Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.290
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7922): 413-420, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922515

RESUMO

High cholesterol is a major risk factor for cardiovascular disease1. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function Asialoglycoprotein receptor 1 (ASGR1) variants associate with low cholesterol and a reduced risk of cardiovascular disease2. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins3. The mechanism by which ASGR1 affects cholesterol metabolism is unknown. Here, we find that Asgr1 deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces4, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.


Assuntos
Receptor de Asialoglicoproteína , Colesterol , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Receptor de Asialoglicoproteína/antagonistas & inibidores , Receptor de Asialoglicoproteína/deficiência , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Assialoglicoproteínas/metabolismo , Atorvastatina/farmacologia , Proteína BRCA1 , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Sinergismo Farmacológico , Endocitose , Ezetimiba/farmacologia , Humanos , Lipídeos/análise , Lipídeos/sangue , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1 , Ubiquitina-Proteína Ligases/metabolismo
2.
Mol Cell Proteomics ; 22(9): 100615, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414249

RESUMO

The asialoglycoprotein receptor (ASGPR) and the mannose receptor C-type 1 (MRC1) are well known for their selective recognition and clearance of circulating glycoproteins. Terminal galactose and N-Acetylgalactosamine are recognized by ASGPR, while terminal mannose, fucose, and N-Acetylglucosamine are recognized by MRC1. The effects of ASGPR and MRC1 deficiency on the N-glycosylation of individual circulating proteins have been studied. However, the impact on the homeostasis of the major plasma glycoproteins is debated and their glycosylation has not been mapped with high molecular resolution in this context. Therefore, we evaluated the total plasma N-glycome and plasma proteome of ASGR1 and MRC1 deficient mice. ASGPR deficiency resulted in an increase in O-acetylation of sialic acids accompanied by higher levels of apolipoprotein D, haptoglobin, and vitronectin. MRC1 deficiency decreased fucosylation without affecting the abundance of the major circulating glycoproteins. Our findings confirm that concentrations and N-glycosylation of the major plasma proteins are tightly controlled and further suggest that glycan-binding receptors have redundancy, allowing compensation for the loss of one major clearance receptor.


Assuntos
Glicoproteínas , Receptor de Manose , Camundongos , Animais , Receptor de Asialoglicoproteína/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Processamento de Proteína Pós-Traducional , Proteínas de Transporte/metabolismo , Manose
3.
J Med Virol ; 96(4): e29579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572923

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) primarily targets the respiratory system. Physiologically relevant human lung models are indispensable to investigate virus-induced host response and disease pathogenesis. In this study, we generated human induced pluripotent stem cell (iPSC)-derived alveolar organoids (AOs) using an established protocol that recapitulates the sequential steps of in vivo lung development. AOs express alveolar epithelial type II cell protein markers including pro-surfactant protein C and ATP binding cassette subfamily A member 3. Compared to primary human alveolar type II cells, AOs expressed higher mRNA levels of SARS-CoV-2 entry factors, angiotensin-converting enzyme 2 (ACE2), asialoglycoprotein receptor 1 (ASGR1) and basigin (CD147). Considering the localization of ACE2 on the apical side in AOs, we used three AO models, apical-in, sheared and apical-out for SARS-CoV-2 infection. All three models of AOs were robustly infected with the SARS-CoV-2 irrespective of ACE2 accessibility. Antibody blocking experiment revealed that ASGR1 was the main receptor for SARS-CoV2 entry from the basolateral in apical-in AOs. AOs supported the replication of SARS-CoV-2 variants WA1, Alpha, Beta, Delta, and Zeta and Omicron to a variable degree with WA1 being the highest and Omicron being the least. Transcriptomic profiling of infected AOs revealed the induction of inflammatory and interferon-related pathways with NF-κB signaling being the predominant host response. In summary, iPSC-derived AOs can serve as excellent human lung models to investigate infection of SARS-CoV-2 variants and host responses from both apical and basolateral sides.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , RNA Viral , Pulmão , Organoides , Receptor de Asialoglicoproteína
4.
Cardiovasc Diabetol ; 23(1): 42, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281933

RESUMO

BACKGROUND: Asialoglycoprotein receptor 1 (ASGR1), primarily expressed on hepatocytes, promotes the clearance and the degradation of glycoproteins, including lipoproteins, from the circulation. In humans, loss-of-function variants of ASGR1 are associated with a favorable metabolic profile and reduced incidence of cardiovascular diseases. The molecular mechanisms by which ASGR1 could affect the onset of metabolic syndrome and obesity are unclear. Therefore, here we investigated the contribution of ASGR1 in the development of metabolic syndrome and obesity. METHODS: ASGR1 deficient mice (ASGR1-/-) were subjected to a high-fat diet (45% Kcal from fat) for 20 weeks. The systemic metabolic profile, hepatic and visceral adipose tissue were characterized for metabolic and structural alterations, as well as for immune cells infiltration. RESULTS: ASGR1-/- mice present a hypertrophic adipose tissue with 41% increase in fat accumulation in visceral adipose tissue (VAT), alongside with alteration in lipid metabolic pathways. Intriguingly, ASGR1-/- mice exhibit a comparable response to an acute glucose and insulin challenge in circulation, coupled with notably decreased in circulating cholesterol levels. Although the liver of ASGR1-/- have similar lipid accumulation to the WT mice, they present elevated levels of liver inflammation and a decrease in mitochondrial function. CONCLUSION: ASGR1 deficiency impacts energetic homeostasis during obesity leading to improved plasma lipid levels but increased VAT lipid accumulation and liver damage.


Assuntos
Receptor de Asialoglicoproteína , Síndrome Metabólica , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Receptor de Asialoglicoproteína/genética , Dieta Hiperlipídica , Inflamação/metabolismo , Lipídeos , Fígado/metabolismo , Síndrome Metabólica/complicações , Camundongos Endogâmicos C57BL , Obesidade/complicações
5.
Eur J Nucl Med Mol Imaging ; 51(12): 3559-3571, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38910165

RESUMO

PURPOSE: Immunohistochemical staining of programmed death-ligand 1 (PD-L1) in tumor biopsies acquired through invasive procedures is routinely employed in clinical practice to identify patients who are most likely to benefit from anti-programmed cell death protein 1 (PD-1) therapy. Nevertheless, PD-L1 expression is observed in various cellular subsets within tumors and their microenvironments, including tumor cells, dendritic cells, and macrophages. The impact of PD-L1 expression across these different cell types on the responsiveness to anti-PD-1 treatment is yet to be fully understood. METHODS: We synthesized polymer-based lysosome-targeting chimeras (LYTACs) that incorporate both PD-L1-targeting motifs and liver cell-specific asialoglycoprotein receptor (ASGPR) recognition elements. Small-animal positron emission tomography (PET) imaging of PD-L1 expression was also conducted using a PD-L1-specific radiotracer 89Zr-αPD-L1/Fab. RESULTS: The PD-L1 LYTAC platform was capable of specifically degrading PD-L1 expressed on liver cancer cells through the lysosomal degradation pathway via ASGPR without impacting the PD-L1 expression on host cells. When coupled with whole-body PD-L1 PET imaging, our studies revealed that host cell PD-L1, rather than tumor cell PD-L1, is pivotal in the antitumor response to anti-PD-1 therapy in a mouse model of liver cancer. CONCLUSION: The LYTAC strategy, enhanced by PET imaging, has the potential to surmount the limitations of knockout mouse models and to provide a versatile approach for the selective degradation of target proteins in vivo. This could significantly aid in the investigation of the roles and mechanisms of protein functions associated with specific cell subsets in living subjects.


Assuntos
Antígeno B7-H1 , Tomografia por Emissão de Pósitrons , Proteólise , Animais , Antígeno B7-H1/metabolismo , Camundongos , Humanos , Proteólise/efeitos dos fármacos , Lisossomos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linhagem Celular Tumoral , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Resultado do Tratamento , Receptor de Asialoglicoproteína/metabolismo
6.
J Immunol ; 208(12): 2738-2748, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649630

RESUMO

Liver-resident CD8+ T cells can play critical roles in the control of pathogens, including Plasmodium and hepatitis B virus. Paradoxically, it has also been proposed that the liver may act as the main place for the elimination of CD8+ T cells at the resolution of immune responses. We hypothesized that different adhesion processes may drive residence versus elimination of T cells in the liver. Specifically, we investigated whether the expression of asialo-glycoproteins (ASGPs) drives the localization and elimination of effector CD8+ T cells in the liver, while interactions with platelets facilitate liver residence and protective function. Using murine CD8+ T cells activated in vitro, or in vivo by immunization with Plasmodium berghei sporozoites, we found that, unexpectedly, inhibition of ASGP receptors did not inhibit the accumulation of effector cells in the liver, but instead prevented these cells from accumulating in the spleen. In addition, enforced expression of ASGP on effector CD8+ T cells using St3GalI-deficient cells lead to their loss from the spleen. We also found, using different mouse models of thrombocytopenia, that severe reduction in platelet concentration in circulation did not strongly influence the residence and protective function of CD8+ T cells in the liver. These data suggest that platelets play a marginal role in CD8+ T cell function in the liver. Furthermore, ASGP-expressing effector CD8+ T cells accumulate in the spleen, not the liver, prior to their destruction.


Assuntos
Linfócitos T CD8-Positivos , Malária , Animais , Receptor de Asialoglicoproteína , Fígado , Camundongos , Plasmodium berghei , Esporozoítos
7.
Lipids Health Dis ; 23(1): 89, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539180

RESUMO

BACKGROUND AND AIMS: Current research has suggested that asialoglycoprotein receptor 1 (ASGR1) is involved in cholesterol metabolism and is also related to systemic inflammation. This study aimed to assess the correlation between the serum soluble ASGR1 (sASGR1) concentration and inflammatory marker levels. Moreover, the second objective of the study was to assess the association between sASGR1 levels and the presence of coronary artery disease (CAD). METHODS: The study subjects included 160 patients who underwent coronary angiography. Ninety patients were diagnosed with CAD, while seventy age- and sex-matched non-CAD patients served as controls. We measured the serum sASGR1 levels using an ELISA kit after collecting clinical baseline characteristics. RESULTS: Patients with CAD had higher serum sASGR1 levels than non-CAD patients did (P < 0.0001). sASGR1 was independently correlated with the risk of CAD after adjusting for confounding variables (OR = 1.522, P = 0.012). The receiver operating characteristic (ROC) curve showed that sASGR1 had a larger area under the curve (AUC) than did the conventional biomarkers apolipoprotein B (APO-B) and low-density lipoprotein cholesterol (LDL-C). In addition, multivariate linear regression models revealed that sASGR1 is independently and positively correlated with high-sensitivity C-reactive protein (CRP) (ß = 0.86, P < 0.001) and WBC (ß = 0.13, P = 0.004) counts even after adjusting for lipid parameters. According to our subgroup analysis, this relationship existed only for CAD patients. CONCLUSION: Our research demonstrated the link between CAD and sASGR1 levels, suggesting that sASGR1 may be an independent risk factor for CAD. In addition, this study provides a reference for revealing the potential role of sASGR1 in the inflammation of atherosclerosis.


Assuntos
Doença da Artéria Coronariana , Humanos , Angiografia Coronária/efeitos adversos , Fatores de Risco , Biomarcadores , Inflamação/complicações , Colesterol , Receptor de Asialoglicoproteína
8.
PLoS Genet ; 17(11): e1009891, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762653

RESUMO

Genetic variants in the asialoglycoprotein receptor 1 (ASGR1) are associated with a reduced risk of cardiovascular disease (CVD) in humans. However, the underlying molecular mechanism remains elusive. Given the cardiovascular similarities between pigs and humans, we generated ASGR1-deficient pigs using the CRISPR/Cas9 system. These pigs show age-dependent low levels of non-HDL-C under standard diet. When received an atherogenic diet for 6 months, ASGR1-deficient pigs show lower levels of non-HDL-C and less atherosclerotic lesions than that of controls. Furthermore, by analysis of hepatic transcriptome and in vivo cholesterol metabolism, we show that ASGR1 deficiency reduces hepatic de novo cholesterol synthesis by downregulating 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), and increases cholesterol clearance by upregulating the hepatic low-density lipoprotein receptor (LDLR), which together contribute to the low levels of non-HDL-C. Despite the cardioprotective effect, we unexpectedly observed mild to moderate hepatic injury in ASGR1-deficient pigs, which has not been documented in humans with ASGR1 variants. Thus, targeting ASGR1 might be an effective strategy to reduce hypercholesterolemia and atherosclerosis, whereas further clinical evidence is required to assess its hepatic impact.


Assuntos
Receptor de Asialoglicoproteína/genética , Doenças Cardiovasculares/prevenção & controle , Animais , Sistemas CRISPR-Cas , Colesterol/biossíntese , Modelos Animais de Doenças , Humanos , Fatores de Risco , Suínos
9.
Chem Soc Rev ; 52(4): 1273-1287, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36723021

RESUMO

Cell surface protein-carbohydrate interactions are essential for tissue-specific recognition and endocytosis of viruses, some bacteria and their toxins, and many glycoproteins. Often protein-carbohydrate interactions are multivalent - multiple copies of glycans bind simultaneously to multimeric receptors. Multivalency enhances both affinity and binding specificity, and is of interest for targeted delivery of drugs to specific cell types. The first such example of carbohydrate-mediated drug delivery to reach the clinic is Givosiran, a small interfering ribonucleic acid (siRNA) that is conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand. This ligand enables efficient uptake of the nucleic acid by the asialoglycoprotein receptor (ASGP-R) on hepatocytes. Synthetic multivalent ligands for ASGP-R were among the first 'cluster glycosides' developed at the birth of multivalent glycoscience around 40 years ago. In this review we trace the history of 'GalNAc targeting' from early academic studies to current pharmaceuticals and consider what other opportunities could follow the success of this delivery technology.


Assuntos
Hepatócitos , Oligonucleotídeos , Oligonucleotídeos/metabolismo , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Ligantes , Hepatócitos/metabolismo , Carboidratos
10.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732235

RESUMO

The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.


Assuntos
Quitosana , Técnicas de Transferência de Genes , Ouro , Neoplasias Hepáticas , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Células Hep G2 , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Quitosana/química , Células HEK293 , Receptor de Asialoglicoproteína/metabolismo , Receptor de Asialoglicoproteína/genética , Células CACO-2 , Luciferases/genética , Luciferases/metabolismo , Polietilenoglicóis/química , Plasmídeos/genética , Dissacarídeos/química , Terapia Genética/métodos , Polímeros/química , Sobrevivência Celular/efeitos dos fármacos
11.
Biochem Biophys Res Commun ; 644: 85-94, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36640667

RESUMO

RNAi is a sequence-specific gene regulation mechanism that involves small interfering RNAs (siRNAs). RNAi therapeutic has become a new class of precision medicine and has shown great potential in treating liver-associated diseases, especially metabolic diseases. To facilitate the development of liver-targeted RNAi therapeutics in cell model, we surveyed a panel of liver cancer cell lines for the expression of genes implicated in RNAi therapeutics including the asialoglycoprotein receptor (ASGR) and metabolic disease associated genes PCSK9, ANGPTL3, CIDEB, and LDLR. A high-content screen assay based on lipid droplet staining confirmed the involvement of PCSK9, ANGPTL3, and CIDEB in lipid metabolism in selected liver cancer cell lines. Several liver cancer cell lines have high levels of ASGR1 expression, which is required for liver-specific uptake of GalNAc-conjugated siRNA, a clinically approved siRNA delivery platform. Using an EGFP reporter system, we demonstrated Hep G2 can be used to evaluate gene knockdown efficiency of GalNAc-siRNA. Our findings pave the way for using liver cancer cells as a convenient model system for the identification and testing of siRNA drug candidate genes and for studying ASGR-mediated GalNAc-siRNA delivery in liver.


Assuntos
Neoplasias Hepáticas , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Terapêutica com RNAi , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Linhagem Celular , RNA de Cadeia Dupla , Proteína 3 Semelhante a Angiopoietina , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo
12.
BMC Med ; 21(1): 235, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400795

RESUMO

BACKGROUND: Asialoglycoprotein receptor 1 (ASGR1) is emerging as a potential drug target to reduce low-density lipoprotein (LDL)-cholesterol and coronary artery disease (CAD) risk. Here, we investigated genetically mimicked ASGR1 inhibitors on all-cause mortality and any possible adverse effects. METHODS: We conducted a drug-target Mendelian randomization study to assess genetically mimicked effects of ASGR1 inhibitors on all-cause mortality and 25 a priori outcomes relevant to lipid traits, CAD, and possible adverse effects, i.e. liver function, cholelithiasis, adiposity and type 2 diabetes. We also performed a phenome-wide association study of 1951 health-related phenotypes to identify any novel effects. Associations found were compared with those for currently used lipid modifiers, assessed using colocalization, and replicated where possible. RESULTS: Genetically mimicked ASGR1 inhibitors were associated with a longer lifespan (3.31 years per standard deviation reduction in LDL-cholesterol, 95% confidence interval 1.01 to 5.62). Genetically mimicked ASGR1 inhibitors were inversely associated with apolipoprotein B (apoB), triglycerides (TG) and CAD risk. Genetically mimicked ASGR1 inhibitors were positively associated with alkaline phosphatase, gamma glutamyltransferase, erythrocyte traits, insulin-like growth factor 1 (IGF-1) and C-reactive protein (CRP), but were inversely associated with albumin and calcium. Genetically mimicked ASGR1 inhibitors were not associated with cholelithiasis, adiposity or type 2 diabetes. Associations with apoB and TG were stronger for ASGR1 inhibitors compared with currently used lipid modifiers, and most non-lipid effects were specific to ASGR1 inhibitors. The probabilities for colocalization were > 0.80 for most of these associations, but were 0.42 for lifespan and 0.30 for CAD. These associations were replicated using alternative genetic instruments and other publicly available genetic summary statistics. CONCLUSIONS: Genetically mimicked ASGR1 inhibitors reduced all-cause mortality. Beyond lipid-lowering, genetically mimicked ASGR1 inhibitors increased liver enzymes, erythrocyte traits, IGF-1 and CRP, but decreased albumin and calcium.


Assuntos
Receptor de Asialoglicoproteína , Colelitíase , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Apolipoproteínas B/genética , Receptor de Asialoglicoproteína/antagonistas & inibidores , Cálcio , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Fator de Crescimento Insulin-Like I , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Triglicerídeos
13.
Small ; 19(52): e2304263, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649182

RESUMO

The asialoglycoprotein receptor (ASGPR) is expressed in high density on hepatocytes. Multivalent variants of galactosyl carbohydrates bind ASGPR with high affinity, enabling hepatic delivery of ligand-bound cargo. Virus-like particle (VLP) conjugates of a relatively high-affinity ligand were efficiently endocytosed by ASGPR-expressing cells in a manner strongly dependent on the nature and density of ligand display, with the best formulation using a nanomolar-, but not a picomolar-level, binder. Optimized particles were taken up by HepG2 cells with greater efficiency than competing small molecules or the natural multigalactosylated ligand, asialoorosomucoid. Upon systemic injection in mice, these VLPs were rapidly cleared to the liver and were found in association with sinusoidal endothelial cells, Kupffer cells, hepatocytes, dendritic cells, and other immune cells. Both ASGPR-targeted and nontargeted particles were distributed similarly to endothelial and Kupffer cells, but targeted particles were distributed to a greater number and fraction of hepatocytes. Thus, selective cellular trafficking in the liver is difficult to achieve: even with the most potent ASGPR targeting available, barrier cells take up much of the injected particles and hepatocytes are accessed only approximately twice as efficiently in the best case.


Assuntos
Células Endoteliais , Fígado , Animais , Camundongos , Receptor de Asialoglicoproteína , Ligantes , Células Endoteliais/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo
14.
Cell Immunol ; 393-394: 104769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37741001

RESUMO

Immunoglobulin A (IgA) is important in local immunity and is also abundant in the blood. This study aimed to evaluate the effects of serum IgA on cultured lung microvascular endothelial cells (HMVEC-Ls), which are involved in the pathogenesis of inflammatory lung diseases. Serum IgA induced adhesion molecules and inflammatory cytokine production from HMVEC-Ls, and enhanced adhesion of peripheral blood mononuclear cells to HMVEC-Ls. In contrast, migration, proliferation, and tube formation of HMVEC-Ls were significantly suppressed by serum IgA. Experiments with siRNAs and western blotting revealed that two known IgA receptors, ß1,4-galactosyltransferase 1 (b4GALT1) and asialoglycoprotein receptor 1 (ASGR1), and mitogen-activated protein kinase and nuclear factor-kappa B pathways were partly involved in serum IgA-induced cytokine production by HMVEC-Ls. Collectively, serum IgA enhanced cytokine production and adhesiveness of HMVEC-L, with b4GALT1 and ASGR1 partially being involved, and suppressed angiogenesis. Thus, serum IgA may be targeted to treat inflammatory lung diseases.


Assuntos
Células Endoteliais , Pneumopatias , Humanos , Células Endoteliais/metabolismo , Leucócitos Mononucleares , Adesividade , Endotélio Vascular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Pulmão , Receptor de Asialoglicoproteína/metabolismo
15.
Histopathology ; 82(6): 846-859, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36700825

RESUMO

AIMS: COVID-19 has had enormous consequences on global health-care and has resulted in millions of fatalities. The exact mechanism and site of SARS-CoV-2 entry into the body remains insufficiently understood. Recently, novel virus receptors were identified, and alveolar macrophages were suggested as a potential viral entry cell type and vector for intra-alveolar virus transmission. Here, we investigated the protein expression of 10 well-known and novel virus entry molecules along potential entry sites in humans using immunohistochemistry. METHODS AND RESULTS: Samples of different anatomical sites from up to 93 patients were incorporated into tissue microarrays. Protein expression of ACE2, TMPRSS2, furin, CD147, C-type lectin receptors (CD169, CD209, CD299), neuropilin-1, ASGR1 and KREMEN1 were analysed. In lung tissues, at least one of the three receptors ACE2, ASGR1 or KREMEN1 was expressed in the majority of cases. Moreover, all the investigated molecules were found to be expressed in alveolar macrophages, and co-localisation with SARS-CoV-2 N-protein was demonstrated using dual immunohistochemistry in lung tissue from a COVID-19 autopsy. While CD169 and CD209 showed consistent protein expression in sinonasal, conjunctival and bronchiolar tissues, neuropilin-1 and ASGR1 were mostly absent, suggesting a minor relevance of these two molecules at these specific sites. CONCLUSION: Our results extend recent discoveries indicating a role for these molecules in virus entry at different anatomical sites. Moreover, they support the notion of alveolar macrophages being a potential entry cell for SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Macrófagos Alveolares/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/metabolismo , Neuropilina-1/metabolismo , Receptor de Asialoglicoproteína/metabolismo
16.
Nat Chem Biol ; 17(9): 937-946, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33767387

RESUMO

Selective protein degradation platforms have afforded new development opportunities for therapeutics and tools for biological inquiry. The first lysosome-targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here, we developed LYTACs that engage the asialoglycoprotein receptor (ASGPR), a liver-specific lysosome-targeting receptor, to degrade extracellular proteins in a cell-type-specific manner. We conjugated binders to a triantenerrary N-acetylgalactosamine (tri-GalNAc) motif that engages ASGPR to drive the downregulation of proteins. Degradation of epidermal growth factor receptor (EGFR) by GalNAc-LYTAC attenuated EGFR signaling compared to inhibition with an antibody. Furthermore, we demonstrated that a LYTAC consisting of a 3.4-kDa peptide binder linked to a tri-GalNAc ligand degrades integrins and reduces cancer cell proliferation. Degradation with a single tri-GalNAc ligand prompted site-specific conjugation on antibody scaffolds, which improved the pharmacokinetic profile of GalNAc-LYTACs in vivo. GalNAc-LYTACs thus represent an avenue for cell-type-restricted protein degradation.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Lisossomos/metabolismo , Acetilgalactosamina/metabolismo , Humanos , Células Tumorais Cultivadas
17.
Nat Chem Biol ; 17(9): 947-953, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34413525

RESUMO

Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy. Most TPD technologies use the ubiquitin-proteasome system, and are therefore limited to targeting intracellular proteins. To address this limitation, we developed a class of modular, bifunctional synthetic molecules called MoDE-As (molecular degraders of extracellular proteins through the asialoglycoprotein receptor (ASGPR)), which mediate the degradation of extracellular proteins. MoDE-A molecules mediate the formation of a ternary complex between a target protein and ASGPR on hepatocytes. The target protein is then endocytosed and degraded by lysosomal proteases. We demonstrated the modularity of the MoDE-A technology by synthesizing molecules that induce depletion of both antibody and proinflammatory cytokine proteins. These data show experimental evidence that nonproteinogenic, synthetic molecules can enable TPD of extracellular proteins in vitro and in vivo. We believe that TPD mediated by the MoDE-A technology will have widespread applications for disease treatment.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Dinitrofenóis/química , Dinitrofenóis/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
18.
Biomacromolecules ; 24(3): 1274-1286, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780314

RESUMO

Cationic glycopolymers stand out as gene delivery nanosystems due to their inherent biocompatibility and high binding affinity to the asialoglycoprotein receptor (ASGPR), a target receptor overexpressed in hepatocellular carcinoma (HCC) cells. However, their synthesis procedure remains laborious and complex, with problems of solubilization and the need for protection/deprotection steps. Here, a mini-library of well-defined poly(2-aminoethyl methacrylate hydrochloride-co-poly(2-lactobionamidoethyl methacrylate) (PAMA-co-PLAMA) glycopolymers was synthesized by activators regenerated by electron transfer (ARGET) ATRP to develop an efficient gene delivery nanosystem. The glycoplexes generated had suitable physicochemical properties and showed high ASGPR specificity and high transfection efficiency. Moreover, the HSV-TK/GCV suicide gene therapy strategy, mediated by PAMA144-co-PLAMA19-based nanocarriers, resulted in high antitumor activity in 2D and 3D culture models of HCC, which was significantly enhanced by the combination with small amounts of docetaxel. Overall, our results demonstrated the potential of primary-amine polymethacrylate-containing-glycopolymers as HCC-targeted suicide gene delivery nanosystems and highlight the importance of combined strategies for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Docetaxel , Receptor de Asialoglicoproteína/genética , Linhagem Celular Tumoral , Terapia Genética
19.
Biomacromolecules ; 24(5): 2327-2341, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036902

RESUMO

Acid-degradable polyrotaxanes (PRXs) containing threading ß-cyclodextrins (ß-CDs) are promising candidates for therapeutic applications of ß-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified ß-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested ß-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of ß-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.


Assuntos
Rotaxanos , beta-Ciclodextrinas , Rotaxanos/química , Acetilgalactosamina , Galactosamina , beta-Ciclodextrinas/química , Hepatócitos/metabolismo , Fígado/metabolismo , Ácidos , Receptor de Asialoglicoproteína , Colesterol/metabolismo
20.
Lipids Health Dis ; 22(1): 142, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667265

RESUMO

BACKGROUND: Recent studies have shown that loss-of-function mutations in hepatic asialoglycoprotein receptor 1 (ASGR1) are associated with low levels of circulating cholesterol and a reduced risk of coronary artery disease (CAD). In contrast to ASGR1 on the hepatocyte membrane, serum soluble ASGR1 (sASGR1) is a secreted form that has been detected in circulation. However, the functions of serum sASGR1 are unclear. This study aims to investigate the relationship between human serum sASGR1 concentration and low-density lipoprotein cholesterol (LDL-C) levels. METHODS: In a cohort of 134 participants who underwent coronary angiography examination, basic information was recorded, and blood samples were collected for biochemical testing. The serum sASGR1 concentration was determined by ELISA kits. The relationship between sASGR1 concentration and LDL-C levels was examined using linear regression models and interaction tests. Univariate and multivariate analyses were used to identify clinical variables that affect sASGR1 levels. RESULTS: After adjusting for potential confounders such as age, sex, BMI, and statin use, the serum sASGR1 concentration was positively correlated with LDL-C levels (ß = 0.093, 95% CI: 0.04 to 0.14, P < 0.001). Subgroup analysis and interaction tests showed that the effect of serum sASGR1 concentration on LDL-C levels was significantly influenced by hypertension status (P for interaction = 0.0067). The results of a multivariate linear regression analysis incorporating age, serum TG, LDL-C, nonesterified fatty acid (NEFA), white blood cell counts (WBCC), and fibrinogen revealed that LDL-C (ß = 1.005, 95% CI: 0.35 to 1.66, P = 0.003) and WBCC (ß = 0.787, 95% CI: 0.41 to 1.16, P < 0.0001) were independent influencing factors for serum sASGR1 levels. CONCLUSIONS: The serum sASGR1 concentration was positively correlated with LDL-C levels. In addition, hypertension status significantly affected the effect of serum sASGR1 on LDL-C levels. This study provides some research ideas for clinical doctors and researchers, as well as some references for additional research on serum sASGR1.


Assuntos
Hipertensão , Humanos , Estudos Transversais , LDL-Colesterol , Transporte Biológico , Angiografia Coronária , Hipertensão/genética , Receptor de Asialoglicoproteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA