosforilação , Fosfotirosina/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/química , Transdução de Sinais
20.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576070

RESUMO

Oral squamous cell carcinomas (OSCCs) are one of the most prevalent malignancies, with a low five-year survival rate, thus warranting more effective drugs or therapy to improve treatment outcomes. Melatonin has been demonstrated to exhibit oncostatic effects. In this study, we explored the anti-cancer effects of melatonin on OSCCs and the underlying mechanisms. A human tongue squamous cell carcinoma cell line (SCC-15) was treated with 2 mM melatonin, followed by transwell migration and invasion assays. Relative expression levels of Fibroblast Growth Factor 19 (FGF19) was identified by Cytokine Array and further verified by qPCR and Western blot. Overexpression and downregulation of FGF19 were obtained by adding exogenous hFGF19 and FGF19 shRNA lentivirus, respectively. Invasion and migration abilities of SCC-15 cells were suppressed by melatonin, in parallel with the decreased FGF19/FGFR4 expression level. Exogenous hFGF19 eliminated the inhibitory effects of melatonin on SCC-15 cells invasion and migration, while FGF19 knocking-down showed similar inhibitory activities with melatonin. This study proves that melatonin suppresses SCC-15 cells invasion and migration through blocking the FGF19/FGFR4 pathway, which enriches our knowledge on the anticancer effects of melatonin. Blocking the FGF19/FGFR4 pathway by melatonin could be a promising alternative for OSCCs prevention and management, which would facilitate further development of novel strategies to combat OSCCs.


Assuntos
Carcinoma de Células Escamosas/patologia , Movimento Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Melatonina/farmacologia , Neoplasias Bucais/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas/genética , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Bucais/genética , Invasividade Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA