Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 213(2): 226-234, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38809110

RESUMO

Secretory (S) IgA is the predominant mucosal Ab that protects host epithelial barriers and promotes microbial homeostasis. SIgA production occurs when plasma cells assemble two copies of monomeric IgA and one joining chain (JC) to form dimeric (d) IgA, which is bound by the polymeric Ig receptor (pIgR) on the basolateral surface of epithelial cells and transcytosed to the apical surface. There, pIgR is proteolytically cleaved, releasing SIgA, a complex of the dIgA and the pIgR ectodomain, called the secretory component (SC). The pIgR's five Ig-like domains (D1-D5) undergo a conformational change upon binding dIgA, ultimately contacting four IgA H chains and the JC in SIgA. In this study, we report structure-based mutational analysis combined with surface plasmon resonance binding assays that identify key residues in mouse SC D1 and D3 that mediate SC binding to dIgA. Residues in D1 CDR3 are likely to initiate binding, whereas residues that stabilize the D1-D3 interface are likely to promote the conformational change and stabilize the final SIgA structure. Additionally, we find that the JC's three C-terminal residues play a limited role in dIgA assembly but a significant role in pIgR/SC binding to dIgA. Together, these results inform models for the intricate mechanisms underlying IgA transport across epithelia and functions in the mucosa.


Assuntos
Imunoglobulina A Secretora , Receptores de Imunoglobulina Polimérica , Componente Secretório , Animais , Camundongos , Imunoglobulina A Secretora/imunologia , Imunoglobulina A Secretora/metabolismo , Componente Secretório/metabolismo , Componente Secretório/imunologia , Receptores de Imunoglobulina Polimérica/metabolismo , Receptores de Imunoglobulina Polimérica/imunologia , Receptores de Imunoglobulina Polimérica/genética , Ligação Proteica , Multimerização Proteica , Humanos , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Conformação Proteica
2.
Fish Shellfish Immunol ; 149: 109583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657879

RESUMO

Fish rely on mucosal surfaces as their first defence barrier against pathogens. Maintaining mucosal homeostasis is therefore crucial for their overall well-being, and it is likely that secreted immunoglobulins (sIg) play a pivotal role in sustaining this balance. In mammals, the poly-Ig receptor (pIgR) is an essential component responsible for transporting polymeric Igs across mucosal epithelia. In teleost fish, a counterpart of pIgR has been identified and characterized, exhibiting structural differences and broader mRNA expression patterns compared to mammals. Despite supporting evidence for the binding of Igs to recombinant pIgR proteins, the absence of a joining chain (J-chain) in teleosts challenges the conventional understanding of Ig transport mechanisms. The transport of IgM to the intestine via the hepatobiliary route is observed in vertebrates and has been proposed in a few teleosts. Investigations on the stomachless fish, ballan wrasse, revealed a significant role of the hepatobiliary route and interesting possibilities for alternative IgM transport routes that might include pancreatic tissue. These findings highlight the importance of gaining a thorough understanding of the mechanisms behind Ig transport to the gut in various teleosts. This review aims to gather existing information on pIgR-mediated transport across epithelial cells and immunoglobulin transport pathways to the gut lumen in teleost fish. It provides comparative insights into the hepatobiliary transport of Igs to the gut, emphasizing the current understanding in teleost fish while exploring potential alternative pathways for Ig transport to the gut lumen. Despite significant progress in understanding various aspects, there is still much to uncover, especially concerning the diversity of mechanisms across different teleost species.


Assuntos
Peixes , Imunoglobulina M , Animais , Imunoglobulina M/imunologia , Peixes/imunologia , Peixes/genética , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/imunologia , Receptores de Imunoglobulina Polimérica/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Trato Gastrointestinal/imunologia
3.
Fish Shellfish Immunol ; 137: 108732, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37044186

RESUMO

Polymeric immunoglobulin receptor (pIgR) can bind and transport immunoglobulins (Igs), thus playing a role in mucosal immunity. In this study, pIgR gene was cloned in mandarin fish, Siniperca chuatsi, with the open reading frame (ORF) of 1011 bp, encoding 336 amino acids. The pIgR protein consists of a signal peptide, an extracellular domain, a transmembrane domain and an intracellular region, with the presence of two Ig-like domains (ILDs) in the extracellular domain, as reported in other species of fish. The pIgR gene was expressed in all organs/tissues of healthy mandarin fish, with higher level observed in liver and spleen. Following the immersion infection of Flavobacterium columnare, pIgR transcripts were detected in immune related, especially mucosal tissues, with significantly increased transcription during the first two days of infection. Through transfection of plasmids expressing pIgR, IgT and IgM, pIgR was found to be interacted with IgT and IgM as revealed by co-immunoprecipitation and immunofluorescence.


Assuntos
Doenças dos Peixes , Perciformes , Receptores de Imunoglobulina Polimérica , Animais , Sequência de Aminoácidos , Alinhamento de Sequência , Receptores de Imunoglobulina Polimérica/genética , Peixes , Clonagem Molecular , Imunoglobulina M/genética , Proteínas de Peixes
4.
Fish Shellfish Immunol ; 137: 108745, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37054763

RESUMO

The polymeric immunoglobulin receptor (pIgR) is essential for controlling polymeric immunoglobulin to defend species from invading pathogens. However, the modulation pathway of pIgR expression in teleosts remains unclear. In this paper, to define that the cytokine TNF-α impacted the expression of pIgR, the recombinant proteins of TNF-α of grass carp were first prepared after approving that natural pIgR was expressed in liver cells of grass carp (Ctenopharyngodon idellus) (L8824). L8824 cells were incubated with variable amounts of recombinant TNF-α at various times, the results revealed that pIgR expressions showed a significant dose-dependent elevation at the gene and proteins, and a similar alteration trend was detected for the pIgR protein (secretory component: SC) secreted by L8824 cells into the culture supernatant. Moreover, nuclear factor kappa-B (NF-κB) inhibitors PDTC was used to study whether TNF-α regulated pIgR expressions through the NF-κB signaling pathways. L8824 cells were treated with TNF-α, inhibitor PDTC, and TNF-α + PDTC mixtures, respectively, and the levels of pIgR genes and pIgR protein in cells and SC in the culture supernatant decreased in cells treated with PDTC contrasted to the control, and subjected to reduced expression of PDTC + TNF-α reduced expression contrasted to that treated just with TNF-α, demonstrating that suppression of NF-κB obstructed the ability of TNF-α to elevate pIgR gene and pIgR protein in cells and SC in the culture supernatant. These outcomes indicated that TNF-α raised pIgR gene expression, pIgR protein, and SC creation, and this pIgR expression induced by TNF-α was modulated by complicated pathways that included NF-κB signaling mechanism, confirming TNF-α as a pIgR expression modulator and enhancing a deeper insight of the regulatory pathway for pIgR expression in teleosts.


Assuntos
Carpas , Receptores de Imunoglobulina Polimérica , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Receptores de Imunoglobulina Polimérica/genética , Carpas/genética , Carpas/metabolismo , Transdução de Sinais , Fatores Imunológicos , Fígado/metabolismo
5.
Fish Shellfish Immunol ; 132: 108503, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36581255

RESUMO

In the present study, the polyimmunoglobulin receptor-like (pIgRL) of large yellow croaker (Larimichthys crocea) was first cloned and characterized. LcpIgRL's full-length cDNA was 1610 bp, encoding 377 amino acids, and the protein's predicted molecular weight was 41.9 kDa, containing two immunoglobulin-like structural domains. The transcript levels of LcpIgRL in different tissues of healthy large yellow croaker were examined by real-time fluorescence quantitative PCR, and the results showed that the gills and head kidney had the highest levels. Within 36 h of the large yellow croaker being infected with Vibrio harveyi, pIgRL mRNA first increased and then decreased in all determined tissues, with the highest expression in the skin and hindgut. Furthermore, a recombinant protein of the extracellular region of LcpIgRL was expressed in E. coli BL21, and a murine rLcpIgRL polyclonal antibody was prepared, which could react specifically with the natural LcpIgRL in skin mucus, but no natural LcpIgRL was detected in serum. Meanwhile, it was found that the rLcpIgRL could bind to the recombinant IgM and the natural IgM, indicating that LcpIgRL could mediate the transport of IgM in mucus. In addition, rLcpIgRL binds to Aeromonas hydrophila and V. harveyi, as well as lipopolysaccharide (LPS) and various saccharides, and reduced binding to bacteria was observed under LPS treatment, suggesting that LcpIgRL can bind to bacteria to prevent infection and that saccharide binding is an important mechanism of interaction between pIgRL and bacteria.


Assuntos
Perciformes , Receptores de Imunoglobulina Polimérica , Animais , Camundongos , Receptores de Imunoglobulina Polimérica/genética , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Escherichia coli/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Imunoglobulina M/genética , Proteínas de Peixes/química , Filogenia
6.
Am J Respir Cell Mol Biol ; 67(3): 334-345, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35687143

RESUMO

Loss of secretory IgA (SIgA) is common in chronic obstructive pulmonary disease (COPD) small airways and likely contributes to disease progression. We hypothesized that loss of SIgA results from reduced expression of pIgR (polymeric immunoglobulin receptor), a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice used immunostaining, primary murine tracheal epithelial cell culture, and transgenic mice with secretory or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from nontypeable Haemophilus influenzae was evaluated in vitro. We found that secretory cells are the predominant cell type responsible for pIgR expression in human and murine airways. Loss of SIgA in small airways was not associated with a reduction in secretory cells but rather a reduction in pIgR protein expression despite intact PIGR mRNA expression. Neutrophil elastase and nontypeable H. influenzae-secreted proteases are both capable of degrading SIgA in vitro and may also contribute to a deficient SIgA immunobarrier in COPD. Loss of the SIgA immunobarrier in small airways of patients with severe COPD is complex and likely results from both pIgR-dependent defects in IgA transcytosis and SIgA degradation.


Assuntos
Imunoglobulina A Secretora , Doença Pulmonar Obstrutiva Crônica , Receptores de Imunoglobulina Polimérica , Animais , Haemophilus influenzae/enzimologia , Humanos , Imunoglobulina A Secretora/metabolismo , Elastase de Leucócito/metabolismo , Camundongos , Proteólise , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo , Sistema Respiratório/metabolismo
7.
Gastroenterology ; 161(1): 151-162.e1, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819484

RESUMO

BACKGROUND & AIMS: We recently reported use of tissue-based transcriptomic biomarkers (microRNA [miRNA] or messenger RNA [mRNA]) for identification of lymph node metastasis (LNM) in patients with invasive submucosal colorectal cancers (T1 CRC). In this study, we translated our tissue-based biomarkers into a blood-based liquid biopsy assay for noninvasive detection of LNM in patients with high-risk T1 CRC. METHODS: We analyzed 330 specimens from patients with high-risk T1 CRC, which included 188 serum samples from 2 clinical cohorts-a training cohort (N = 46) and a validation cohort (N = 142)-and matched formalin-fixed paraffin-embedded samples (N = 142). We performed quantitative reverse-transcription polymerase chain reaction, followed by logistic regression analysis, to develop an integrated transcriptomic panel and establish a risk-stratification model combined with clinical risk factors. RESULTS: We used comprehensive expression profiling of a training cohort of LNM-positive and LMN-negative serum specimens to identify an optimized transcriptomic panel of 4 miRNAs (miR-181b, miR-193b, miR-195, and miR-411) and 5 mRNAs (AMT, forkhead box A1 [FOXA1], polymeric immunoglobulin receptor [PIGR], matrix metalloproteinase 1 [MMP1], and matrix metalloproteinase 9 [MMP9]), which robustly identified patients with LNM (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.72-0.94). We validated panel performance in an independent validation cohort (AUC, 0.82; 95% CI, 0.74-0.88). Our risk-stratification model was more accurate than the panel and an independent predictor for identification of LNM (AUC, 0.90; univariate: odds ratio [OR], 37.17; 95% CI, 4.48-308.35; P < .001; multivariate: OR, 17.28; 95% CI, 1.82-164.07; P = .013). The model limited potential overtreatment to only 18% of all patients, which is dramatically superior to pathologic features that are currently used (92%). CONCLUSIONS: A novel risk-stratification model for noninvasive identification of T1 CRC has the potential to avoid unnecessary operations for patients classified as high-risk by conventional risk-classification criteria.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Colorretais/sangue , Técnicas de Apoio para a Decisão , Perfilação da Expressão Gênica , Linfonodos/patologia , MicroRNAs/sangue , RNA Mensageiro/sangue , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estudos de Viabilidade , Feminino , Fator 3-alfa Nuclear de Hepatócito/sangue , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Biópsia Líquida , Metástase Linfática , Masculino , Metaloproteinase 1 da Matriz/sangue , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/genética , MicroRNAs/genética , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Nomogramas , Valor Preditivo dos Testes , RNA Mensageiro/genética , Receptores de Imunoglobulina Polimérica/sangue , Receptores de Imunoglobulina Polimérica/genética , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Adulto Jovem
8.
Eur J Immunol ; 51(11): 2590-2606, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34411303

RESUMO

The polyimmunoglobulin receptor (pIgR) transcytoses J chain-containing antibodies through mucosal epithelia. In mammals, two cis-duplicates of PIGR, FCMR, and FCAMR, flank the PIGR gene. A PIGR duplication is first found in amphibians, previously annotated as PIGR2 (herein xlFCAMR), and is expressed by APCs. We demonstrate that xlFcamR is the equivalent of mammalian FcamR. It has been assumed that pIgR is the oldest member of this family, yet our data could not distinguish whether PIGR or FCAMR emerged first; however, FCMR was the last family member to emerge. Interestingly, bony fish "pIgR" is not an orthologue of tetrapod pIgR, and possibly acquired its function via convergent evolution. PIGR/FCAMR/FCMR are members of a larger superfamily, including TREM, CD300, and NKp44, which we name the "double-disulfide Ig superfamily" (ddIgSF). Domains related to each ddIgSF family were identified in cartilaginous fish (sharks, chimeras) and encoded in a single gene cluster syntenic to the human pIgR locus. Thus, the ddIgSF families date back to the earliest antibody-based adaptive immunity, but apparently not before. Finally, our data strongly suggest that the J chain arose in evolution only for Ig multimerization. This study provides a framework for further studies of pIgR and the ddIgSF in vertebrates.


Assuntos
Antígenos CD/genética , Imunidade nas Mucosas/imunologia , Receptores Fc/genética , Receptores Opioides mu/genética , Receptores de Imunoglobulina Polimérica/genética , Transcitose/imunologia , Animais , Antígenos CD/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Humanos , Imunoglobulinas/metabolismo , Filogenia , Transporte Proteico/fisiologia , Receptores Fc/imunologia , Receptores Opioides mu/imunologia , Receptores de Imunoglobulina Polimérica/imunologia , Transcitose/genética , Xenopus laevis
9.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887127

RESUMO

The IgM and IgT classes were previously identified and characterized in the Antarctic teleost Trematomus bernacchii, a species belonging to the Perciform suborder Notothenoidei. Herein, we characterized the gene encoding the polymeric immunoglobulin receptor (pIgR) in the same species and compared it to the pIgR of multiple teleost species belonging to five perciform suborders, including 11 Antarctic and 1 non-Antarctic (Cottoperca gobio) notothenioid species, the latter living in the less-cold peri-Antarctic sea. Antarctic pIgR genes displayed particularly long introns marked by sites of transposable elements and transcription factors. Furthermore, analysis of T. bernacchii pIgR cDNA unveiled multiple amino acid substitutions unique to the Antarctic species, all introducing adaptive features, including N-glycosylation sequons. Interestingly, C. gobio shared most features with the other perciforms rather than with the cold-adapted relatives. T. bernacchii pIgR transcripts were predominantly expressed in mucosal tissues, as indicated by q-PCR and in situ hybridization analysis. These results suggest that in cold-adapted species, pIgR preserved its fundamental role in mucosal immune defense, although remarkable gene structure modifications occurred.


Assuntos
Perciformes , Receptores de Imunoglobulina Polimérica , Animais , Regiões Antárticas , DNA Complementar/genética , Perciformes/genética , Filogenia , Receptores de Imunoglobulina Polimérica/genética
10.
Immunogenetics ; 73(1): 65-77, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33439286

RESUMO

Immunoglobulins are glycoproteins which are produced as membrane-bound receptors on B-cells or in a secreted form, known as antibodies. In teleosts, three immunoglobulin isotypes, IgM, IgT, and IgD, are present, each comprising two identical heavy and two identical light polypeptide chains. The basic mechanisms for generation of immunoglobulin diversity are similar in teleosts and higher vertebrates. The B-cell pre-immune repertoire is diversified by VDJ recombination, junctional flexibility, addition of nucleotides, and combinatorial association of light and heavy chains, while the post-immune repertoire undergoes somatic hypermutation during clonal expansion. Typically, the teleost immunoglobulin heavy chain gene complex has a modified translocon arrangement where the Dτ-Jτ-Cτ cluster of IgT is generally located between the variable heavy chain (VH) region and the Dµ/δ-Jµ/δ-Cµ-Cδ gene segments, or within the set of VH gene segments. However, multiple genome duplication and deletion events and loss of some individual genes through evolution has complicated the IgH gene organization. The IgH gene arrangement allows the expression of either IgT or IgM/IgD. Alternative splicing is responsible for the regulation of IgM/IgD expression and the secreted versus transmembrane forms of IgT, IgD, and IgM. The overall structure of IgM and IgT is usually conserved across species, whereas IgD has a large variety of structures. IgM is the main effector molecule in both systemic and mucosal immunity and shows a broad range of concentrations in different teleost species. Although IgM is usually present in higher concentrations under normal conditions, IgT is considered the main mucosal Ig.


Assuntos
Peixes/imunologia , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Peixes/genética , Genes de Imunoglobulinas/genética , Genes de Imunoglobulinas/imunologia , Imunidade nas Mucosas , Imunoglobulina D/genética , Imunoglobulina D/imunologia , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/imunologia , Recombinação V(D)J
11.
Int J Med Sci ; 18(2): 364-371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390805

RESUMO

Objective: This report aimed to investigate the potential mechanism of polymeric immunoglobulin receptor (PIGR) in promoting cancer development in hepatocellular carcinoma (HCC). Methods: PIGR expression was investigated in Gene Expression Omnibus (GEO), Oncomine, The Cancer Genome Atlas (TCGA) and The Human Protein Atlas (HPA) databases. Relationships between PIGR and HCC survival and clinico-pathological features were conducted in TCGA. RNAseq of PIGR overexpression and knockdown samples in Bel-7404 cells were performed for identifying potential mechanisms. Results: PIGR was significantly overexpressed in tumors compared to nontumors and in HCC serum peripheral blood mononuclear cells (PBMC) than in healthy individuals (all p < 0.05). In TCGA, PIGR was highly altered in 14% HCC patients. PIGR upregulation was significantly associated with poor disease-free survival (p < 0.05). More patients recurred/progressed in PIGR altered group compared to unaltered group (p < 0.01). PIGR was significantly higher in HCC patients with incomplete cirrhosis (p < 0.001) and established cirrhosis (p < 0.05). Fewer patients had N0 lymph node stage in PIGR altered group than those in the unaltered group (p < 0.05). PIGR RNAseq revealed that ribosome signaling was the common pathway in PIGR overexpression and PIGR knockdown samples. RNAseq analysis indicated that RPL10, RPL10A, RPL12, RPL19, RPL36, RPL38, RPL41, RPL6, RPL8, RPS12, RPS14, RPS15A, RPS2, RPS27A and RPSA were significantly upregulated in PIGR overexpression group and downregulated in PIGR underexpression group (all p < 0.05). Conclusions: Aberrant PIGR was associated with HCC recurrence, and PIGR stimulated ribosome pathway might be a potential mechanism.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Recidiva Local de Neoplasia/epidemiologia , Receptores de Imunoglobulina Polimérica/genética , Biomarcadores Tumorais/sangue , Carcinogênese/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Progressão da Doença , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fígado/patologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/genética , RNA-Seq , Receptores de Imunoglobulina Polimérica/sangue , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Transdução de Sinais/genética , Regulação para Cima
12.
Am J Pathol ; 189(10): 1933-1944, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31404540

RESUMO

The polymeric Ig receptor (PIgR) constitutes an important part of the immune system by mediating transcytosis of dimeric IgA into mucosal fluids. Although well studied in organs such as the intestine, the regulation and localization of PIgR in human kidney are incompletely characterized. Herein, using immunohistochemistry, we show that in healthy human kidneys, PIgR is expressed by the progenitor-like tubular scattered cells of the proximal tubules and by parietal epithelial cells of glomeruli. We further show that proximal tubular expression of PIgR becomes widespread during kidney disease, correlating to elevated levels of urinary secretory IgA. Urinary secretory IgA levels also correlated to the degree of tubular fibrosis, plasma creatinine, and urea levels. In addition, primary tubular cells were cultured to study the function and regulation of PIgR in vitro. Cellular PIgR expression was induced by conditioned medium from activated human leukocytes, as well as by inflammatory cytokines, whereas transforming growth factor-ß1 caused decreased expression. Furthermore, interferon-γ increased the transcytosis of dimeric IgA in cultured tubular cells. Finally, a correlation study of mRNA data from the Genotype-Tissue Expression portal indicated that PIGR mRNA expression in kidney correlates to the expression of TNFSF13, a cytokine involved in plasma cell class switching to IgA. These results indicate that PIgR induction is an integral part of the injury phenotype of renal tubular cells.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Nefropatias/metabolismo , Rim/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Adulto , Idoso , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Feminino , Seguimentos , Humanos , Nefropatias/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores de Imunoglobulina Polimérica/genética , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 114(15): 3897-3902, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28356519

RESUMO

Ancestral protein reconstruction allows the resurrection and characterization of ancient proteins based on computational analyses of sequences of modern-day proteins. Unfortunately, many protein families are highly divergent and not suitable for sequence-based reconstruction approaches. This limitation is exemplified by the antigen receptors of jawed vertebrates (B- and T-cell receptors), heterodimers formed by pairs of Ig domains. These receptors are believed to have evolved from an extinct homodimeric ancestor through a process of gene duplication and diversification; however molecular evidence has so far remained elusive. Here, we use a structural approach and laboratory evolution to reconstruct such molecules and characterize their interaction with antigen. High-resolution crystal structures of reconstructed homodimeric receptors in complex with hen-egg white lysozyme demonstrate how nanomolar affinity binding of asymmetrical antigen is enabled through selective recruitment and structural plasticity within the receptor-binding site. Our results provide structural evidence in support of long-held theories concerning the evolution of antigen receptors, and provide a blueprint for the experimental reconstruction of protein ancestry in the absence of phylogenetic evidence.


Assuntos
Evolução Molecular , Filogenia , Receptores de Imunoglobulina Polimérica/química , Animais , Cristalografia por Raios X , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias kappa de Imunoglobulina/química , Cadeias kappa de Imunoglobulina/genética , Muramidase/química , Receptores de Imunoglobulina Polimérica/genética , Vertebrados/genética , Vertebrados/imunologia
14.
Mol Med ; 25(1): 12, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943912

RESUMO

BACKGROUND: The polymeric immunoglobulin receptor (pIgR) maintains the integrity of epithelial barriers by transporting polymeric antibodies and antigens through the epithelial mucosa into the lumen. In this study, we examined the role of pIgR in maintaining gut barrier integrity, which is important for the normal development in mice. METHODS: Cohorts of pIgR-/- mice and their wildtype controls were housed under Specific Pathogen Free (SPF) conditions and monitored for weight gain as an indicator of development over time. The general physiology of the gastrointestinal tract was analysed using immunohistochemistry in young (8-12 weeks of age) and aged mice (up to 18 months of age), and the observed immunopathology in pIgR-/- mice was further characterised using flow cytometry. Urinary metabolites were analysed using gas chromatography-mass spectrometry (GC-MS), which revealed changes in metabolites that correlated with age-related increase in gut permeability in pIgR-/- mice. RESULTS: We observed that pIgR-/- mice exhibited delayed growth, and this phenomenon is associated with low-grade gut inflammation that increased with ageing. The gross intraepithelial lymphocytic (IEL) infiltration characteristic of pIgR-/- mice was redefined as CD8α+αß+ T cells, the majority of which expressed high levels of CD103 and CD69 consistent with tissue resident memory T cells (TRM). Comparison of the urinary metabolome between pIgR-/- and wild-type mice revealed key changes in urinary biomarkers fucose, glycine and Vitamin B5, suggestive of altered mucosal permeability. A significant increase in gut permeability was confirmed by analysing the site-specific uptake of sugar probes in different parts of the intestine. CONCLUSION: Our data show that loss of the secretory antibody system in mice results in enhanced accumulation of inflammatory IELs in the gut, which likely reflects ongoing inflammation in reaction to gut microbiota or food antigens, leading to delayed growth in pIgR-/- mice. We demonstrate that this leads to the presence of a unique urinary metabolome profile, which may provide a biomarker for altered gut permeability.


Assuntos
Trato Gastrointestinal/imunologia , Linfócitos Intraepiteliais/imunologia , Metaboloma , Receptores de Imunoglobulina Polimérica/genética , Urina/química , Animais , Anticorpos/genética , Citocinas/sangue , Feminino , Trato Gastrointestinal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Fish Shellfish Immunol ; 87: 315-321, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30633962

RESUMO

The receptor responsible for maternofetal transmission of immunoglobulin (Igs) in the teleosts is not clear. Polymeric immunoglobulin receptor (pIgR) specifically binds with IgA and IgM and mediates the transcytosis of intracellular polymeric immunoglobulins (pIgs) at the mucosal surface to protect against pathogens. Hence there is a possibility that it may be involved in the transmission of maternal Igs. The aim of the present study was to detect the expression and localization of pIgR during embryonal development in turbot (Scophthalmus maximus). pIgR gene was first cloned from eggs and embryos of turbot with or without parent immunization. The expression and distribution of pIgR in unfertilized egg and in embryos ranging from day 1 to day 5 after fertilization were analyzed using reverse transcriptase quantitative polymerase chain reaction and in situ hybridization. pIgR gene was detected in all eggs and embryos at different stages of development, with the highest level detected on the 5th day. pIgR mRNA was observed to be first located in the whole blastoderm and enveloped the yolk sac. Later, it was located around entoderm including primary digestive tract and pronephric tubule tract, and finally it was located at the joint of abdomen and vitelline membrane. Then, Eukaryotic expression plasmid carrying pIgR gene was constructed and transfected into HEK293T cells. Results showed mature pIgR protein located on the cellular membrane, and could bound IgM in vitro. Our findings provide information for studying the involvement of pIgR in maternal Igs transportation in turbot.


Assuntos
Proteínas de Peixes/genética , Linguados/genética , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/imunologia , Animais , Desenvolvimento Embrionário/genética , Feminino , Proteínas de Peixes/imunologia , Linguados/embriologia , Linguados/metabolismo , Especificidade de Órgãos
16.
Fish Shellfish Immunol ; 88: 472-479, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30880232

RESUMO

The Polymeric Immunoglobulin Receptor (pIgR) gene has been proved to play an important role in transporting polymeric immunoglobulin (Ig) in the mucosal tissues of mammals. pIgR gene also exists in teleost, but the genetic diversity and functions of this gene still need to be further explored. We obtained seven grass carp pIgR splicing transcripts, a full-length pIgR (CipIgR-1) and six truncated variants (CipIgR-2 to CipIgR-7). The full-length pIgR contained two immunoglobulin-like domains (ILD), a transmembrane domain (TMD) and a cytoplasmic domain (CyD). The CipIgR-2 lacked a small part in CyD, and CipIgR-3 lost TMD and CyD. Partial cDNA sequences of the other four grass carp pIgR variants (CipIgR-4 to CipIgR-7) were also cloned. The total expression levels of CipIgR and its variants in different tissues were detected by real-time quantitative PCR. The highest expression was found in the intestine, followed by the spleen and the skin. The function of the two extracellular ILDs of CipIgR was investigated based on its combining capacity with grass carp immunoglobulin M (IgM) and aquatic pathogenic bacteria. The cDNA sequences of two ILDs were cloned and expressed in Escherichia coli BL21 (DE3). Recombinant ILDs protein was purified and incubated with different bacteria respectively. Results of Western blot showed the recombinant protein could combine Bacillus subtilis, Vibrio parahaemolyticus, and Escherichia coli. In addition, binding activity of rILDs with grass carp IgM was detected. Collectively, these results indicated that multiple variants of pIgR gene in grass carp might be involved in the antibacterial immunity.


Assuntos
Carpas/genética , Carpas/imunologia , Domínios de Imunoglobulina , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/imunologia , Animais , Bactérias/imunologia , Sítios de Ligação de Anticorpos , Clonagem Molecular , Escherichia coli/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Variação Genética , Imunoglobulina M/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
17.
Fish Shellfish Immunol ; 87: 524-533, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30710627

RESUMO

In the present work, the polymeric immunoglobulin receptor-like (pIgRL) from flounder (Paralichthys olivaceus) was firstly cloned and identified. The full length cDNA of flounder pIgRL was of 1393 bp including an open reading frame of 1053 bp, and the deduced pIgRL sequence encoded 350 amino acids, with a predicted molecular mass of 39 kDa. There were two immunoglobulin-like domains in flounder pIgRL. In healthy flounder, the transcriptional level of pIgRL was detected in different tissues by real-time PCR, showing the highest level in the skin and gills, and higher levels in the spleen and hindgut. After flounders were vaccinated with inactivated Vibrio anguillarum via intraperitoneal injection and immersion, the pIgRL mRNA level increased firstly and then declined in all tested tissues during 48 h, and the maximum expression levels in the gills, skin, spleen and hindgut in immersion group, or in the spleen, head kidney, skin and gills in injection group, were higher than in other tested tissues. In addition, recombinant protein of the extracellular region of flounder pIgRL was expressed in Escherichia coli BL21 (DE3), and rabbit anti-pIgRL polyclonal antibodies were prepared, which specifically reacted with the recombinant pIgRL, and a 39 kDa protein confirmed as natural pIgRL by liquid chromatography-mass spectrometry in skin mucus of flounder. Co-immunoprecipitation assay and western-blotting demonstrated that the pIgRL, together with IgM, could be immunoprecipitated by anti-pIgRL antibody in gut, skin and gill mucus of flounder, suggesting the existence of pIgRL-IgM complexes. These results indicated that the flounder pIgRL was probably involved in the mucosal IgM transportation and played important roles in mucosal immunity.


Assuntos
Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/imunologia , Sequência de Aminoácidos , Animais , Vacinas Bacterianas/imunologia , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Injeções Intraperitoneais/veterinária , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Receptores de Imunoglobulina Polimérica/química , Alinhamento de Sequência/veterinária , Vibrio/imunologia
18.
Plant Biotechnol J ; 16(7): 1283-1294, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29223138

RESUMO

Dengue is a major global disease requiring improved treatment and prevention strategies. The recently licensed Sanofi Pasteur Dengvaxia vaccine does not protect children under the age of nine, and additional vaccine strategies are thus needed to halt this expanding global epidemic. Here, we employed a molecular engineering approach and plant expression to produce a humanized and highly immunogenic poly-immunoglobulin G scaffold (PIGS) fused to the consensus dengue envelope protein III domain (cEDIII). The immunogenicity of this IgG Fc receptor-targeted vaccine candidate was demonstrated in transgenic mice expressing human FcγRI/CD64, by induction of neutralizing antibodies and evidence of cell-mediated immunity. Furthermore, these molecules were able to prime immune cells from human adenoid/tonsillar tissue ex vivo as evidenced by antigen-specific CD4+ and CD8+ T-cell proliferation, IFN-γ and antibody production. The purified polymeric fraction of dengue PIGS (D-PIGS) induced stronger immune activation than the monomeric form, suggesting a more efficient interaction with the low-affinity Fcγ receptors on antigen-presenting cells. These results show that the plant-expressed D-PIGS have the potential for translation towards a safe and easily scalable single antigen-based tetravalent dengue vaccine.


Assuntos
Vacinas contra Dengue/imunologia , Engenharia Genética , Receptores de Imunoglobulina Polimérica/genética , Proteínas Recombinantes de Fusão/genética , Tonsila Faríngea/imunologia , Adjuvantes Imunológicos/genética , Animais , Anticorpos Neutralizantes/imunologia , Vacinas contra Dengue/genética , Feminino , Engenharia Genética/métodos , Humanos , Imunidade Celular , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Tonsila Palatina/imunologia , Plantas Geneticamente Modificadas , Receptores de IgG/imunologia , Receptores de Imunoglobulina Polimérica/imunologia , Proteínas Recombinantes de Fusão/imunologia , Nicotiana/genética
19.
Fish Shellfish Immunol ; 73: 175-184, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29248629

RESUMO

The polymeric immunoglobulin receptor (pIgR) is an essential component of the mucosal immune system in jawed vertebrates including teleost fish, which mediate transepithelial transport of secretory immunoglobulins (sIgs) to protect organisms against environmental pathogens. In this study, we firstly cloned and identified the pIgR from dojo loach (Misgurnus anguillicaudatus). The full-length cDNA of Ma-pIgR was of 1145 bp, containing an open reading frame (ORF) of 1101 bp encoded a predicted protein of 336 amino acids. The structure of Ma-pIgR is comprised of a signal peptide, a transmembrane region, an intracellular region and an extracellular region with two Ig-like domains (ILDs), which are similar to their counterparts described in other teleosts. Multiple sequence alignment and phylogenetic analysis showed the dojo loach is closely related to the fish family Cyprinidae. The transcriptional level of Ma-pIgR was detected by quantitative real-time PCR (qRT-PCR) in different tissues and high expression was found in liver, skin, kidney, eye, fin and gills. Two infection models of the loach with bacteria (Aeromonas hydrophila) and parasite (Ichthyophthirius multifiliis) were constructed for the first time. Histological studies showed the goblet cells in skin significantly increased and the ratio of gill length to width also significantly changed after challenged with A.hydrophila. Both challenge experiments resulted in the significant up-regulated expression of Ma-pIgR not only in kidney and spleen, but also in skin and gills. Our results suggest that pIgR may play an important role in skin and gill mucosal immunity to protect the loach against bacteria and parasite.


Assuntos
Cipriniformes/genética , Cipriniformes/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade nas Mucosas/genética , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Infecções por Cilióforos/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Hymenostomatida/fisiologia , Filogenia , Receptores de Imunoglobulina Polimérica/química , Alinhamento de Sequência/veterinária
20.
Ann Surg Oncol ; 24(1): 108-116, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27663566

RESUMO

PURPOSE: Melanoma patients with a single microscopically-positive sentinel lymph node (SLN) are classified as stage III and are often advised to undergo expensive and substantially toxic adjuvant therapy. However, the 5-year survival rate for these patients, with or without adjuvant therapy, varies from 14 to 85 %, representing a heterogeneous biological population with a variable prognosis. We aimed to identify an SLN gene signature to aid in risk stratification of patients with tumor-positive SLNs. METHODS: Microarray experiments were performed to screen SLN genes in recurrence (N = 39) versus non-recurrence (N = 58) groups in the training dataset. Quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) assay was applied to confirm the expression of selected SLN genes, which were further verified using an independent validation cohort (N = 30). Area under the receiver operating characteristic curve (AUC) was calculated to evaluate prognostic accuracy of the selected SLN gene panel, and the prognostic value of our SLN gene signature was also compared with the current American Joint Committee on Cancer (AJCC) staging system. RESULTS: We identified two SLN genes (PIGR and TFAP2A) that provided high prognostic accuracy in SLN-positive melanoma patients (AUC = 0.864). These two SLN genes, along with clinicopathological features, can differentiate the high- and low-risk groups in node-positive melanoma patients in this cohort. CONCLUSION: The two SLN genes, when combined with clinicopathological features, may offer a new tool for personalized patient risk assessment.


Assuntos
Metástase Linfática/patologia , Melanoma/genética , Melanoma/patologia , Receptores de Imunoglobulina Polimérica/genética , Linfonodo Sentinela/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fator de Transcrição AP-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medição de Risco , Biópsia de Linfonodo Sentinela , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA