Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.210
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Addict Biol ; 29(5): e13401, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38782631

RESUMO

Addictive properties of propofol have been demonstrated in both humans and animals. The nucleus accumbens (NAc) shell (NAsh) in the brain, along with the interactions between N-methyl-D-aspartate receptor (NMDAR) and the dopamine D1 receptor (D1R), as well as their downstream ERK/CREB signalling pathway in the NAc, are integral in regulating reward-seeking behaviour. Nevertheless, it remains unclear whether NMDARs and the NMDAR-D1R/ERK/CREB signalling pathway in the NAsh are involved in mediating propofol addiction. To investigate it, we conducted experiments with adult male Sprague-Dawley rats to establish a model of propofol self-administration behaviour. Subsequently, we microinjected D-AP5 (a competitive antagonist of NMDARs, 1.0-4.0 µg/0.3 µL/site) or vehicle into bilateral NAsh in rats that had previously self-administered propofol to examine the impact of NMDARs within the NAsh on propofol self-administration behaviour. Additionally, we examined the protein expressions of NR2A and NR2B subunits, and the D1R/ERK/CREB signalling pathways within the NAc. The results revealed that propofol administration behaviour was enhanced by D-AP5 pretreatment in NAsh, accompanied by elevated expressions of phosphorylation of NR2A (Tyr1246) and NR2B (Tyr1472) subunits. There were statistically significant increases in the expressions of D1Rs, as well as in the phosphorylated ERK1/2 (p-ERK1/2) and CREB (p-CREB). This evidence substantiates a pivotal role of NMDARs in the NAsh, with a particular emphasis on the NR2A and NR2B subunits, in mediating propofol self-administration behaviour. Furthermore, it suggests that this central reward processing mechanism may operate through the NMDAR-D1R/ERK/CREB signal transduction pathway.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Núcleo Accumbens , Propofol , Ratos Sprague-Dawley , Receptores de Dopamina D1 , Receptores de N-Metil-D-Aspartato , Autoadministração , Transdução de Sinais , Animais , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Propofol/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 632: 150-157, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36209583

RESUMO

Ketamine is a noncompetitive antagonist of N-methyl-D-aspartate receptors (NMDARs). We have shown that ketamine can induce cognitive impairments and schizophrenia-like symptoms in mice. However, the detailed metabolic profile changes in the progression of ketamine-induced schizophrenia-like symptoms are still not fully elucidated. In this study, an ultra-performance liquid chromatography-Q-Exactive hybrid quadrupole-Orbitrap mass spectrometry-based untargeted hippocampus high-throughput metabolomics method was first performed to screen for potential biomarkers in a schizophrenia-like state in a chronically administered ketamine-induced mouse model. Our results identified that the amino acid and energy metabolism pathways were significantly affected in mouse models of ketamine-induced schizophrenia. The detailed amino acid profiles were subsequently quantified in the hippocampus. The results showed that ketamine dramatically decreased the Lys, Gly, and Ser levels while significantly increasing the Gln level and relative Glu-to-GABA ratio. Our study suggested that Gln, Gly and Ser metabolism disturbances might be involved in ketamine-induced schizophrenia-like phenotypes. This research offers a fresh viewpoint for creating new neuroleptic medications and contributes to understanding the mechanisms underlying ketamine-induced schizophrenia.


Assuntos
Antipsicóticos , Hipocampo , Esquizofrenia , Animais , Camundongos , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Ácido gama-Aminobutírico/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Metabolômica/métodos
3.
Proc Natl Acad Sci U S A ; 116(13): 6441-6450, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30867285

RESUMO

Currently approved antidepressant drugs often take months to take full effect, and ∼30% of depressed patients remain treatment resistant. In contrast, ketamine, when administered as a single subanesthetic dose, exerts rapid and sustained antidepressant actions. Preclinical studies indicate that the ketamine metabolite (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a rapid-acting antidepressant drug candidate with limited dissociation properties and abuse potential. We assessed the role of group II metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) in the antidepressant-relevant actions of (2R,6R)-HNK using behavioral, genetic, and pharmacological approaches as well as cortical quantitative EEG (qEEG) measurements in mice. Both ketamine and (2R,6R)-HNK prevented mGlu2/3 receptor agonist (LY379268)-induced body temperature increases in mice lacking the Grm3, but not Grm2, gene. This action was not replicated by NMDA receptor antagonists or a chemical variant of ketamine that limits metabolism to (2R,6R)-HNK. The antidepressant-relevant behavioral effects and 30- to 80-Hz qEEG oscillation (gamma-range) increases resultant from (2R,6R)-HNK administration were prevented by pretreatment with an mGlu2/3 receptor agonist and absent in mice lacking the Grm2, but not Grm3-/-, gene. Combined subeffective doses of the mGlu2/3 receptor antagonist LY341495 and (2R,6R)-HNK exerted synergistic increases on gamma oscillations and antidepressant-relevant behavioral actions. These findings highlight that (2R,6R)-HNK exerts antidepressant-relevant actions via a mechanism converging with mGlu2 receptor signaling and suggest enhanced cortical gamma oscillations as a marker of target engagement relevant to antidepressant efficacy. Moreover, these results support the use of (2R,6R)-HNK and inhibitors of mGlu2 receptor function in clinical trials for treatment-resistant depression either alone or in combination.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Ketamina/farmacologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Aminoácidos/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/antagonistas & inibidores , Modelos Animais de Doenças , Resistência a Medicamentos , Feminino , Febre , Ketamina/administração & dosagem , Ketamina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
4.
J Neurosci ; 40(31): 5922-5936, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32611707

RESUMO

N-methyl-D-aspartate receptor (NMDAR) hypofunction has been implicated in several neurodevelopmental disorders. NMDAR function can be augmented by positive allosteric modulators, including endogenous compounds, such as cholesterol and neurosteroid pregnenolone sulfate (PES). Here we report that PES accesses the receptor via the membrane, and its binding site is different from that of cholesterol. Alanine mutagenesis has identified residues that disrupt the steroid potentiating effect at the rat GluN1 (G638; I642) and GluN2B (W559; M562; Y823; M824) subunit. Molecular dynamics simulation indicates that, in the absence of PES, the GluN2B M1 helix residue W559 interacts with the M4 helix residue M824. In the presence of PES, the M1 and M4 helices of agonist-activated receptor rearrange, forming a tighter interaction with the GluN1 M3 helix residues G638 and I642. This stabilizes the open-state position of the GluN1 M3 helices. Together, our data identify a likely binding site for the NMDAR-positive allosteric modulator PES and describe a novel molecular mechanism by which NMDAR activity can be augmented.SIGNIFICANCE STATEMENT There is considerable interest in drugs that enhance NMDAR function and could compensate for receptor hypofunction associated with certain neuropsychiatric disorders. Positive allosteric modulators of NMDARs include an endogenous neurosteroid pregnenolone sulfate (PES), but the binding site of PES on the NMDAR and the molecular mechanism of potentiation are unknown. We use patch-clamp electrophysiology in combination with mutagenesis and in silico modeling to describe the interaction of PES with the NMDAR. Our data indicate that PES binds to the transmembrane domain of the receptor at a discrete group of residues at the GluN2B membrane helices M1 and M4 and the GluN1 helix M3, and that PES potentiates NMDAR function by stabilizing the open-state position of the GluN1 M3 helices.


Assuntos
Pregnenolona/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Alanina/genética , Animais , Sítios de Ligação , Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Conformação Proteica , Ratos
5.
J Neurophysiol ; 126(5): 1622-1634, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495785

RESUMO

Choline is an essential nutrient under evaluation as a cognitive enhancing treatment for fetal alcohol spectrum disorders (FASD) in clinical trials. As a result, there is increased pressure to identify therapeutic mechanism(s) of action. Choline is not only a precursor for several essential cell membrane components and signaling molecules but also has the potential to directly affect synaptic mechanisms that are believed important for cognitive processes. In the current work, we study how the direct application of choline can affect synaptic transmission in the dentate gyrus (DG) of hippocampal slices obtained from adolescent (postnatal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSPs) in the DG in vitro. The depression required the involvement of M1 receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of N-methyl-d-aspartate (NMDA) and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.NEW & NOTEWORTHY Choline supplementation is a nutraceutical therapy with significant potential for a variety of developmental disorders; however, the mechanisms involved in its therapeutic effects remain poorly understood. Our research shows that choline directly impacts synaptic communication in the brain, inducing a long-term depression of synaptic efficacy in brain slices. The depression is equivalent in male and female animals, involves M1 receptors in control animals, but uniquely involves NMDA receptors in a model of FASD.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Colina/farmacologia , Giro Denteado/efeitos dos fármacos , Etanol/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Nootrópicos/farmacologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptor Muscarínico M1/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley
6.
Neurobiol Learn Mem ; 185: 107526, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562619

RESUMO

Heightened fear responding is characteristic of fear- and anxiety-related disorders, including post-traumatic stress disorder. Neural plasticity in the amygdala is essential for both initial fear learning and fear expression, and strengthening of synaptic connections between the medial geniculate nucleus (MgN) and amygdala is critical for auditory fear learning. However, very little is known about what happens in the MgN-amygdala pathway during fear recall and extinction, in which conditional fear decreases with repeated presentations of the auditory stimulus alone. In the present study, we found that optogenetic inhibition of activity in the MgN-amygdala pathway during fear retrieval and extinction reduced expression of conditional fear. While this effect persisted for at least two weeks following pathway inhibition, it was specific to the context in which optogenetic inhibition occurred, linking MgN-BLA inhibition to facilitation of extinction-like processes. Reduced fear expression through inhibition of the MgN-amygdala pathway was further characterized by similar synaptic expression of GluA1 and GluA2 AMPA receptor subunits compared to what was seen in controls. Inhibition also decreased CREB phosphorylation in the amygdala, similar to what has been reported following auditory fear extinction. We then demonstrated that this effect was reduced by inhibition of GluN2B-containing NMDA receptors. These results demonstrate a new and important role for the MgN-amygdala pathway in extinction-like processes, and show that suppressing activity in this pathway results in a persistent decrease in fear behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Corpos Geniculados/fisiologia , Vias Neurais/fisiologia , Estimulação Acústica , Animais , Condicionamento Clássico/efeitos dos fármacos , Extinção Psicológica/fisiologia , Imunofluorescência , Hylobatidae , Masculino , Optogenética , Piperidinas/farmacologia , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia
7.
Neurobiol Learn Mem ; 181: 107445, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33895349

RESUMO

In rodent models of smoking during pregnancy, early postnatal nicotine exposure results in impaired hippocampus-dependent memory, but the underlying mechanism remains elusive. Given that hippocampal cholinergic systems modulate memory and rapid development of hippocampal cholinergic systems occurs during nicotine exposure, here we investigated its impacts on cholinergic function. Both nicotinic and muscarinic activation produce transient or long-lasting depression of excitatory synaptic transmission in the hippocampal CA1 region. We found that postnatal nicotine exposure impairs both the induction and nicotinic modulation of NMDAR-dependent long-term depression (LTD). Activation of muscarinic receptors decreases excitatory synaptic transmission and CA1 network activity in both wild-type and α2 knockout mice. These muscarinic effects are still observed in nicotine-exposed mice. M1 muscarinic receptor activity is required for mGluR-dependent LTD. Early postnatal nicotine exposure has no effect on mGluR-dependent LTD induction, suggesting that it has no effect on the function of m1 muscarinic receptors involved in this form of LTD. Our results demonstrate that early postnatal nicotine exposure has more pronounced effects on nicotinic function than muscarinic function in the hippocampal CA1 region. Thus, impaired hippocampus-dependent memory may arise from the developmental disruption of nicotinic cholinergic systems in the hippocampal CA1 region.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptor Muscarínico M1/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Fumar Cigarros , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Lactação , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Exposição Materna , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Knockout , Receptor Muscarínico M1/metabolismo , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/metabolismo
8.
Psychol Med ; 51(15): 2657-2665, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32375905

RESUMO

BACKGROUND: Studies suggest that d-cycloserine (DCS) may have antidepressant potential through its interaction with the glycine site of the N-methyl-D-aspartate receptor; however, clinical evidence of DCS's efficacy as a treatment for depression is limited. Other evidence suggests that DCS affects emotional learning which may also be relevant for the treatment of depression and anxiety. The aim of the present investigation was to assess the effect of DCS on emotional processing in healthy volunteers and to further characterise its effects on emotional and autobiographical memory. METHODS: Forty healthy volunteers were randomly allocated to a single dose of 250 mg DCS or placebo in a double-blind design. Three hours later, participants performed an Emotional Test Battery [including Facial Expression Recognition Task (FERT), Emotional Categorisation Task (ECAT), Emotional Recall Task (EREC), Facial Dot-Probe Task (FDOT) and Emotional Recognition Memory Task (EMEM)] and an Autobiographical Memory Test (AMT). Also, participants performed the FERT, EREC and AMT tasks again after 24 h in order to assess longer lasting effects of a single dose of DCS. RESULTS: DCS did not significantly affect the FERT, EMEM and FDOT performance but significantly increased emotional memory and classification for positive words v. negative words. Also, DCS enhanced the retrieval of more specific autobiographical memories, and this effect persisted at 24 h. CONCLUSIONS: These findings support the suggestion that low-dose DCS increases specific autobiographical memory retrieval and positive emotional memory. Such effects make it an intriguing agent for further investigation in clinical depression, which is characterised by decreased autobiographical memory specificity and increased negative bias in memory recall. It also underscores the potential role of DCS as an adjunct to cognitive behavioural therapy in depression.


Assuntos
Ciclosserina/farmacologia , Emoções/efeitos dos fármacos , Memória Episódica , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Adolescente , Adulto , Método Duplo-Cego , Reconhecimento Facial/efeitos dos fármacos , Feminino , Humanos , Masculino , Escalas de Graduação Psiquiátrica , Análise e Desempenho de Tarefas , Adulto Jovem
9.
Mar Drugs ; 19(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478061

RESUMO

N-methyl-D-aspartate receptor (NMDAR) antagonists have been found to be effective to inhibit morphine dependence. However, the discovery of the selective antagonist for NMDAR GluN2B with low side-effects still remains challenging. In the present study, we report a selective NMDAR GluN2B antagonist con-T[M8Q](a conantokin-T variant) that potently inhibits the naloxone-induced jumping and conditioned place preference of morphine-dependent mice at nmol/kg level, 100-fold higher than ifenprodil, a classical NMDAR NR2B antagonist. Con-T[M8Q] displays no significant impacts on coordinated locomotion function, spontaneous locomotor activity, and spatial memory mice motor function at the dose used. Further molecular mechanism experiments demonstrate that con-T[M8Q] effectively inhibited the transcription and expression levels of signaling molecules related to NMDAR NR2B subunit in hippocampus, including NR2B, p-NR2B, CaMKII-α, CaMKII-ß, CaMKIV, pERK, and c-fos. The high efficacy and low side effects of con-T[M8Q] make it a good lead compound for the treatment of opiate dependence and for the reduction of morphine usage.


Assuntos
Conotoxinas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Dependência de Morfina/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Conotoxinas/administração & dosagem , Conotoxinas/toxicidade , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Dependência de Morfina/fisiopatologia , Naloxona/farmacologia , Piperidinas/farmacologia , Memória Espacial/efeitos dos fármacos
10.
Neural Plast ; 2021: 6635084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981335

RESUMO

Background: Ketamine has been shown to possess lasting antidepressant properties. However, studies of the mechanisms involved in its effects on poststroke depression are nonexistent. Methods: To investigate these mechanisms, Sprague-Dawley rats were treated with a single local dose of ketamine after middle cerebral artery occlusion and chronic unpredicted mild stress. The effects on the hippocampal dentate gyrus were analyzed through assessment of the N-methyl-D-aspartate receptor/calcium/calmodulin-dependent protein kinase II (NMDAR/CaMKII) pathway, synaptic plasticity, and behavioral tests. Results: Ketamine administration rapidly exerted significant and lasting improvements of depressive symptoms. The biochemical analysis showed rapid, selective upregulation and downregulation of the NMDAR2-ß and NMDAR2-α subtypes as well as their downstream signaling proteins ß-CaMKII and α-phosphorylation in the dentate gyrus, respectively. Furthermore, the colocalization analysis indicated a significant and selectively increased conjunction of ß-CaMKII and postsynaptic density protein 95 (PSD95) coupled with a notable decrease in NMDAR2-ß association with PSD95 after ketamine treatment. These changes translated into significant and extended synaptic plasticity in the dentate gyrus. Conclusions: These findings not only suggest that ketamine represents a viable candidate for the treatment of poststroke depression but also that ketamine's lasting antidepressant effects might be achieved through modulation of NMDAR/CaMKII-induced synaptic plasticity in key brain regions.


Assuntos
Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Depressão/tratamento farmacológico , Ketamina/farmacologia , Ketamina/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Acidente Vascular Cerebral/fisiopatologia , Sinapses/efeitos dos fármacos , Animais , Giro Denteado/fisiopatologia , Depressão/etiologia , Proteína 4 Homóloga a Disks-Large/genética , Infarto da Artéria Cerebral Média/complicações , Masculino , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Acidente Vascular Cerebral/complicações
11.
Toxicol Ind Health ; 37(6): 303-313, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33881370

RESUMO

Bisphenol A (BPA), a component of polycarbonate and epoxy resins, has been reported to induce learning and memory deficits. However, the mechanisms have not been fully elucidated. Growing evidence has suggested that N-methyl-d-aspartate receptors (NMDARs) are involved in cognitive impairments. In this study, BPA was administered to female Sprague-Dawley rats (six per dose group) at concentrations of 0 (control), 4, 40, and 400 µg/kg·body weight/day from gestation day 1 through lactation day 21. Spatial learning was evaluated using the Morris water maze on postnatal day 22. Expression levels of NMDARs were determined using real-time polymerase chain reaction and Western blot. The results showed that male offspring exposed to BPA exhibited increased latency in reaching the platform and reduced time in the target quadrant, and the number of crossing the platform was less, as compared with the control group. The mRNA and protein expression levels of NMDARs in the hippocampus were significantly downregulated when compared with the control group of male offspring. The data showed that maternal exposure to BPA at low dosage can cause cognitive deficits in male rat offspring, probably due to a decrease in NMDARs in the hippocampus.


Assuntos
Compostos Benzidrílicos/toxicidade , Transtornos da Memória/induzido quimicamente , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Receptores de Glutamato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Adulto , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Modelos Animais , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
12.
Inflammopharmacology ; 29(1): 183-192, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33026572

RESUMO

We had previously reported that neuroinflammation and memory impairment associated with intracerebroventricular streptozotocin (ICV STZ) injection in rats was due to glial activation and modulation of the N-methyl-D-aspartate (NMDA) receptor function. However, the exact role of the NMDA receptor and the molecules associated with downstream calcium ion signaling in STZ-induced astroglial activation is not known. Thus, in the present study, Memantine (an NMDA receptor antagonist) and Ibuprofen (an anti-inflammatory drug) were used as the pharmacological tool to investigate the molecular mechanisms involved in STZ-induced astroglial inflammation. We have studied the effect of STZ (100 µM) treatment for 24 h on NMDA receptor subunits (NR1, NR2A, and NR2B) expression and its associated calcium ion regulated molecules calcium/calmodulin-dependent protein kinase II subunit α (CaMKIIα), cyclic AMP-response element-binding (CREB) protein, Calpain, and Caspase 3. We have found a significant increase in the expression of NR1, NR2B, Calpain, and Caspase 3 expression, whereas a decrease in the level of NR2A, CaMKIIα, and CREB protein expression after 24 h of STZ treatment. These results indicate that STZ altered the NMDA receptor subunit expression and its downstream calcium (Ca2+) ion signaling molecules. We have also found that both Memantine (5 µM) and Ibuprofen (200 µM) significantly prevented the STZ-induced change in CaMKIIα, CREB, Calpain, and Caspase 3 expressions in C6 astrocytoma cells. Interestingly, only Memantine (and not Ibuprofen) was able to prevent the changes in NMDA receptor subunit expression in STZ-treated astrocytoma cells. STZ treatment also increased the level of glial fibrillary acidic protein (GFAP), tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), and decreased the level of interleukin-10 (IL-10), indicating inflammatory condition, which was restored by both Memantine and Ibuprofen. These results suggest that both Memantine and Ibuprofen exert anti-inflammatory effect against STZ-induced astroglial activation and neuroinflammation via modulation of NMDA receptor-associated downstream calcium signaling cascade. However, only Memantine (not Ibuprofen) was able to revert STZ-induced changes in NMDA receptor subunit expression.


Assuntos
Ibuprofeno/farmacologia , Inflamação/tratamento farmacológico , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ibuprofeno/administração & dosagem , Inflamação/patologia , Memantina/administração & dosagem , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Estreptozocina/toxicidade
13.
Pak J Pharm Sci ; 34(3): 909-914, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34602413

RESUMO

N-Methyl-D-aspartate receptor (NMDAR)-induced antioxidation is a significant cause of neuronal injury after ischemic stroke. In a previous work, we verified the neuroprotective roles of geniposide during tMCAO in vivo. However, it remains unknown whether geniposide ameliorates injury to hippocampal neurons during Ischemic Long Term Potentiation (iLTP) induction in vitro. After induction of cells oxygen-glucose deprivation or hydrogen peroxide, the protection of geniposide evaluated by MTT assay and electrophysiological tests. In this study, we suggested neuronal cell apoptosis was attenuated by geniposide. Furthermore, field excitatory postsynaptic potentials (fEPSCs) following postischemic LTP were assessed by electrophysiological tests. Finally, we determined that medium and high doses of geniposide attenuated oxidative stress insult and improved iLTP. Importantly, these effects were abolished by cotreatment with geniposide and the GluN2A antagonist NVP. In contrast, the GluN2B inhibitor ifenprodil failed to have an effect. In conclusion, we suggest for the first time that treatment with geniposide can attenuate postischemic LTP induction in a concentration-dependent manner. We infer that GluN2A-containing NMDARs are involved in the neuroprotection induced by geniposide treatment in ischemia.


Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/metabolismo , Iridoides/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/farmacologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Técnicas In Vitro , Infarto da Artéria Cerebral Média/fisiopatologia , Neurônios/metabolismo , Oxidantes/farmacologia , Células PC12 , Piperidinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
14.
J Neurosci ; 39(4): 627-650, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30459218

RESUMO

In the rod pathway of the mammalian retina, axon terminals of glutamatergic rod bipolar cells are presynaptic to AII and A17 amacrine cells in the inner plexiform layer. Recent evidence suggests that both amacrines express NMDA receptors, raising questions concerning molecular composition, localization, activation, and function of these receptors. Using dual patch-clamp recording from synaptically connected rod bipolar and AII or A17 amacrine cells in retinal slices from female rats, we found no evidence that NMDA receptors contribute to postsynaptic currents evoked in either amacrine. Instead, NMDA receptors on both amacrine cells were activated by ambient glutamate, and blocking glutamate uptake increased their level of activation. NMDA receptor activation also increased the frequency of GABAergic postsynaptic currents in rod bipolar cells, suggesting that NMDA receptors can drive release of GABA from A17 amacrines. A striking dichotomy was revealed by pharmacological and immunolabeling experiments, which found GluN2B-containing NMDA receptors on AII amacrines and GluN2A-containing NMDA receptors on A17 amacrines. Immunolabeling also revealed a clustered organization of NMDA receptors on both amacrines and a close spatial association between GluN2B subunits and connexin 36 on AII amacrines, suggesting that NMDA receptor modulation of gap junction coupling between these cells involves the GluN2B subunit. Using multiphoton Ca2+ imaging, we verified that activation of NMDA receptors evoked an increase of intracellular Ca2+ in dendrites of both amacrines. Our results suggest that AII and A17 amacrines express clustered, extrasynaptic NMDA receptors, with different and complementary subunits that are likely to contribute differentially to signal processing and plasticity.SIGNIFICANCE STATEMENT Glutamate is the most important excitatory neurotransmitter in the CNS, but not all glutamate receptors transmit fast excitatory signals at synapses. NMDA-type glutamate receptors act as voltage- and ligand-gated ion channels, with functional properties determined by their specific subunit composition. These receptors can be found at both synaptic and extrasynaptic sites on neurons, but the role of extrasynaptic NMDA receptors is unclear. Here, we demonstrate that retinal AII and A17 amacrine cells, postsynaptic partners at rod bipolar dyad synapses, express extrasynaptic (but not synaptic) NMDA receptors, with different and complementary GluN2 subunits. The localization of GluN2A-containing receptors to A17s and GluN2B-containing receptors to AIIs suggests a mechanism for differential modulation of excitability and signaling in this retinal microcircuit.


Assuntos
Células Amácrinas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Amácrinas/efeitos dos fármacos , Células Amácrinas/ultraestrutura , Animais , Cálcio/metabolismo , Conexinas/metabolismo , Dendritos/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Junções Comunicantes/efeitos dos fármacos , Técnicas In Vitro , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Células Bipolares da Retina/efeitos dos fármacos , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Proteína delta-2 de Junções Comunicantes
15.
J Neurosci ; 39(5): 929-943, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30446531

RESUMO

Alcohol abuse leads to aberrant forms of emotionally salient memory, i.e., limbic memory, that promote escalated alcohol consumption and relapse. Accordingly, activity-dependent structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing chronic alcohol consumption. Here we show that alcohol-dependent male rats fail to perform an emotional-learning task during abstinence but recover their functioning by l-3,4-dihydroxyphenylalanin (l-DOPA) administration during early withdrawal. l-DOPA also reverses the selective loss of dendritic "long thin" spines observed in medium spiny neurons of the nucleus accumbens (NAc) shell of alcohol-dependent rats during abstinence, as well as the reduction in tyrosine hydroxylase immunostaining and postsynaptic density-95-positive elements. Patch-clamp experiments in NAc slices reveal that both in vivo systemic l-DOPA administration and in vitro exposure to dopamine can restore the loss of long-term depression (LTD) formation, counteract the reduction in NMDAR-mediated synaptic currents and rectify the altered NMDAR/AMPAR ratio observed in alcohol-withdrawn rats. Further, in vivo microdialysis experiments show that blunted dopaminergic signaling is revived after l-DOPA treatment during early withdrawal. These results suggest a key role of an efficient dopamine signaling for maintaining, and restore, neural trophism, NMDA-dependent LTD, and ultimately optimal learning.SIGNIFICANCE STATEMENT Blunted dopamine signaling and altered glutamate connectivity in the nucleus accumbens represent the neuroanatomical basis for the impairment in aversive limbic memory observed during withdrawal in alcohol dependence. Supplying l-DOPA during withdrawal re-establishes synaptic morphology and functional neuroadaptations, suggesting a complete recovery of nucleus accumbens glutamatergic synaptic plasticity when dopamine is revived. Importantly, restoring dopamine transmission allows those synapses to encode emotionally relevant information and rescue flexibility in the neuronal circuits that process limbic memory formation. Under these conditions, drugs capable of selectively boosting the dopaminergic function during the "fluid" and still responsive state of the early withdrawn maladaptive synapses may help in the treatment of alcohol addiction.


Assuntos
Alcoolismo/psicologia , Espinhas Dendríticas/efeitos dos fármacos , Dopamina/farmacologia , Sistema Límbico/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Núcleo Accumbens/patologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Abstinência de Álcool/psicologia , Animais , Espinhas Dendríticas/patologia , Espinhas Dendríticas/ultraestrutura , Dopaminérgicos/farmacologia , Levodopa/farmacologia , Masculino , Transtornos da Memória/psicologia , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos
16.
J Neurochem ; 152(6): 627-649, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31693759

RESUMO

As a major metabolite of kynurenine in the oxidative metabolism of tryptophan, kynurenic acid is of considerable biological and clinical importance as an endogenous antagonist of glutamate in the central nervous system. It is most active as an antagonist at receptors sensitive to N-methyl-D-aspartate (NMDA) which regulate neuronal excitability and plasticity, brain development and behaviour. It is also thought to play a causative role in hypo-glutamatergic conditions such as schizophrenia, and a protective role in several neurodegenerative disorders, notably Huntington's disease. An additional hypothesis, that kynurenic acid could block nicotinic receptors for acetylcholine in the central nervous system has been proposed as an alternative mechanism of action of kynurenate. However, the evidence for this alternative mechanism is highly controversial, partly because at least eight earlier studies concluded that kynurenic acid blocked NMDA receptors but not nicotinic receptors and five subsequent, independent studies designed to repeat the results have failed to do so. Many studies considered to support the alternative 'nicotinic' hypothesis have been based on the use of analogs of kynurenate such as 7-chloro-kynurenic acid, or putatively nicotinic modulators such as galantamine, but a detailed analysis of the pharmacology of these compounds suggests that the results have often been misinterpreted, especially since the pharmacology of galantamine itself has been disputed. This review examines the evidence in detail, with the conclusion that there is no confirmed, reliable evidence for an antagonist activity of kynurenic acid at nicotinic receptors. Therefore, since there is overwhelming evidence for kynurenate acting at ionotropic glutamate receptors, especially NMDAR glutamate and glycine sites, with some activity at GPR35 sites and Aryl Hydrocarbon Receptors, results with kynurenic acid should be interpreted only in terms of these confirmed sites of action.


Assuntos
Ácido Cinurênico/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/fisiologia , Animais , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Química Encefálica , Galantamina/farmacologia , Humanos , Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/metabolismo , Antagonistas Nicotínicos , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Reprodutibilidade dos Testes
17.
J Neurochem ; 152(5): 523-541, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31376158

RESUMO

N-methyl-d-aspartate receptors (NMDARs) mediate both physiological and pathophysiological processes, although selective ligands lack broad clinical utility. NMDARs are composed of multiple subunits, but N-methyl-d-aspartate receptor subunit 2 (GluN2) is predominately responsible for functional heterogeneity. Specifically, the GluN2A- and GluN2B-containing subtypes are enriched in adult hippocampus and cortex and impact neuronal communication via dynamic trafficking into and out of the synapse. We sought to understand if ((2S, 3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3,4]octan-2-yl) butanamide (NYX-2925), a novel NMDAR modulator, alters synaptic levels of GluN2A- or GluN2B-containing NMDARs. Low-picomolar NYX-2925 increased GluN2B colocalization with the excitatory post-synaptic marker post-synaptic density protein 95 (PSD-95) in rat primary hippocampal neurons within 30 min. Twenty-four hours following oral administration, 1 mg/kg NYX-2925 increased GluN2B in PSD-95-associated complexes ex vivo, and low-picomolar NYX-2925 regulated numerous trafficking pathways in vitro. Because the NYX-2925 concentration that increases synaptic GluN2B was markedly below that which enhances long-term potentiation (mid-nanomolar), we sought to elucidate the basis of this effect. Although NMDAR-dependent, NYX-2925-mediated colocalization of GluN2B with PSD-95 occurred independent of ion flux, as colocalization increased in the presence of either the NMDAR channel blocker (5R,10S)-(-)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate or glycine site antagonist 7-chlorokynurenic acid. Moreover, while mid-nanomolar NYX-2925 concentrations, which do not increase synaptic GluN2B, enhanced calcium transients, functional plasticity was only enhanced by picomolar NYX-2925. Thus, NYX-2925 concentrations that increase synaptic GluN2B facilitated the chemical long-term potentiation induced insertion of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunit levels. Basal (unstimulated by chemical long-term potentiation) levels of synaptic GluA1 were only increased by mid-nanomolar NYX-2925. These data suggest that NYX-2925 facilitates homeostatic plasticity by initially increasing synaptic GluN2B via metabotropic-like NMDAR signaling. Cover Image for this issue: doi: 10.1111/jnc.14735.


Assuntos
Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Compostos de Espiro/farmacologia , Sinapses/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos
18.
Mol Psychiatry ; 24(12): 1816-1832, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30894661

RESUMO

Efforts to develop efficacious antidepressant agents with novel mechanisms have been largely unsuccessful since the 1950's until the discovery of ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid and sustained antidepressant actions even in treatment-resistant patients. This finding has ushered in a new era for the development of novel rapid-acting antidepressants that act at the NMDA receptor complex, but without dissociative and psychotomimetic side effects of ketamine. Here, we review the current state of rapid-acting antidepressant drug development, including NMDA channel blockers, glycine site agents, and allosteric modulators, as well as ketamine stereoisomers and metabolites. In addition, we focus on the neurobiological mechanisms underlying the actions of these diverse agents and discuss evidence of convergent mechanisms including increased brain-derived neurotrophic factor signaling, increased synthesis of synaptic proteins, and most notably increased GluR1 and synaptic connectivity in the medial prefrontal cortex. These convergent mechanisms provide insight for potential additional novel targets for drug development (e.g., agents that increase synaptic protein synthesis and plasticity). Importantly, the convergent effects on synapse formation and plasticity also reverse the well-documented neuronal and synaptic deficits associated with stress and depression, and thereby target the underlying pathophysiology of major depressive disorder.


Assuntos
Antidepressivos/metabolismo , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Ácido Glutâmico/metabolismo , Humanos , Ketamina/farmacologia , Neurobiologia/métodos , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
19.
Mult Scler ; 26(3): 304-311, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30730244

RESUMO

BACKGROUND: Synaptic plasticity reserve correlates with clinical recovery after a relapse in relapsing-remitting forms of multiple sclerosis (MS) and is significantly compromised in patients with progressive forms of MS. These findings suggest that progression of disability in MS is linked to reduced synaptic plasticity reserve. D-Aspartate, an endogenous aminoacid approved for the use in humans as a dietary supplement, enhances synaptic plasticity in mice. OBJECTIVE: To test whether D-Aspartate oral intake increases synaptic plasticity reserve in progressive MS patients. METHODS: A total of 31 patients affected by a progressive form of MS received either single oral daily doses of D-Aspartate 2660 mg or placebo for 4 weeks. Synaptic plasticity reserve and trans-synaptic cortical excitability were measured through transcranial magnetic stimulation (TMS) protocols before and after D-Aspartate. RESULTS: Both TMS-induced long-term potentiation (LTP), intracortical facilitation (ICF) and short-interval ICF increased after 2 and 4 weeks of D-Aspartate but not after placebo, suggesting an enhancement of synaptic plasticity reserve and increased trans-synaptic glutamatergic transmission. CONCLUSION: Daily oral D-Aspartate 2660 mg for 4 weeks enhances synaptic plasticity reserve in patients with progressive MS, opening the path to further studies assessing its clinical effects on disability progression.


Assuntos
Ácido D-Aspártico/farmacologia , Potencial Evocado Motor/efeitos dos fármacos , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Adulto , Ácido D-Aspártico/administração & dosagem , Feminino , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Estimulação Magnética Transcraniana
20.
J Exp Biol ; 223(Pt 4)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31988165

RESUMO

The physiological roles of corticotropin-releasing factor (CRF) have recently been extended to cytoprotection. Here, to determine whether CRF is neuroprotective in fish, the effects of CRF against high environmental ammonia (HEA)-mediated neurogenic impairment and cell death were investigated in zebrafish. In vivo, exposure of 1 day post-fertilization (dpf) embryos to HEA only reduced the expression of the determined neuron marker neurod1 In contrast, in 5 dpf larvae, HEA increased the expression of nes and sox2, neural progenitor cell markers, and reduced the expression of neurog1, gfap and mbpa, proneuronal cell, radial glia and oligodendrocyte markers, respectively, and neurod1 The N-methyl-d-aspartate (NMDA) receptor inhibitor MK801 rescued the HEA-induced reduction in neurod1 in 5 dpf larvae but did not affect the HEA-induced transcriptional changes in other neural cell types, suggesting that hyperactivation of NMDA receptors specifically contributes to the deleterious effects of HEA in determined neurons. As observed in vivo, HEA exposure elicited marked changes in the expression of cell type-specific markers in isolated 5 dpf larval brains. The addition of CRF reversed the in vitro effects of HEA on neurod1 expression and prevented an HEA-induced increase in cell death. Finally, the protective effects of CRF against HEA-mediated neurogenic impairment and cell death were prevented by the CRF type 1 receptor selective antagonist antalarmin. Together, these results provide novel evidence that HEA has developmental time- and cell type-specific neurotoxic effects, that NMDA receptor hyperactivation contributes to HEA-mediated impairment of determined neurons, and that CRF has neuroprotective properties in the larval zebrafish brain.


Assuntos
Amônia/toxicidade , Hormônio Liberador da Corticotropina/farmacologia , Peixe-Zebra/embriologia , Animais , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Larva/efeitos dos fármacos , Larva/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptores de Hormônio Liberador da Corticotropina/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA