Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(10): e1008461, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002089

RESUMO

The induction of an interferon-mediated response is the first line of defense against pathogens such as viruses. Yet, the dynamics and extent of interferon alpha (IFNα)-induced antiviral genes vary remarkably and comprise three expression clusters: early, intermediate and late. By mathematical modeling based on time-resolved quantitative data, we identified mRNA stability as well as a negative regulatory loop as key mechanisms endogenously controlling the expression dynamics of IFNα-induced antiviral genes in hepatocytes. Guided by the mathematical model, we uncovered that this regulatory loop is mediated by the transcription factor IRF2 and showed that knock-down of IRF2 results in enhanced expression of early, intermediate and late IFNα-induced antiviral genes. Co-stimulation experiments with different pro-inflammatory cytokines revealed that this amplified expression dynamics of the early, intermediate and late IFNα-induced antiviral genes can also be achieved by co-application of IFNα and interleukin1 beta (IL1ß). Consistently, we found that IL1ß enhances IFNα-mediated repression of viral replication. Conversely, we observed that in IL1ß receptor knock-out mice replication of viruses sensitive to IFNα is increased. Thus, IL1ß is capable to potentiate IFNα-induced antiviral responses and could be exploited to improve antiviral therapies.


Assuntos
Regulação Viral da Expressão Gênica/efeitos dos fármacos , Fator Regulador 2 de Interferon/metabolismo , Interferon-alfa/farmacologia , Coriomeningite Linfocítica/tratamento farmacológico , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Fator Regulador 2 de Interferon/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estabilidade de RNA
2.
J Neurosci ; 40(47): 9103-9120, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33051350

RESUMO

Microglia are dynamic immunosurveillance cells in the CNS. Whether microglia are protective or pathologic is context dependent; the outcome varies as a function of time relative to the stimulus, activation state of neighboring cells in the microenvironment or within progression of a particular disease. Although brain microglia can be "primed" using bacterial lipopolysaccharide (LPS)/endotoxin, it is unknown whether LPS delivered systemically can also induce neuroprotective microglia in the spinal cord. Here, we show that serial systemic injections of LPS (1 mg/kg, i.p., daily) for 4 consecutive days (LPSx4) consistently elicit a reactive spinal cord microglia response marked by dramatic morphologic changes, increased production of IL-1, and enhanced proliferation without triggering leukocyte recruitment or overt neuropathology. Following LPSx4, reactive microglia frequently contact spinal cord endothelial cells. Targeted ablation or selective expression of IL-1 and IL-1 receptor (IL-1R) in either microglia or endothelia reveal that IL-1-dependent signaling between these cells mediates microglia activation. Using a mouse model of ischemic spinal cord injury in male and female mice, we show that preoperative LPSx4 provides complete protection from ischemia-induced neuron loss and hindlimb paralysis. Neuroprotection is partly reversed by either pharmacological elimination of microglia or selective removal of IL-1R in microglia or endothelia. These data indicate that spinal cord microglia are amenable to therapeutic reprogramming via systemic manipulation and that this potential can be harnessed to protect the spinal cord from injury.SIGNIFICANCE STATEMENT Data in this report indicate that a neuroprotective spinal cord microglia response can be triggered by daily systemic injections of LPS over a period of 4 d (LPSx4). The LPSx4 regimen induces morphologic transformation and enhances proliferation of spinal cord microglia without causing neuropathology. Using advanced transgenic mouse technology, we show that IL-1-dependent microglia-endothelia cross talk is necessary for eliciting this spinal cord microglia phenotype and also for conferring optimal protection to spinal motor neurons from ischemic spinal cord injury (ISCI). Collectively, these novel data show that it is possible to consistently elicit spinal cord microglia via systemic delivery of inflammogens to achieve a therapeutically effective neuroprotective response against ISCI.


Assuntos
Comunicação Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Interleucina-1/fisiologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Bromodesoxiuridina/farmacologia , Células Endoteliais/metabolismo , Feminino , Interleucina-1/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Paralisia/induzido quimicamente , Receptores Tipo I de Interleucina-1/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo
3.
PLoS Pathog ; 15(4): e1007744, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30978245

RESUMO

Staphylococcus aureus is able to infect virtually all organ systems and is a frequently isolated etiologic agent of osteomyelitis, a common and debilitating invasive infection of bone. Treatment of osteomyelitis requires invasive surgical procedures and prolonged antibiotic therapy, yet is frequently unsuccessful due to extensive pathogen-induced bone damage that can limit antibiotic penetration and immune cell influx to the infectious focus. We previously established that S. aureus triggers profound alterations in bone remodeling in a murine model of osteomyelitis, in part through the production of osteolytic toxins. However, staphylococcal strains lacking osteolytic toxins still incite significant bone destruction, suggesting that host immune responses are also major drivers of pathologic bone remodeling during osteomyelitis. The objective of this study was to identify host immune pathways that contribute to antibacterial immunity during S. aureus osteomyelitis, and to define how these immune responses alter bone homeostasis and contribute to bone destruction. We specifically focused on the interleukin-1 receptor (IL-1R) and downstream adapter protein MyD88 given the prominent role of this signaling pathway in both antibacterial immunity and osteo-immunologic crosstalk. We discovered that while IL-1R signaling is necessary for local control of bacterial replication during osteomyelitis, it also contributes to bone loss during infection. Mechanistically, we demonstrate that S. aureus enhances osteoclastogenesis of myeloid precursors in vitro, and increases the abundance of osteoclasts residing on bone surfaces in vivo. This enhanced osteoclast abundance translates to trabecular bone loss, and is dependent on intact IL-1R signaling. Collectively, these data define IL-1R signaling as a critical component of the host response to S. aureus osteomyelitis, but also demonstrate that IL-1R-dependent immune responses trigger collateral bone damage through activation of osteoclast-mediated bone resorption.


Assuntos
Reabsorção Óssea/imunologia , Fator 88 de Diferenciação Mieloide/fisiologia , Osteoclastos/imunologia , Osteomielite/imunologia , Receptores Tipo I de Interleucina-1/fisiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/microbiologia , Diferenciação Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/metabolismo , Osteoclastos/microbiologia , Osteomielite/metabolismo , Osteomielite/microbiologia , Transdução de Sinais , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia
4.
Proc Natl Acad Sci U S A ; 115(21): E4843-E4852, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735654

RESUMO

The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1ß and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1ß and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1ß in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1ß and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1ß-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1ß, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve.


Assuntos
Interleucina-1beta/farmacologia , Receptores Tipo I de Interleucina-1/fisiologia , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPV/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Nervo Vago/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Teorema de Bayes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Nervo Vago/citologia , Nervo Vago/efeitos dos fármacos
5.
Am J Respir Cell Mol Biol ; 62(3): 300-309, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31499011

RESUMO

Previous studies demonstrated spontaneous type 2 airway inflammation with eosinophilia in juvenile Scnn1b (sodium channel, non-voltage-gated 1, ß-subunit)-transgenic (Scnn1b-Tg) mice with muco-obstructive lung disease. IL-1 receptor (IL-1R) signaling has been implicated in allergen-driven airway disease; however, its role in eosinophilic inflammation in muco-obstructive lung disease remains unknown. In this study, we examined the role of IL-1R signaling in the development of airway eosinophilia and type 2 inflammation in juvenile Scnn1b-Tg mice. We determined effects of genetic deletion of Il1r1 (IL-1 receptor type I) on eosinophil counts, transcript levels of key type 2 cytokines, markers of eosinophil activation and apoptosis, and tissue morphology in lungs of Scnn1b-Tg mice at different time points during neonatal development. Furthermore, we measured endothelial surface expression of intercellular adhesion molecule 1 (ICAM-1), an integrin involved in eosinophil transendothelial migration, and determined effects of eosinophil depletion using an anti-IL-5 antibody on lung morphology. Lack of IL-1R reduced airway eosinophilia and structural lung damage, but it did not reduce concentrations of type 2 cytokines and associated eosinophil activation in Scnn1b-Tg mice. Structural lung damage in Scnn1b-Tg mice was also reduced by eosinophil depletion. Lack of IL-1R was associated with reduced expression of ICAM-1 on lung endothelial cells and reduced eosinophil counts in lungs from Scnn1b-Tg mice. We conclude that IL-1R signaling is implicated in airway eosinophilia independent of type 2 cytokines in juvenile Scnn1b-Tg mice. Our data suggest that IL-1R signaling may be relevant in the pathogenesis of eosinophilic airway inflammation in muco-obstructive lung diseases, which may be mediated in part by ICAM-1-dependent transmigration of eosinophils into the lungs.


Assuntos
Pneumopatias Obstrutivas/fisiopatologia , Muco/metabolismo , Eosinofilia Pulmonar/fisiopatologia , Receptores Tipo I de Interleucina-1/deficiência , Envelhecimento/imunologia , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Apoptose , Líquido da Lavagem Broncoalveolar/citologia , Quimiotaxia de Leucócito , Citocinas/sangue , Citocinas/fisiologia , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/ultraestrutura , Células Endoteliais/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/patologia , Molécula 1 de Adesão Intercelular/fisiologia , Interleucina-5/imunologia , Pneumopatias Obstrutivas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Eosinofilia Pulmonar/tratamento farmacológico , Eosinofilia Pulmonar/prevenção & controle , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais , Organismos Livres de Patógenos Específicos
6.
Am J Physiol Lung Cell Mol Physiol ; 314(2): L225-L235, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982735

RESUMO

Acidic microenvironments commonly occur at sites of inflammation and bacterial infections. In the context of a Pseudomonas aeruginosa infection, we previously demonstrated that acidosis enhances the cellular proinflammatory interleukin (IL)-1ß response in vitro. However, how pH alterations affect in vivo IL-1ß responses and subsequent IL-1-driven inflammation during infection with P. aeruginosa is unclear. Here, we report that acidosis enhances in vivo IL-1ß production and downstream IL-1 receptor-dependent responses during infection with P. aeruginosa in models of acute pneumonia and peritonitis. Importantly, we demonstrate that infection with P. aeruginosa within an acidic environment leads to enhanced production of a subset of proinflammatory cytokines, including chemokine (C-X-C) motif ligand 1, IL-6, and chemokine (C-C motif) ligand 2, and increased neutrophil recruitment. Furthermore, with the use of IL-1 receptor type 1-deficient mice, we identify the contribution of the IL-1 signaling pathway to the acidosis-enhanced inflammatory response and pathology. These data provide insights into the potential benefit of pH regulation during bacterial infections to control disease progression and immunopathology.


Assuntos
Acidose/fisiopatologia , Inflamação/imunologia , Interleucina-1/farmacologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Receptores Tipo I de Interleucina-1/fisiologia , Animais , Citocinas/metabolismo , Feminino , Inflamação/microbiologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia
7.
J Hepatol ; 69(5): 1136-1144, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29886157

RESUMO

BACKGROUND & AIMS: Biliary atresia (BA) results from a neonatal inflammatory and fibrosing obstruction of bile ducts of unknown etiology. Although the innate immune system has been linked to the virally induced mechanism of disease, the role of inflammasome-mediated epithelial injury remains largely undefined. Here, we hypothesized that disruption of the inflammasome suppresses the neonatal proinflammatory response and prevents experimental BA. METHODS: We determined the expression of key inflammasome-related genes in livers from infants at diagnosis of BA and in extrahepatic bile ducts (EHBDs) of neonatal mice after infection with rotavirus (RRV) immediately after birth. Then, we determined the impact of the wholesale inactivation of the genes encoding IL-1R1 (Il1r1-/-), NLRP3 (Nlrp3-/-) or caspase-1 (Casp1-/-) on epithelial injury and bile duct obstruction. RESULTS: IL1R1, NLRP3 and CASP1 mRNA increased significantly in human livers at the time of diagnosis, and in EHBDs of RRV-infected mice. In Il1r1-/- mice, the epithelial injury of EHBDs induced by RRV was suppressed, with dendritic cells unable to activate natural killer cells. A similar protection was observed in Nlrp3-/- mice, with decreased injury and inflammation of livers and EHBDs. Long-term survival was also improved. In contrast, the inactivation of the Casp1 gene had no impact on tissue injury, and all mice died. Tissue analyses in Il1r1-/- and Nlrp3-/- mice showed decreased populations of dendritic cells and natural killer cells and suppressed expression of type-1 cytokines and chemokines. CONCLUSIONS: Genes of the inflammasome are overexpressed at diagnosis of BA in humans and in the BA mouse model. In the experimental model, the targeted loss of IL-1R1 or NLRP3, but not of caspase-1, protected neonatal mice against RRV-induced bile duct obstruction. LAY SUMMARY: Biliary atresia is a severe inflammatory and obstructive disease of bile ducts occurring in infancy. Although the cause is unknown, activation of the innate and adaptive immune systems injures the bile duct epithelium. In this study we found that patients' livers had increased expression of inflammasome genes. Using mice engineered to inactivate individual inflammasome genes, the epithelial injury and bile duct obstruction were prevented by the loss of Il1r1 or Nlrp3, with a decreased activation of natural killer cells and expression of cytokines and chemokines. In contrast, the loss of Casp1 did not change the disease phenotype. Combined, the findings point to a differential role of inflammasome gene products in the pathogenic mechanisms of biliary atresia.


Assuntos
Atresia Biliar/etiologia , Colestase/etiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Animais , Animais Recém-Nascidos , Atresia Biliar/patologia , Caspase 1/fisiologia , Colestase/patologia , Células Dendríticas/imunologia , Epitélio/patologia , Feminino , Humanos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Tipo I de Interleucina-1/genética , Infecções por Rotavirus/complicações
8.
Proc Natl Acad Sci U S A ; 111(34): 12492-7, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114230

RESUMO

Oocyte endowment dwindles away during prepubertal and adult life until menopause occurs, and apoptosis has been identified as a central mechanism responsible for oocyte elimination. A few recent reports suggest that uncontrolled inflammation may adversely affect ovarian reserve. We tested the possible role of the proinflammatory cytokine IL-1 in the age-related exhaustion of ovarian reserve using IL-1α and IL-1ß-KO mice. IL-1α-KO mice showed a substantially higher pregnancy rate and litter size compared with WT mice at advanced age. The number of secondary and antral follicles was significantly higher in 2.5-mo-old IL-1α-KO ovaries compared with WT ovaries. Serum anti-Müllerian hormone, a putative marker of ovarian reserve, was markedly higher in IL-1α-KO mice from 2.5 mo onward, along with a greater ovarian response to gonadotropins. IL-1ß-KO mice displayed a comparable but more subtle prolongation of ovarian lifespan compared with IL-1α-KO mice. The protein and mRNA of both IL-1α and IL-1ß mice were localized within the developing follicles (oocytes and granulosa cells), and their ovarian mRNA levels increased with age. Molecular analysis revealed decreased apoptotic signaling [higher B-cell lymphoma 2 (BCL-2) and lower BCL-2-associated X protein levels], along with a marked attenuation in the expression of genes coding for the proinflammatory cytokines IL-1ß, IL-6, and TNF-α in ovaries of IL-1α-KO mice compared with WT mice. Taken together, IL-1 emerges as an important participant in the age-related exhaustion of ovarian reserve in mice, possibly by enhancing the expression of inflammatory genes and promoting apoptotic pathways.


Assuntos
Interleucina-1alfa/deficiência , Interleucina-1beta/deficiência , Ovário/fisiologia , Envelhecimento , Animais , Hormônio Antimülleriano/sangue , Apoptose , Feminino , Expressão Gênica , Mediadores da Inflamação/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/fisiologia , Interleucina-1beta/genética , Interleucina-1beta/fisiologia , Tamanho da Ninhada de Vivíparos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário/citologia , Ovário/imunologia , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do FSH/genética , Receptores do FSH/fisiologia , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/fisiologia
9.
Diabetes Obes Metab ; 18(11): 1147-1151, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27350651

RESUMO

Recently, glucagon-like peptide-1 (GLP-1) levels have been found to be increased in response to inflammatory stimuli, leading to insulin secretion and prevention of hyperglycaemia during endotoxemia in mice. In the present study, we assess the relevance of the other incretin hormone, glucose-dependent insulinotropic peptide (GIP), as a regulator of glucose metabolism under inflammatory conditions. We found that lipopolysaccharide (LPS) increased GIP secretion in a time- and dose-dependent manner in C57BL/6J mice. To elucidate the underlying mechanisms, mice were injected with inflammatory cytokines known to be released by LPS. Circulating GIP levels significantly increased in response to interleukin (IL)-1ß but not IL-6 or tumour necrosis factor (TNF)-α administration. Using respective knockout mice we found that LPS-mediated GIP secretion was selectively dependent on IL-1 signalling. To evaluate the functional relevance of inflammatory GIP secretion we pretreated mice with the GIP-receptor antagonist (Pro3)GIP. This blunted LPS-induced TNF-α and IL-6 secretion but did not affect LPS-induced insulin secretion or blood glucose-lowering. In conclusion, GIP provides a novel link between the immune system and the gut, with proinflammatory-immune modulatory function but minor glucose regulatory relevance in the context of acute endotoxemia.


Assuntos
Glicemia/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Inflamação/induzido quimicamente , Interleucina-1beta/fisiologia , Lipopolissacarídeos/farmacologia , Receptores Tipo I de Interleucina-1/fisiologia , Animais , Glicemia/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo I de Interleucina-1/genética , Regulação para Cima/efeitos dos fármacos
10.
Arterioscler Thromb Vasc Biol ; 34(3): 552-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24458711

RESUMO

OBJECTIVE: Interleukin 1 Receptor 1 (IL1R1) and its ligand, IL1ß, are upregulated in cardiovascular disease, obesity, and infection. Previously, we reported a higher level of IL1R1 transcripts in platelets from obese individuals of the Framingham Heart Study (FHS), but its functional effect in platelets has never been described. Additionally, IL1ß levels are increased in atherosclerotic plaques and in bacterial infections. The aim of this work is to determine whether IL1ß, through IL1R1, can activate platelets and megakaryocytes to promote atherothrombosis. APPROACH AND RESULTS: We found that IL1ß-related genes from platelets, as measured in 1819 FHS participants, were associated with increased body mass index, and a direct relationship was shown in wild-type mice fed a high-fat diet. Mechanistically, IL1ß activated nuclear factor-κB and mitogen-activated protein kinase signaling pathways in megakaryocytes. IL1ß, through IL1R1, increased ploidy of megakaryocytes to 64+ N by 2-fold over control. IL1ß increased agonist-induced platelet aggregation by 1.2-fold with thrombin and 4.2-fold with collagen. IL1ß increased adhesion to both collagen and fibrinogen, and heterotypic aggregation by 1.9-fold over resting. High fat diet-enhanced platelet adhesion was absent in IL1R1(-/-) mice. Wild-type mice infected with Porphyromonas gingivalis had circulating heterotypic aggregates (1.5-fold more than control at 24 hours and 6.2-fold more at 6 weeks) that were absent in infected IL1R1(-/-) and IL1ß(-/-) mice. CONCLUSIONS: In summary, IL1R1- and IL1ß-related transcripts are elevated in the setting of obesity. IL1R1/IL1ß augment both megakaryocyte and platelet functions, thereby promoting a prothrombotic environment during infection and obesity; potentially contributing to the development of atherothrombotic disease.


Assuntos
Inflamação/patologia , Interleucina-1beta/fisiologia , Megacariócitos/citologia , Obesidade/sangue , Ativação Plaquetária/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Transcrição Gênica/fisiologia , Animais , Aterosclerose/etiologia , Infecções por Bacteroidaceae/sangue , Infecções por Bacteroidaceae/patologia , Linhagem Celular , Colágeno/farmacologia , Gorduras na Dieta/toxicidade , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Inflamação/etiologia , Inflamação/genética , Interleucina-1beta/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Obesidade/complicações , Obesidade/genética , Fosforilação/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/fisiologia , Porphyromonas gingivalis , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Trombina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Brain Behav Immun ; 35: 135-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24060584

RESUMO

Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a sensitised state that may lead to an exacerbated reaction later in life and contribute to increased vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration of immune receptors organization in neurons has not been shown. We investigated whether a single episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These changes were not observed immediately after the MD episode. None of the observed alterations occurred in the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term, sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD. We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1ß.


Assuntos
Hipocampo/imunologia , Privação Materna , Receptores Tipo I de Interleucina-1/fisiologia , Sinapses/imunologia , Animais , Western Blotting , Feminino , Hipocampo/química , Hipocampo/fisiologia , Imunoprecipitação , Interleucina-1beta/análise , Masculino , Ratos , Ratos Wistar , Fatores Sexuais , Frações Subcelulares/metabolismo , Sinapses/fisiologia
12.
Brain Behav Immun ; 41: 218-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24907587

RESUMO

Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1ß in the brain by 2-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1ß in the brain.


Assuntos
Adenosina/toxicidade , Ansiedade/induzido quimicamente , Encéfalo/metabolismo , Caspase 1/fisiologia , Interleucina-1beta/biossíntese , Proteínas do Tecido Nervoso/fisiologia , Receptor A2A de Adenosina/fisiologia , Adenosina/farmacologia , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/fisiopatologia , Carbazóis/farmacologia , Caspase 1/deficiência , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Ativação Enzimática/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Glibureto/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/fisiologia , Transporte de Íons/efeitos dos fármacos , Canais KATP/fisiologia , Locomoção/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Potássio/metabolismo , Pirróis/farmacologia , Receptor A2A de Adenosina/deficiência , Receptor A2A de Adenosina/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/fisiologia
13.
Am J Physiol Endocrinol Metab ; 305(1): E15-21, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23592480

RESUMO

The proinflammatory cytokine interleukin-1 (IL-1) signals through IL-1 receptor type I (IL-1RI) and induces osteoclastogenesis and bone resorption mainly during pathological conditions. Little is known about the effect of excess or absence of IL-1 signaling on the physiological development of the growth plate and bone. In this study, we examine growth plate morphology, bone structure, and mechanical properties as well as osteoclast number in IL-1RI knockout mice to evaluate the role of IL-1RI in the normal development of the growth plate and bone. We show for the first time that IL-1RI knockout mice have narrower growth plates due to a smaller hypertrophic zone, suggesting a role for this cytokine in hypertrophic differentiation, together with higher proteoglycan content. The bones of theses mice exhibit higher trabecular and cortical mass, increased mineral density, and superior mechanical properties. In addition, IL-1RI knockout mice have significantly reduced osteoclast numbers in the chondro-osseous junction, trabecular bone, and cortical bone. These results suggest that IL-1RI is involved in normal growth plate development and ECM homeostasis and that it is significant in the physiological process of bone modeling.


Assuntos
Remodelação Óssea/fisiologia , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais/fisiologia , Animais , Lâmina de Crescimento/diagnóstico por imagem , Homeostase/fisiologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Osteoclastos/fisiologia , Proteoglicanas/metabolismo , Radiografia , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Tíbia/diagnóstico por imagem , Tíbia/crescimento & desenvolvimento , Tíbia/fisiologia
14.
Brain Behav Immun ; 25(5): 1008-16, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21093580

RESUMO

Recent studies indicate that astrocytes play an integral role in neural and synaptic functioning. To examine the implications of these findings for neurobehavioral plasticity we investigated the involvement of astrocytes in memory and long-term potentiation (LTP), using a mouse model of impaired learning and synaptic plasticity caused by genetic deletion of the interleukin-1 receptor type I (IL-1RI). Neural precursor cells (NPCs), derived from either wild type (WT) or IL-1 receptor knockout (IL-1rKO) neonatal mice, were labeled with bromodeoxyuridine (BrdU) and transplanted into the hippocampus of either IL-1rKO or WT adult host mice. Transplanted NPCs survived and differentiated into astrocytes (expressing GFAP and S100ß), but not to neurons or oligodendrocytes. The NPCs-derived astrocytes from WT but not IL-1rKO mice displayed co-localization of GFAP with the IL-1RI. Four to twelve weeks post-transplantation, memory functioning was examined in the fear-conditioning and the water maze paradigms and LTP of perforant path-dentate gyrus synapses was assessed in anesthetized mice. As expected, IL-1rKO mice transplanted with IL-1rKO cells or sham operated displayed severe memory disturbances in both paradigms as well as a marked impairment in LTP. In contrast, IL-1rKO mice transplanted with WT NPCs displayed a complete rescue of the impaired memory functioning as well as partial restoration of LTP. These findings indicate that astrocytes play a critical role in memory functioning and LTP, and specifically implicate astrocytic IL-1 signaling in these processes. The results suggest novel conceptualization and therapeutic targets for neuropsychiatric disorders characterized by impaired astrocytic functioning concomitantly with disturbed memory and synaptic plasticity.


Assuntos
Astrócitos/fisiologia , Hipocampo/fisiologia , Interleucina-1/fisiologia , Memória/fisiologia , Animais , Condicionamento Clássico/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia
15.
Brain Behav Immun ; 25(5): 850-62, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20833246

RESUMO

Current data suggests an association between elevations in interleukin 1 (IL-1)α, IL-1ß, and IL-6 and the proliferation of neural progenitor cells (NPCs) following brain injury. A limited amount of work implicates changes in these pro-inflammatory responses with diminished NPC proliferation observed as a function of aging. In the current study, adolescent (21day-old) and 1year-old CD-1 male mice were injected with trimethyltin (TMT, 2.3mg/kg, i.p.) to produce acute apoptosis of hippocampal dentate granule cells. In this model, fewer 5-bromo-2'-deoxyuridine (BrdU)+ NPC were observed in both naive and injured adult hippocampus as compared to the corresponding number seen in adolescent mice. At 48h post-TMT, a similar level of neuronal death was observed across ages, yet activated ameboid microglia were observed in the adolescent and hypertrophic process-bearing microglia in the adult. IL-1α mRNA levels were elevated in the adolescent hippocampus; IL-6 mRNA levels were elevated in the adult. In subgranular zone (SGZ) isolated by laser-capture microdissection, IL-1ß was detected but not elevated by TMT, IL-1a was elevated at both ages, while IL-6 was elevated only in the adult. Naïve NPCs isolated from the hippocampus expressed transcripts for IL-1R1, IL-6Rα, and gp130 with significantly higher levels of IL-6Rα mRNA in the adult. In vitro, IL-1α (150pg/ml) stimulated proliferation of adolescent NPCs; IL-6 (10ng/ml) inhibited proliferation of adolescent and adult NPCs. Microarray analysis of SGZ post-TMT indicated a prominence of IL-1a/IL-1R1 signaling in the adolescent and IL-6/gp130 signaling in the adult.


Assuntos
Hipocampo/lesões , Interleucina-1/fisiologia , Interleucina-6/fisiologia , Células-Tronco Neurais/fisiologia , Envelhecimento/fisiologia , Animais , Apoptose/fisiologia , Astrócitos/fisiologia , Proliferação de Células , Receptor gp130 de Citocina/fisiologia , Hipocampo/imunologia , Hipocampo/fisiologia , Interleucina-1alfa/fisiologia , Subunidade alfa de Receptor de Interleucina-6/fisiologia , Masculino , Camundongos , Microglia/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais/fisiologia
16.
Brain Behav Immun ; 25(1): 160-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20854891

RESUMO

Interleukin-1 (IL-1) has been implicated in the disease progression of multiple sclerosis (MS). In the animal model of MS, experimental autoimmune encephalomyelitis (EAE), the induction of disease is significantly attenuated in mice lacking the type I IL-1 receptor (IL-1R1). In this study, we created a transgenic mouse (eIL-1R1 kd) in which IL-1R1 expression is knocked down specifically in endothelial cells. Induction of EAE in eIL-1R1 kd mice results in a decrease in incidence, severity and delayed onset of EAE. In addition, eIL-1R1 kd mice show significant decrease in VCAM-1 expression and diminished CD45(+) and CD3(+) infiltrating leukocytes in the spinal cord in animals challenged with EAE. Further, IL-1 and IL-23 stimulate IL-17 production by splenocytes from both wild type and the eIL-1R1 kd animals. Similarly, IL-1 and IL-23 synergistically stimulate splenocytes proliferation in these two strains of animals. After immunization with MOG(79-96), although eIL-1R1 kd mice displayed greatly reduced clinical scores, their splenocytes produced IL-17 and proliferated in response to a second MOG challenge, similar to wild type animals. These findings indicate a critical role for endothelial IL-1R1 in mediating the pathogenesis of EAE, and describe a new model that can be used to study endothelial IL-1R1.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Endotélio Vascular/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Animais , Animais Geneticamente Modificados , Proliferação de Células , DNA Complementar/genética , Proteínas de Fluorescência Verde/genética , Imunização , Imuno-Histoquímica , Interleucina-1/metabolismo , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Interleucina-23/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Ativação de Macrófagos/fisiologia , Camundongos , Proteínas da Mielina , Glicoproteína Associada a Mielina/genética , Glicoproteína Associada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Infiltração de Neutrófilos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Proteína Tirosina Quinases/genética , Receptor TIE-2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Molécula 1 de Adesão de Célula Vascular/metabolismo
17.
J Immunol ; 183(12): 8195-202, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20007584

RESUMO

Lung emphysema and fibrosis are severe complications of chronic obstructive pulmonary disease, and uncontrolled protease activation may be involved in the pathogenesis. Using experimental elastase-induced acute inflammation, we demonstrate here that inflammation and development of emphysema is IL-1R1 and Toll/IL-1R signal transduction adaptor MyD88 dependent; however, TLR recognition is dispensable in this model. Elastase induces IL-1beta, TNF-alpha, keratinocyte-derived chemokine, and IL-6 secretion and neutrophil recruitment in the lung, which is drastically reduced in the absence of IL-1R1 or MyD88. Further, tissue destruction with emphysema and fibrosis is attenuated in the lungs of IL-1R1- and MyD88-deficient mice. Specific blockade of IL-1 by IL-1R antagonist diminishes acute inflammation and emphysema. Finally, IL-1beta production and inflammation are reduced in mice deficient for the NALP3 inflammasome component apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and we identified uric acid, which is produced upon elastase-induced lung injury, as an activator of the NALP3/ASC inflammasome. In conclusion, elastase-mediated lung pathology depends on inflammasome activation with IL-1beta production. IL-1beta therefore represents a critical mediator and a possible therapeutic target of lung inflammation leading to emphysema.


Assuntos
Mediadores da Inflamação/fisiologia , Fator 88 de Diferenciação Mieloide/fisiologia , Elastase Pancreática/toxicidade , Pneumonia/imunologia , Enfisema Pulmonar/imunologia , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais/imunologia , Animais , Mediadores da Inflamação/administração & dosagem , Mediadores da Inflamação/toxicidade , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elastase Pancreática/administração & dosagem , Pneumonia/enzimologia , Pneumonia/patologia , Enfisema Pulmonar/enzimologia , Enfisema Pulmonar/patologia , Transdução de Sinais/genética , Suínos , Receptores Toll-Like/fisiologia
18.
Nephrol Dial Transplant ; 24(10): 3024-32, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19465557

RESUMO

BACKGROUND: IL-1beta has the potential to promote progressive renal disease by effects on macrophage recruitment and activation or by effects mediated through tubular cell transforming growth factor (TGF)-beta production, previously demonstrated in vitro. METHODS: The in vivo roles of endogenous IL-1beta and its type I receptor (IL-1RI) in renal fibrosis were studied using wild-type C57BL/6 mice, IL-1beta(-/-) and IL-1RI(-/-) mice with unilateral ureteric obstruction. RESULTS: After 7 days, IL-1RI(-/-) mice (IL-1alpha and IL-1beta deficient) were protected from injury and collagen accumulation. IL-1beta(-/-) mice demonstrated some histological protection, but no reduction in alpha1(1) procollagen mRNA or biochemically measured collagen accumulation. Compared with obstructed kidneys from wild-type mice, TGF-beta1 mRNA was reduced in IL-1RI(-/-) mice (with trends to reduced TGF-beta2 and TGF-beta3). Expression of a downstream TGF-beta effector, connective tissue growth factor, was decreased in IL-1RI(-/-) mice. IL-1RI(-/-) mice exhibited less tubulointerstitial apoptosis compared with wild-type mice. Macrophage infiltration and adhesion molecule mRNA expression was unchanged in IL-1beta(-/-) or IL-1RI(-/-) mice. While TNF expression was similar to wild-type mice, IFN-gamma expression was reduced in both IL-1beta(-/-) and IL-1RI(-/-) mice. IL-1RI(-/-) mice at 14 days showed a catch-up in fibrosis compared with wild-type mice. CONCLUSION: IL-1/IL-1RI interactions are profibrotic in renal fibrosis. IL-1RI(-/-) mice were more protected at an early stage, associated with changes in TGF-beta and downstream mediators of fibrosis, but independent of the presence of infiltrating macrophages.


Assuntos
Rim/patologia , Receptores Tipo I de Interleucina-1/deficiência , Animais , Fibrose/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Tipo I de Interleucina-1/fisiologia
19.
Mol Cancer Res ; 17(8): 1759-1773, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31164412

RESUMO

Cancer development requires a favorable tissue microenvironment. By deleting Myd88 in keratinocytes or specific bone marrow subpopulations in oncogenic RAS-mediated skin carcinogenesis, we show that IL17 from infiltrating T cells and IκBζ signaling in keratinocytes are essential to produce a permissive microenvironment and tumor formation. Both normal and RAS-transformed keratinocytes respond to tumor promoters by activating canonical NF-κB and IκBζ signaling, releasing specific cytokines and chemokines that attract Th17 cells through MyD88-dependent signaling in T cells. The release of IL17 into the microenvironment elevates IκBζ in normal and RAS-transformed keratinocytes. Activation of IκBζ signaling is required for the expression of specific promoting factors induced by IL17 in normal keratinocytes and constitutively expressed in RAS-initiated keratinocytes. Deletion of Nfkbiz in keratinocytes impairs RAS-mediated benign tumor formation. Transcriptional profiling and gene set enrichment analysis of IκBζ-deficient RAS-initiated keratinocytes indicate that IκBζ signaling is common for RAS transformation of multiple epithelial cancers. Probing The Cancer Genome Atlas datasets using this transcriptional profile indicates that reduction of IκBζ signaling during cancer progression associates with poor prognosis in RAS-driven human cancers. IMPLICATIONS: The paradox that elevation of IκBζ and stimulation of IκBζ signaling through tumor extrinsic factors is required for RAS-mediated benign tumor formation while relative IκBζ expression is reduced in advanced cancers with poor prognosis implies that tumor cells switch from microenvironmental dependency early in carcinogenesis to cell-autonomous pathways during cancer progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/patologia , Interleucina-17/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Neoplasias Cutâneas/patologia , Linfócitos T/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-17/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Linfócitos T/patologia , Microambiente Tumoral , Proteínas ras/genética
20.
J Neurosci ; 27(39): 10476-86, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17898219

RESUMO

Interleukin-1 (IL-1) has been implicated as a critical mediator of neuroimmune communication. In the brain, the functional receptor for IL-1, type 1 IL-1 receptor (IL-1R1), is localized primarily to the endothelial cells. In this study, we created an endothelial-specific IL-1R1 knockdown model to test the role of endothelial IL-1R1 in mediating the effects of IL-1. Neuronal activation in the hypothalamus was measured by c-fos expression in the paraventricular nucleus and the ventromedial preoptic area. In addition, two specific sickness symptoms, febrile response and reduction of locomotor activity, were studied. Intracerebroventricular injection of IL-1 induced leukocyte infiltration into the CNS, activation of hypothalamic neurons, fever, and reduced locomotor activity in normal mice. Endothelial-specific knockdown of IL-1R1 abrogated all these responses. Intraperitoneal injection of IL-1 also induced neuronal activation in the hypothalamus, fever, and reduced locomotor activity, without inducing leukocyte infiltration into the brain. Endothelial-specific knockdown of IL-1R1 suppressed intraperitoneal IL-1-induced fever, but not the induction of c-fos in hypothalamus. When IL-1 was given intravenously, endothelial knockdown of IL-1R1 abolished intravenous IL-1-induced CNS activation and the two monitored sickness symptoms. In addition, endothelial-specific knockdown of IL-1R1 blocked the induction of cyclooxygenase-2 expression induced by all three routes of IL-1 administration. These results show that the effects of intravenous and intracerebroventricular IL-1 are mediated by endothelial IL-1R1, whereas the effects of intraperitoneal IL-1 are partially dependent on endothelial IL-1R1.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores Imunológicos/administração & dosagem , Interleucina-1/administração & dosagem , Atividade Motora/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Animais , Ciclo-Oxigenase 2/biossíntese , Febre/fisiopatologia , Genes fos/fisiologia , Hipotálamo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Neuroimunomodulação/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA