Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 946
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(20): 7003-7017, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32273342

RESUMO

Cholelithiasis is one of the most prevalent gastroenterological diseases and is characterized by the formation of gallstones in the gallbladder. Both clinical and preclinical data indicate that obesity, along with comorbidity insulin resistance, is a predisposing factor for cholelithiasis. Forkhead box O1 (FoxO1) is a key transcription factor that integrates insulin signaling with hepatic metabolism and becomes deregulated in the insulin-resistant liver, contributing to dyslipidemia in obesity. To gain mechanistic insights into how insulin resistance is linked to cholelithiasis, here we determined FoxO1's role in bile acid homeostasis and its contribution to cholelithiasis. We hypothesized that hepatic FoxO1 deregulation links insulin resistance to impaired bile acid metabolism and cholelithiasis. To address this hypothesis, we used the FoxO1LoxP/LoxP-Albumin-Cre system to generate liver-specific FoxO1-knockout mice. FoxO1-knockout mice and age- and sex-matched WT littermates were fed a lithogenic diet, and bile acid metabolism and gallstone formation were assessed in these animals. We showed that FoxO1 affected bile acid homeostasis by regulating hepatic expression of key enzymes in bile acid synthesis and in biliary cholesterol and phospholipid secretion. Furthermore, FoxO1 inhibited hepatic expression of the bile acid receptor farnesoid X receptor and thereby counteracted hepatic farnesoid X receptor signaling. Nonetheless, hepatic FoxO1 depletion neither affected the onset of gallstone disease nor impacted the disease progression, as FoxO1-knockout and control mice of both sexes had similar gallstone weights and incidence rates. These results argue against the notion that FoxO1 is a link between insulin resistance and cholelithiasis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteína Forkhead Box O1/metabolismo , Cálculos Biliares/metabolismo , Resistência à Insulina , Transdução de Sinais , Animais , Ácidos e Sais Biliares/genética , Colesterol/genética , Colesterol/metabolismo , Feminino , Proteína Forkhead Box O1/genética , Cálculos Biliares/genética , Deleção de Genes , Regulação da Expressão Gênica , Fígado , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética
2.
Biol Pharm Bull ; 44(1): 125-130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390539

RESUMO

The constitutive active/androstane receptor (CAR) is a nuclear receptor that functions as a xenobiotic sensor, which regulates the expression of enzymes involved in drug metabolism and of efflux transporters. Evaluation of the binding properties between CAR and a drug was assumed to facilitate the prediction of drug-drug interaction, thereby contributing to drug discovery. The purpose of this study is to construct a system for the rapid evaluation of interactions between CAR and drugs. We prepared recombinant CAR protein using the Escherichia coli expression system. Since isolated CAR protein is known to be unstable, we designed a fusion protein with the CAR binding sequence of the nuclear receptor coactivator 1 (NCOA1), which was expressed as a fusion protein with maltose binding protein (MBP), and purified it by several chromatography steps. The thus-obtained CAR/NCOA1 tethered protein (CAR-NCOA1) was used to evaluate the interactions of CAR with agonists and inverse agonists by a thermal denaturation experiment using differential scanning fluorometry (DSF) in the presence and absence of drugs. An increase in the melting temperature was observed with the addition of the drugs, confirming the direct interaction between them and CAR. DSF is easy to set up and compatible with multiwell plate devices (such as 96-well plates). The use of DSF and the CAR-NCOA1 fusion protein together allows for the rapid evaluation of the interaction between a drug and CAR, and is thereby considered to be useful in drug discovery.


Assuntos
Proteínas de Escherichia coli/biossíntese , Gelatina/síntese química , Proteínas Ligantes de Maltose/síntese química , Coativador 1 de Receptor Nuclear/biossíntese , Receptores Citoplasmáticos e Nucleares/biossíntese , Amido/síntese química , Receptor Constitutivo de Androstano , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Expressão Gênica , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/isolamento & purificação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/isolamento & purificação
3.
Dev Dyn ; 249(10): 1172-1181, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406963

RESUMO

Spatially restricted expression of genes by global circulating inducers (hormones, secreted proteins, growth factors, neuromodulators, etc.) was a prerequisite for the evolution of animals. Far from a random occurrence, it is a systematically occurring, certain event, implying that specific information is invested for it to happen. In this minireview, we show for the first time that the expression and regionalization takes place at the level of receptors via a neural mechanism and make an attempt to reconstruct the causal chain from neural signaling to expression of nuclear receptors.


Assuntos
Receptores Citoplasmáticos e Nucleares/biossíntese , Processamento Alternativo , Animais , Encéfalo/metabolismo , Borboletas , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glucocorticoides/metabolismo , Humanos , Manduca , Camundongos , Sistema Nervoso , Neurônios/metabolismo , Isoformas de Proteínas , Transdução de Sinais
4.
Cell Immunol ; 349: 104047, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32019673

RESUMO

The polarization of macrophages is critical to inflammation and tissue repair, with unbalanced macrophage polarization associated with critical dysfunctions of the immune system. Cytochrome P450 1A1 (CYP1A1) is a hydroxylase mainly controlled by the inflammation-limiting aryl hydrocarbon receptor (AhR), which plays a critical role in mycoplasma infection, oxidative stress injury, and cancer. Arginase-1 (Arg-1) is a surrogate for polarized alternative macrophages and is important to the production of nitric oxide (NO) by the modulation of arginine. In the present study, we found CYP1A1 to be upregulated in IL-4-stimulated mouse peritoneal macrophages (PMs) and human peripheral blood monocytes. Using CYP1A1-overexpressing RAW264.7 cells (CYP1A1/RAW) we found that CYP1A1 augmented Arg-1 expression by strengthening the activation of the JAK1/STAT6 signaling pathway in macrophages treated with IL-4. 15(S)-HETE, a metabolite of CYP1A1 hydroxylase, was elevated in IL-4-induced CYP1A1/RAW cells. Further, in macrophages, the loss-of-CYP1A1-hydroxylase activity was associated with reduced IL-4-induced Arg-1 expression due to impaired 15(S)-HETE generation. Of importance, CYP1A1 overexpressing macrophages reduced the inflammation associated with LPS-induced peritonitis. Taken together, these findings identified a novel signaling axis, CYP1A1-15(S)-HETE-JAK1-STAT6, that may be a promising target for the proper maintenance of macrophage polarization and may also be a means by which to treat immune-related disease due to macrophage dysfunction.


Assuntos
Arginase/biossíntese , Citocromo P-450 CYP1A1/fisiologia , Janus Quinase 1/antagonistas & inibidores , Macrófagos Peritoneais/efeitos dos fármacos , Peritonite/prevenção & controle , Fator de Transcrição STAT6/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Transferência Adotiva , Animais , Araquidonato 15-Lipoxigenase/fisiologia , Arginase/genética , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Endotoxinas/toxicidade , Humanos , Ácidos Hidroxieicosatetraenoicos/biossíntese , Ácidos Hidroxieicosatetraenoicos/genética , Ácidos Hidroxieicosatetraenoicos/farmacologia , Interleucina-4/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/transplante , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Células RAW 264.7 , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Células THP-1 , Regulação para Cima/efeitos dos fármacos
5.
Pharmacology ; 105(11-12): 692-704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32640454

RESUMO

BACKGROUND: There is a causative relation between the increased hepatic steatohepatitis prevalence and sweeteners intake, fructose in particular. Despite an increasing understanding of the mechanisms of nonalcoholic steatohepatitis (NASH) pathogenesis, there are no drugs approved for it. OBJECTIVES: Evaluate the effect of bee venom (BV) treatment on the fructose-induced NASH in rats and demonstrate its possible molecular mechanisms. METHODS: NASH was induced in rats by 10% fructose in drinking water for 8 weeks. BV was administered (0.1 mg/kg, i.p.) 3 times per week during the last 2 weeks of the experiment. Sera were used for the determination of lipids, cholesterol, glucose, insulin, and liver enzymes. Hepatic gene expressions of farnesoid X receptor (FXR)α and the liver X receptor (LXR) were determined. Hepatic sterol regulatory element-binding protein (SREBP)1/2, oxidative stress, and inflammation parameters were measured. Liver parts were used for histopathological examination. Small intestine was removed for the determination of tight junction proteins. RESULTS: Fructose caused overt histological damage in the liver, and this was associated with parallel changes in all parameters measured. BV effectively prevented these changes, presumably through amelioration of hepatic SREBP1/2, LXR, and FXRα expression as well as intestinal tight junction proteins. CONCLUSION: These findings support the therapeutic usefulness of BV, a remedy with a favorable safety profile, in the prevention of fructose-induced NASH.


Assuntos
Venenos de Abelha/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Venenos de Abelha/administração & dosagem , Modelos Animais de Doenças , Frutose/farmacologia , Glucose/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/patologia , Testes de Função Hepática , Receptores X do Fígado/biossíntese , Receptores X do Fígado/efeitos dos fármacos , Masculino , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos , Proteínas de Junções Íntimas/efeitos dos fármacos
6.
PLoS Genet ; 13(4): e1006717, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28394895

RESUMO

Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid ß-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Longevidade/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biossíntese , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Organismos Hermafroditas/genética , Organismos Hermafroditas/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Neuropeptídeos/metabolismo , Densidade Demográfica , Receptores Citoplasmáticos e Nucleares/biossíntese , Transdução de Sinais
7.
PLoS Genet ; 13(2): e1006577, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28196094

RESUMO

In C. elegans, removal of the germline triggers molecular events in the neighboring intestine, which sends an anti-aging signal to the rest of the animal. In this study, we identified an innate immunity related gene, named irg-7, as a novel mediator of longevity in germlineless animals. We consider irg-7 to be an integral downstream component of the germline longevity pathway because its expression increases upon germ cell removal and its depletion interferes with the activation of the longevity-promoting transcription factors DAF-16 and DAF-12 in germlineless animals. Furthermore, irg-7 activation by itself sensitizes the animals' innate immune response and extends the lifespan of animals exposed to live bacteria. This lifespan-extending pathogen resistance relies on the somatic gonad as well as on many genes previously associated with the reproductive longevity pathway. This suggests that these genes are also relevant in animals with an intact gonad, and can affect their resistance to pathogens. Altogether, this study demonstrates the tight association between germline homeostasis and the immune response of animals, and raises the possibility that the reproductive system can act as a signaling center to divert resources towards defending against putative pathogen attacks.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/biossíntese , Imunidade Inata/genética , Lectinas Tipo C/genética , Longevidade/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/imunologia , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Reprodução/genética , Transdução de Sinais
8.
Prostate ; 79(9): 1032-1042, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31018022

RESUMO

BACKGROUND: Proteomic profiling of extracellular vesicles (EVs) from prostate cancer (PCa) and normal prostate cell lines, led to the identification of new candidate PCa markers. These proteins included the nuclear exportin proteins XPO1 (also known as CRM1), the EV-associated PDCD6IP (also known as ALIX), and the previously published fatty acid synthase FASN. In this study, we investigated differences in expression of XPO1 and PDCD6IP on well-characterized prostate cancer cohorts using mass spectrometry and tissue microarray (TMA) immunohistochemistry to determine their diagnostic and prognostic value. METHODS: Protein fractions from 67 tissue samples (n = 33 normal adjacent prostate [NAP] and n = 34 PCa) were analyzed by mass spectrometry (nano-LC-MS-MS). Label-free quantification of EVs was performed to identify differentially expressed proteins between PCa and NAP. Prognostic evaluation of the candidate markers was performed with a TMA, containing 481 radical prostatectomy samples. Samples were stained for the candidate markers and correlated with patient information and clinicopathological outcome. RESULTS: XPO1 was higher expressed in PCa compared to NAP in the MS data analysis (P > 0.0001). PDCD6IP was not significantly higher expressed (P = 0.0501). High cytoplasmic XPO1 staining in the TMA immunohistochemistry, correlated in a multivariable model with high Gleason scores (P = 0.002) and PCa-related death (P = 0.009). CONCLUSION: High expression of cytoplasmic XPO1 shows correlation with prostate cancer and has added clinical value in tissue samples. Furthermore, as an extracellular vesicles-associated protein, it might be a novel relevant liquid biomarker.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ciclo Celular/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Vesículas Extracelulares/metabolismo , Carioferinas/biossíntese , Neoplasias da Próstata/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Idoso , Vesículas Extracelulares/patologia , Ácido Graxo Sintase Tipo I/biossíntese , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias da Próstata/patologia , Análise Serial de Tecidos , Proteína Exportina 1
9.
FASEB J ; 32(2): 613-624, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970252

RESUMO

Hippocampal neurogenesis is a lifelong process whereby new neurons are produced and integrate into the host circuitry within the hippocampus. It is regulated by a multitude of extrinsic and intrinsic regulators and is believed to contribute to certain hippocampal-dependent cognitive tasks. Hippocampal neurogenesis and associated cognition have been demonstrated to be impaired after increases in the levels of proinflammatory cytokine IL-1ß in the hippocampus, such as that which occurs in various neurodegenerative and psychiatric disorders. IL-1ß also suppresses the expression of TLX (orphan nuclear receptor tailless homolog), which is an orphan nuclear receptor that functions to promote neural progenitor cell (NPC) proliferation and suppress neuronal differentiation; therefore, manipulation of TLX represents a potential strategy with which to prevent the antiproliferative effects of IL-1ß. In this study, we assessed the mechanism that underlies IL-1ß-induced changes in TLX expression and determined the protective capacity of TLX to mitigate the effects of IL-1ß on embryonic rat hippocampal neurosphere expansion. We demonstrate that IL-1ß activated the NF-κB pathway in proliferating NPCs and that this activation was responsible for IL-1ß-induced changes in TLX expression. In addition, we report that enhancing TLX expression prevented the IL-1ß-induced suppression of neurosphere expansion. Thus, we highlight TLX as a potential protective regulator of the antiproliferative effects of IL-1ß on hippocampal neurogenesis.-Ó'Léime, C. S., Kozareva, D. A., Hoban, A. E., Long-Smith, C. M., Cryan, J. F., Nolan, Y. M. TLX is an intrinsic regulator of the negative effects of IL-1ß on proliferating hippocampal neural progenitor cells.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Células-Tronco Neurais/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Animais , Células Cultivadas , Hipocampo/citologia , NF-kappa B/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Ratos , Transdução de Sinais , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
10.
PLoS Genet ; 12(10): e1006396, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27783623

RESUMO

Maternal effects of environmental conditions produce intergenerational phenotypic plasticity. Adaptive value of these effects depends on appropriate anticipation of environmental conditions in the next generation, and mismatch between conditions may contribute to disease. However, regulation of intergenerational plasticity is poorly understood. Dietary restriction (DR) delays aging but maternal effects have not been investigated. We demonstrate maternal effects of DR in the roundworm C. elegans. Worms cultured in DR produce fewer but larger progeny. Nutrient availability is assessed in late larvae and young adults, rather than affecting a set point in young larvae, and maternal age independently affects progeny size. Reduced signaling through the insulin-like receptor daf-2/InsR in the maternal soma causes constitutively large progeny, and its effector daf-16/FoxO is required for this effect. nhr-49/Hnf4, pha-4/FoxA, and skn-1/Nrf also regulate progeny-size plasticity. Genetic analysis suggests that insulin-like signaling controls progeny size in part through regulation of nhr-49/Hnf4, and that pha-4/FoxA and skn-1/Nrf function in parallel to insulin-like signaling and nhr-49/Hnf4. Furthermore, progeny of DR worms are buffered from adverse consequences of early-larval starvation, growing faster and producing more offspring than progeny of worms fed ad libitum. These results suggest a fitness advantage when mothers and their progeny experience nutrient stress, compared to an environmental mismatch where only progeny are stressed. This work reveals maternal provisioning as an organismal response to DR, demonstrates potentially adaptive intergenerational phenotypic plasticity, and identifies conserved pathways mediating these effects.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Herança Materna/genética , Receptor de Insulina/genética , Receptores Citoplasmáticos e Nucleares/genética , Transativadores/genética , Fatores de Transcrição/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Ligação a DNA/biossíntese , Dieta , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Larva/genética , Larva/crescimento & desenvolvimento , Longevidade/genética , Receptor de Insulina/biossíntese , Receptores Citoplasmáticos e Nucleares/biossíntese , Transdução de Sinais/genética , Inanição/genética , Transativadores/biossíntese , Fatores de Transcrição/biossíntese
11.
Biochem Biophys Res Commun ; 503(3): 1544-1549, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30029878

RESUMO

Endothelial cells death induced by angiotensin II (Ang II) plays a role in vascular injury. RNF146 is identified as a E3 ubiquitin ligase, which promotes cell survival under many types of stresses. However, the role of RNF146 in endothelial cellular injury is unknown. In human umbilical vein endothelial cells (HUVECs), Ang II treatment led to cell death by oxidative stress and promoted RNF146 to accumulate in nucleus in time dependent manner. Nuclear export signal was found in the RNF146's sequence. The interaction between RNF146 and XPO1 was further confirmed by co-immunoprecipitation. Inhibition of XPO1 with KPT-185 increased the level of RNF146 in nucleus. The expression of XPO1 was suppressed responding to Ang II treatment. Overexpression of XPO1 facilitated the nuclear shuttling of RNF146, which protected from Ang II-induced cell death. Moreover, overexpression of RNF146 in HUVECs reduced the cell death induced by Ang II, whereas inhibition of XPO1 abolished the protective effect of RNF146. Therefore, our data demonstrated that RNF146 was a protective factor against cell death induced by AngII in human endothelial cells, which was dependent on XPO1-mediated nuclear export.


Assuntos
Angiotensina II/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acrilatos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/biossíntese , L-Lactato Desidrogenase/análise , L-Lactato Desidrogenase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/biossíntese , Triazóis/farmacologia , Proteína Exportina 1
12.
BMC Cancer ; 18(1): 1027, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352570

RESUMO

BACKGROUND: P38 mitogen activated protein kinase is an intermediary signal transduction factor with context-specific roles in breast cancer. Recent mechanistic studies add to the growing consensus that P38 is a tumour suppressor, and it may represent a novel target for breast cancer treatment. The aim of this study is to add definitive data on the prognostic value of P38 and its link with biomarkers in primary breast cancer. METHODS: A large, well-characterised series of 1332 primary breast cancer patients with long-term clinical follow-up was assessed for P38 expression by immunohistochemistry. Association of clinicopathological factors and a panel of breast cancer biomarkers was determined by chi-squared test, and multivariate survival analysis was performed using Cox Proportional Hazards regression modelling. RESULTS: This study shows that nuclear P38 is co-expressed with nuclear hormone receptors (p < 0.001) and is an independent prognostic marker of good long-term clinical outcome in primary breast cancer (hazard ratio 0.796, 95% confidence interval 0.662-0.957, p = 0.015). Significant association was found between expression of P38 and markers of DNA repair including nuclear BRCA1 and RAD51, and cleaved PARP1 (all p < 0.001). CONCLUSIONS: The findings support the proposed role for P38 as a tumour suppressor in breast cancer via upregulation of DNA repair proteins and provide novel hypothesis-generating information on the potential role of P38 in adjuvant therapy decision making.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/metabolismo , Reparo do DNA , Receptores Citoplasmáticos e Nucleares/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Adulto , Idoso , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Proteínas Quinases p38 Ativadas por Mitógeno/genética
13.
J Immunol ; 197(3): 910-22, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342846

RESUMO

Nuclear segmentation is a hallmark feature of mammalian neutrophil differentiation, but the mechanisms that control this process are poorly understood. Gene expression in maturing neutrophils requires combinatorial actions of lineage-restricted and more widely expressed transcriptional regulators. Examples include interactions of the widely expressed ETS transcription factor, GA-binding protein (GABP), with the relatively lineage-restricted E-twenty-six (ETS) factor, PU.1, and with CCAAT enhancer binding proteins, C/EBPα and C/EBPε. Whether such cooperative interactions between these transcription factors also regulate the expression of genes encoding proteins that control nuclear segmentation is unclear. We investigated the roles of ETS and C/EBP family transcription factors in regulating the gene encoding the lamin B receptor (LBR), an inner nuclear membrane protein whose expression is required for neutrophil nuclear segmentation. Although C/EBPε was previously shown to bind the Lbr promoter, surprisingly, we found that neutrophils derived from Cebpe null mice exhibited normal Lbr gene and protein expression. Instead, GABP provided transcriptional activation through the Lbr promoter in the absence of C/EBPε, and activities supported by GABP were greatly enhanced by either C/EBPε or PU.1. Both GABP and PU.1 bound Ets sites in the Lbr promoter in vitro, and in vivo within both early myeloid progenitors and differentiating neutrophils. These findings demonstrate that GABP, PU.1, and C/EBPε cooperate to control transcription of the gene encoding LBR, a nuclear envelope protein that is required for the characteristic lobulated morphology of mature neutrophils.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Granulócitos/citologia , Receptores Citoplasmáticos e Nucleares/biossíntese , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Núcleo Celular , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Células HEK293 , Células-Tronco Hematopoéticas/citologia , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Receptor de Lamina B
14.
PLoS Genet ; 11(12): e1005731, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26656736

RESUMO

Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-ß, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-ß and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-ß, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-ß and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-ß and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Desenvolvimento Embrionário/genética , Fatores de Transcrição Forkhead/genética , Insulina/genética , Neuropeptídeos/genética , Receptores Citoplasmáticos e Nucleares/genética , Somatomedinas/genética , Fator de Crescimento Transformador beta/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/biossíntese , Embrião não Mamífero , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Insulina/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Neuropeptídeos/biossíntese , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Transdução de Sinais , Somatomedinas/metabolismo , Inanição , Fator de Crescimento Transformador beta/biossíntese
15.
Mol Biol (Mosk) ; 52(3): 482-488, 2018.
Artigo em Russo | MEDLINE | ID: mdl-29989580

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a common urologic malignancy. Understanding of the transcriptional regulation of oncogenes and tumor suppressor genes involved is critical for the development of the treatments for renal tumors. Using ccRCC subdivision of the TCGA dataset, we identified NR0B2 encoding orphan nuclear receptor as a tumor suppressor candidate in renal tissue. In independent cohort of primary renal tumors, quantitative PCR experiments confirmed significant suppression of NR0B2 mRNA in 86% of ccRCC samples studied. In 80% of these cases, we detected the hypermethylation of the NR0B2 pro-moter region. These results suggest that NR0B2 is a tumor suppressor gene in ccRCC, and that the hypermethylation of promoter region is the main mechanism of its downregulation.


Assuntos
Carcinoma de Células Renais/metabolismo , Metilação de DNA , DNA de Neoplasias/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/metabolismo , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , DNA de Neoplasias/genética , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Supressoras de Tumor/genética
16.
Carcinogenesis ; 38(7): 738-747, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535186

RESUMO

The development of hepatoblastoma (HBL) is associated with failure of hepatic stem cells (HSC) to differentiate into hepatocytes. Despite intensive investigations, mechanisms of the failure of HSC to differentiate are not known. We found that oncogene Gankyrin (Gank) is involved in the inhibition of differentiation of HSC via triggering degradation of tumor suppressor proteins (TSPs) Rb, p53, C/EBPα and HNF4α. Our data show that the activation of a repressor of Gank, farnesoid X receptor, FXR, after initiation of liver cancer by Diethylnitrosamine (DEN) prevents the development of liver cancer by inhibiting Gank and rescuing tumor suppressor proteins. We next analyzed FXR-Gank-Tumor suppressor pathways in a large cohort of HBL patients which include 6 controls and 53 HBL samples. Systemic analysis of these samples and RNA-Seq approach revealed that the FXR-Gank axis is activated; markers of hepatic stem cells are dramatically elevated and hepatocyte markers are reduced in HBL samples. In the course of these studies, we found that RNA binding protein CUGBP1 is a new tumor suppressor protein which is reduced in all HBL samples. Therefore, we generated CUGBP1 KO mice and examined HBL signatures in the liver of these mice. Micro-array studies revealed that the HBL-specific molecular signature is developed in livers of CUGBP1 KO mice at very early ages. Thus, we conclude that FXR-Gank-TSPs-Stem cells pathway is a key determinant of liver cancer in animal models and in pediatric liver cancer. Our data provide a strong basis for development of FXR-Gank-based therapy for treatment of patients with hepatoblastoma.


Assuntos
Proteínas CELF1/genética , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Proteínas CELF1/biossíntese , Diferenciação Celular/genética , Linhagem Celular Tumoral , Dietilnitrosamina/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatoblastoma/induzido quimicamente , Hepatoblastoma/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Pediatria , Receptores Citoplasmáticos e Nucleares/biossíntese
17.
Dev Biol ; 416(2): 389-401, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27374844

RESUMO

Unlike in mammals, persistent postembryonic retinal growth is a characteristic feature of fish, which includes major remodeling events that affect all cell types including photoreceptors. Consequently, visual capabilities change during development, where retinal sensitivity to different wavelengths of light (photopic vision), -and to limited photons (scotopic vision) are central capabilities for survival. Differently from well-established model fish, Atlantic cod has a prolonged larval stage where only cone photoreceptors are present. Rods do not appear until juvenile transition (metamorphosis), a hallmark of indirect developing species. Previously we showed that whole gene families of lws (red-sensitive) and sws1 (UV-sensitive) opsins have been lost in cod, while rh2a (green-sensitive) and sws2 (blue-sensitive) genes have tandem duplicated. Here, we provide a comprehensive characterization of a two-step developing duplex retina in Atlantic cod. The study focuses on cone subtype dynamics and delayed rod neurogenesis and differentiation in all cod life stages. Using transcriptomic and histological approaches we show that different opsins disappear in a topographic manner during development where central to peripheral retina is a key axis of expressional change. Early cone differentiation was initiated in dorso-temporal retina different from previously described in fish. Rods first appeared during initiation of metamorphosis and expression of the nuclear receptor transcription factor nr2e3-1, suggest involvement in rod specification. The indirect developmental strategy thus allows for separate studies of cones and rods development, which in nature correlates with visual changes linked to habitat shifts. The clustering of key retinal genes according to life stage, suggests that Atlantic cod with its sequenced genome may be an important resource for identification of underlying factors required for development and function of photopic and scotopic vision.


Assuntos
Gadus morhua/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Bastonetes/citologia , Animais , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Gadus morhua/embriologia , Gadus morhua/genética , Duplicação Gênica , Larva , Estágios do Ciclo de Vida , Metamorfose Biológica , Opsinas/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Retina/citologia , Retina/embriologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcriptoma , Visão Ocular
18.
Dev Biol ; 419(2): 250-261, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634571

RESUMO

Gene regulatory networks orchestrate the assembly of functionally related cells within a cellular network. Subtle differences often exist among functionally related cells within such networks. How differences are created among cells with similar functions has been difficult to determine due to the complexity of both the gene and the cellular networks. In Caenorhabditis elegans, the DD and VD motor neurons compose a cross-inhibitory, GABAergic network that coordinates dorsal and ventral muscle contractions during locomotion. The Pitx2 homologue, UNC-30, acts as a terminal selector gene to create similarities and the Coup-TFII homologue, UNC-55, is necessary for creating differences between the two motor neuron classes. What is the organizing gene regulatory network responsible for initiating the expression of UNC-55 and thus creating differences between the DD and VD motor neurons? We show that the unc-55 promoter has modules that contain Meis/UNC-62 binding sites. These sites can be subdivided into regions that are capable of activating or repressing UNC-55 expression in different motor neurons. Interestingly, different isoforms of UNC-62 are responsible for the activation and the stabilization of unc-55 transcription. Furthermore, specific isoforms of UNC-62 are required for proper synaptic patterning of the VD motor neurons. Isoform specific regulation of differentiating neurons is a relatively unexplored area of research and presents a mechanism for creating differences among functionally related cells within a network.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Neurônios GABAérgicos/citologia , Proteínas de Homeodomínio/fisiologia , Neurônios Motores/citologia , Receptores de Superfície Celular/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Genes Reporter , Neurônios Motores/classificação , Neurogênese/genética , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/fisiologia , RNA Guia de Cinetoplastídeos/genética , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Superfície Celular/biossíntese , Receptores Citoplasmáticos e Nucleares/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição , Transcrição Gênica/genética
19.
Biochim Biophys Acta Mol Basis Dis ; 1863(7): 1699-1708, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390947

RESUMO

Nuclear receptors (NR), the largest family of transcription factors, control many physiological and pathological processes. To gain insight into hepatic NR and their potential as therapeutic targets in cholestatis, we determined their expression in individual cell types of the mouse liver in normal and cholestatic conditions. Hepatocytes, cholangiocytes, hepatic stellate cells (HSC), sinusoidal endothelial cells (SEC) and Kupffer cells (KC) were isolated from the liver of mice with acute or chronic cholestasis (i.e. bile duct-ligated or Abcb4-/- mice, respectively) and healthy controls. The expression of 43 out of the 49 NR was evidenced by RT-qPCR in one or several liver cell types. Expression of four NR was restricted to non-parenchymal liver cells. In normal conditions, NR were expressed at higher levels in individual cell types when compared to total liver. Half of the NR expressed in the liver had maximal expression in non-parenchymal cells. After bile duct ligation, NR mRNA changes occurred mostly in non-parenchymal cells and mainly consisted in down-regulations. In Abcb4-/- mice, NR mRNA changes were equally frequent in hepatocytes and non-parenchymal cells. Essentially down-regulations were found in hepatocytes, HSC and cholangiocytes, as opposed to up-regulations in SEC and KC. While undetectable in total liver, Vdr expression was up-regulated in all non-parenchymal cells in Abcb4-/- mice. In conclusion, non-parenchymal liver cells are a major site of NR expression. During cholestasis, NR expression is markedly altered mainly by down-regulations, suggesting major changes in metabolic activity. Thus, non-parenchymal cells are important new targets to consider in NR-directed therapies.


Assuntos
Colestase/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Transcriptoma , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Animais , Colestase/genética , Colestase/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hepatócitos/patologia , Fígado/patologia , Camundongos , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 541-551, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28214558

RESUMO

Small heterodimer partner (SHP) is an atypical nuclear receptor expressed in heart that has been shown to inhibit the hypertrophic response. Here, we assessed the role of SHP in cardiac metabolism and inflammation. Mice fed a high-fat diet (HFD) displayed glucose intolerance accompanied by increased cardiac mRNA levels of Shp. In HL-1 cardiomyocytes, SHP overexpression inhibited both basal and insulin-stimulated glucose uptake and impaired the insulin signalling pathway (evidenced by reduced AKT and AS160 phosphorylation), similar to insulin resistant cells generated by high palmitate/high insulin treatment (HP/HI; 500µM/100nM). In addition, SHP overexpression increased Socs3 mRNA and reduced IRS-1 protein levels. SHP overexpression also induced Cd36 expression (~6.2 fold; p<0.001) linking to the observed intramyocellular lipid accumulation. SHP overexpressing cells further showed altered expression of genes involved in lipid metabolism, i.e., Acaca, Acadvl or Ucp3, augmented NF-κB DNA-binding activity and induced transcripts of inflammatory genes, i.e., Il6 and Tnf mRNA (~4-fold induction, p<0.01). Alterations in metabolism and inflammation found in SHP overexpressing cells were associated with changes in the mRNA levels of Ppara (79% reduction, p<0.001) and Pparg (~58-fold induction, p<0.001). Finally, co-immunoprecipitation studies showed that SHP overexpression strongly reduced the physical interaction between PPARα and the p65 subunit of NF-κB, suggesting that dissociation of these two proteins is one of the mechanisms by which SHP initiates the inflammatory response in cardiac cells. Overall, our results suggest that SHP upregulation upon high-fat feeding leads to lipid accumulation, insulin resistance and inflammation in cardiomyocytes.


Assuntos
Inflamação/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Miocárdio/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Animais , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Inflamação/patologia , Insulina/metabolismo , Camundongos , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA