Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.290
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38527808

RESUMO

Throughout life, the cerebellum plays a central role in the coordination and optimization of movements, using cellular plasticity to adapt a range of behaviors. Whether these plasticity processes establish a fixed setpoint during development, or continuously adjust behaviors throughout life, is currently unclear. Here, by spatiotemporally manipulating the activity of protein phosphatase 2B (PP2B), an enzyme critical for cerebellar plasticity in male and female mice, we examined the consequences of disrupted plasticity on the performance and adaptation of the vestibulo-ocular reflex (VOR). We find that, in contrast to Purkinje cell (PC)-specific deletion starting early postnatally, acute pharmacological as well as adult-onset genetic deletion of PP2B affects all forms of VOR adaptation but not the level of VOR itself. Next, we show that PC-specific genetic deletion of PP2B in juvenile mice leads to a progressive loss of the protein PP2B and a concurrent change in the VOR, in addition to the loss of adaptive abilities. Finally, re-expressing PP2B in adult mice that lack PP2B expression from early development rescues VOR adaptation but does not affect the performance of the reflex. Together, our results indicate that chronic or acute, genetic, or pharmacological block of PP2B disrupts the adaptation of the VOR. In contrast, only the absence of plasticity during cerebellar development affects the setpoint of VOR, an effect that cannot be corrected after maturation of the cerebellum. These findings suggest that PP2B-dependent cerebellar plasticity is required during a specific period to achieve the correct setpoint of the VOR.


Assuntos
Cerebelo , Plasticidade Neuronal , Reflexo Vestíbulo-Ocular , Animais , Reflexo Vestíbulo-Ocular/fisiologia , Plasticidade Neuronal/fisiologia , Camundongos , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiologia , Masculino , Feminino , Células de Purkinje/fisiologia , Adaptação Fisiológica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
PLoS Biol ; 20(9): e3001798, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103550

RESUMO

Sensory pathways provide complex and multifaceted information to the brain. Recent advances have created new opportunities for applying our understanding of the brain to sensory prothesis development. Yet complex sensor physiology, limited numbers of electrodes, and nonspecific stimulation have proven to be a challenge for many sensory systems. In contrast, the vestibular system is uniquely suited for prosthesis development. Its peripheral anatomy allows site-specific stimulation of 3 separate sensory organs that encode distinct directions of head motion. Accordingly, here, we investigated whether implementing natural encoding strategies improves vestibular prosthesis performance. The eye movements produced by the vestibulo-ocular reflex (VOR), which plays an essential role in maintaining visual stability, were measured to quantify performance. Overall, implementing the natural tuning dynamics of vestibular afferents produced more temporally accurate VOR eye movements. Exploration of the parameter space further revealed that more dynamic tunings were not beneficial due to saturation and unnatural phase advances. Trends were comparable for stimulation encoding virtual versus physical head rotations, with gains enhanced in the latter case. Finally, using computational methods, we found that the same simple model explained the eye movements evoked by sinusoidal and transient stimulation and that a stimulation efficacy substantially less than 100% could account for our results. Taken together, our results establish that prosthesis encodings that incorporate naturalistic afferent dynamics and account for activation efficacy are well suited for restoration of gaze stability. More generally, these results emphasize the benefits of leveraging the brain's endogenous coding strategies in prosthesis development to improve functional outcomes.


Assuntos
Membros Artificiais , Vestíbulo do Labirinto , Animais , Movimentos Oculares , Macaca mulatta , Reflexo Vestíbulo-Ocular/fisiologia , Vestíbulo do Labirinto/fisiologia
3.
J Neurosci ; 43(9): 1530-1539, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669887

RESUMO

The velocity-storage circuit participates in the vestibulopostural reflex, but its role in the postural reflex requires further elucidation. The velocity-storage circuit differentiates gravitoinertial information into gravitational and inertial cues using rotational cues. This implies that a false rotational cue can cause an erroneous estimation of gravity and inertial cues. We hypothesized the velocity-storage circuit is a common gateway for all vestibular reflex pathways and tested that hypothesis by measuring the postural and perceptual responses from a false inertial cue estimated in the velocity-storage circuit. Twenty healthy human participants (40.5 ± 8.2 years old, 6 men) underwent two different sessions of earth-vertical axis rotations at 120°/s for 60 s. During each session, the participants were rotated clockwise and then counterclockwise with two different starting head positions (head-down and head-up). During the first (control) session, the participants kept a steady head position at the end of rotation. During the second (test) session, the participants changed their head position at the end of rotation, from head-down to head-up or vice versa. The head position and inertial motion perception at the end of rotation were aligned with the inertia direction anticipated by the velocity-storage model. The participants showed a significant correlation between postural and perceptual responses. The velocity-storage circuit appears to be a shared neural integrator for the vestibulopostural reflex and vestibular perception. Because the postural responses depended on the inertial direction, the postural instability in vestibular disorders may be the consequence of the vestibulopostural reflex responding to centrally estimated false vestibular cues.SIGNIFICANCE STATEMENT The velocity-storage circuit appears to participate in the vestibulopostural reflex, which stabilizes the head and body position in space. However, it is still unclear whether the velocity-storage circuit for the postural reflex is in common with that involved in eye movement and perception. We evaluated the postural and perceptual responses to a false inertial cue estimated by the velocity-storage circuit. The postural and perceptual responses were consistent with the inertia direction predicted in the velocity-storage model and were correlated closely with each other. These results show that the velocity-storage circuit is a shared neural integrator for vestibular-driven responses and suggest that the vestibulopostural response to a false vestibular cue is the pathomechanism of postural instability clinically observed in vestibular disorders.


Assuntos
Sinais (Psicologia) , Percepção de Movimento , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Movimentos Oculares , Postura/fisiologia , Reflexo , Percepção de Movimento/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia
4.
J Neurosci ; 43(4): 601-612, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36639897

RESUMO

Procedural memories formed in the cerebellum in response to motor errors depend on changes to Purkinje cell (PC) spiking patterns that correct movement when the erroneous context is repeated. Because molecular layer interneurons (MLIs) inhibit PCs, learning-induced changes to MLI output may participate in reshaping PC spiking patterns. However, it remains unclear whether error-driven learning alters MLI activity and whether such changes are necessary for the memory engram. We addressed this knowledge gap by measuring and manipulating MLI activity in the flocculus of both sexes of mice before and after vestibulo-ocular reflex (VOR) adaptation. We found that MLIs are activated during vestibular stimuli and that their population response exhibits a phase shift after the instantiation of gain-increase VOR adaptation, a type of error-driven learning thought to require climbing-fiber-mediated instructive signaling. Although acute optogenetic suppression of MLI activity did not affect baseline VOR performance, it negated the expression of gain-increase learning, demonstrating a specific role of MLI activity changes in motor memory expression. This effect was transitory; after a multiday consolidation period, the expression of VOR gain-increase learning was no longer sensitive to MLI activity suppression. Together, our results indicate that error-driven alteration of MLI activity is necessary for labile, climbing-fiber-induced motor memory expression.SIGNIFICANCE STATEMENT In the cerebellum, motor learning induces an associative memory of the sensorimotor context of an erroneous movement that, when recalled, results in a new pattern of output that improves subsequent trials of performance. Our study shows that error-driven motor learning induces changes to the activity pattern of cerebellar molecular layer interneurons (MLIs) and that this new pattern of activity is required to express the corrective motor memory.


Assuntos
Cerebelo , Aprendizagem , Feminino , Masculino , Camundongos , Animais , Cerebelo/fisiologia , Aprendizagem/fisiologia , Células de Purkinje/fisiologia , Interneurônios/fisiologia , Movimento , Reflexo Vestíbulo-Ocular/fisiologia
5.
J Neurophysiol ; 131(1): 16-27, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964728

RESUMO

Retinal image slip during head rotation drives motor learning in the rotational vestibulo-ocular reflex (VOR) and forms the basis of gaze-stability exercises that treat vestibular dysfunction. Clinical exercises, however, are unengaging, cannot easily be titrated to the level of impairment, and provide neither direct feedback nor tracking of the patient's adherence, performance, and progress. To address this, we have developed a custom application for VOR training based on an interactive computer game. In this study, we tested the ability of this game to induce VOR learning in individuals with normal vestibular function, and we compared the efficacy of single-step and incremental learning protocols. Eighteen participants played the game twice on different days. All participants tolerated the game and were able to complete both sessions. The game scenario incorporated a series of brief head rotations, similar to active head impulses, that were paired with a dynamic acuity task and with a visual-vestibular mismatch (VVM) intended to increase VOR gain (single-step: 300 successful trials at ×1.5 viewing; incremental: 100 trials each of ×1.13, ×1.33, and ×1.5 viewing). Overall, VOR gain increased by 15 ± 4.7% (mean ± 95% CI, P < 0.001). Gains increased similarly for active and passive head rotations, and, contrary to our hypothesis, there was little effect of the learning strategy. This study shows that an interactive computer game provides robust VOR training and has the potential to deliver effective, engaging, and trackable gaze-stability exercises to patients with a range of vestibular dysfunctions.NEW & NOTEWORTHY This study demonstrates the feasibility and efficacy of a customized computer game to induce motor learning in the high-frequency rotational vestibulo-ocular reflex. It provides a physiological basis for the deployment of this technology to clinical vestibular rehabilitation.


Assuntos
Reflexo Vestíbulo-Ocular , Vestíbulo do Labirinto , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Adaptação Fisiológica/fisiologia , Terapia por Exercício , Movimentos da Cabeça/fisiologia
6.
J Neurophysiol ; 131(6): 1143-1155, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38658179

RESUMO

Although perceptual thresholds have been widely studied, vestibuloocular reflex (VOR) thresholds have received less attention, so the relationship between VOR and perceptual thresholds remains unclear. We compared the frequency dependence of human VOR thresholds to human perceptual thresholds for yaw head rotation in both upright ("yaw rotation") and supine ("yaw tilt") positions, using the same human subjects and motion device. VOR thresholds were generally a little smaller than perceptual thresholds. We also found that horizontal VOR thresholds for both yaw rotation about an Earth-vertical axis and yaw tilt (yaw rotation about an Earth-horizontal axis) were relatively constant across four frequencies (0.2, 0.5, 1, and 2 Hz), with little difference between yaw rotation and yaw tilt VOR thresholds. For yaw tilt stimuli, perceptual thresholds were slightly lower at the lowest frequency and nearly constant at all other (higher) frequencies. However, for yaw rotation, perceptual thresholds increased significantly at the lowest frequency (0.2 Hz). We conclude 1) that VOR thresholds were relatively constant across frequency for both yaw rotation and yaw tilt, 2) that the known contributions of velocity storage to the VOR likely yielded these VOR thresholds that were similar for yaw rotation and yaw tilt for all frequencies tested, and 3) that the integration of otolith and horizontal canal signals during yaw tilt when supine contributes to stable perceptual thresholds, especially relative to the low-frequency perceptual thresholds recorded during yaw rotation.NEW & NOTEWORTHY We describe for the first time that human VOR thresholds differ from human forced-choice perceptual thresholds, with the difference especially evident at frequencies below 0.5 Hz. We also report that VOR thresholds are relatively constant across frequency for both yaw rotation and yaw tilt. These findings are consistent with the idea that high-pass filtering in cortical pathways impacts cognitive decision-making.


Assuntos
Reflexo Vestíbulo-Ocular , Limiar Sensorial , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Masculino , Feminino , Adulto , Rotação , Limiar Sensorial/fisiologia , Movimentos da Cabeça/fisiologia , Adulto Jovem
7.
Cerebellum ; 23(1): 136-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680705

RESUMO

Long-term deficits of the vestibulo-ocular reflex (VOR) elicited by head rotation can be partially compensated by catch-up saccades (CuS). These saccades are initially visually guided, but their latency can greatly decrease resulting in short latency CuS (SL-CuS). It is still unclear what triggers these CuS and what are the underlying neural circuits. In this study, we aimed at evaluating the impact of cerebellar pathology on CuS by comparing their characteristics between two groups of patients with bilateral vestibular hypofunction, with or without additional cerebellar dysfunction. We recruited 12 patients with both bilateral vestibular hypofunction and cerebellar dysfunction (BVH-CD group) and 12 patients with isolated bilateral vestibular hypofunction (BVH group). Both groups were matched for age and residual VOR gain. Subjects underwent video head impulse test recording of the horizontal semicircular canals responses as well as recording of visually guided saccades in the step, gap, and overlap paradigms. Latency and gain of the different saccades were calculated. The mean age for BVH-CD and BVH was, respectively, 67.8 and 67.2 years, and the mean residual VOR gain was, respectively, 0.24 and 0.26. The mean latency of the first catch-up saccade was significantly longer for the BVH-CD group than that for the BVH group (204 ms vs 145 ms, p < 0.05). There was no significant difference in the latency of visually guided saccades between the two groups, for none of the three paradigms. The gain of covert saccades tended to be lower in the BVH-CD group than in BVH group (t test; p = 0.06). The mean gain of the 12° or 20° visually guided saccades were not different in both groups. Our results suggest that the cerebellum plays a role in the generation of compensatory SL-CuS observed in BVH patients.


Assuntos
Doenças Cerebelares , Movimentos Sacádicos , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Teste do Impulso da Cabeça/métodos , Cerebelo
8.
Cerebellum ; 23(4): 1369-1376, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38117451

RESUMO

A clinical scale fully dedicated to evaluating ocular motor abnormalities is required for now. We investigated the utility of a recently developed Scale for Ocular motor Disorders in Ataxia (SODA) in patients with multiple system atrophy (MSA). We prospectively assessed SODA in consecutive patients with MSA between August 2021 and August 2023 at the Korea University Medical Center. The results of the clinical exam-based SODA were compared with those measured using video-oculography (VOG-guided SODA). We also compared the findings with other established clinical scales targeting patients with MSA, including the Unified Multiple System Atrophy Rating Scale (UMSARS) I-II, Movement Disorder Society-Unified Parkinson's Disease Rating Scale motor part (UPDRS-III), Scale for Assessment of Rating of Ataxia (SARA), Composite Autonomic Symptom Score-31 (COMPASS-31), and Composite Autonomic Severity Score (CASS). Twenty patients were enrolled in our study (17 with cerebellar-type MSA and three with Parkinson-type MSA). Scores ranged from 1 to 14 (median [interquartile range (IQR)] = 8 [5-10]). Among the subscales, saccades had a median score of 2.5 (IQR = 1-3), followed by ocular pursuit (1 [0-1]), nystagmus (1 [0-2]), saccadic intrusions (1 [0-1]), vestibulo-ocular reflex (VOR) (0.5 [0-1]), ocular alignment (0 [0-1]), and VOR cancellation (1 [0-1]). The clinical-exam-based SODA (p = 0.020) and VOG-guided SODA (p = 0.034) positively correlated with disease duration. No correlation was found between clinical exam-based SODA and other scales. Skew deviation, gaze-evoked nystagmus, VOR cancellation, and smooth pursuit had the highest precision among the items. Ocular misalignment and spontaneous and positional nystagmus were frequently false positive and were poorly detected with clinical exam-based SODA. Six patients with repeated evaluation exhibited higher scores, along with deterioration documented on other clinical scales. The SODA can reliably predict neurodegeneration as an additional clinical surrogate in MSA.


Assuntos
Ataxia , Medições dos Movimentos Oculares , Atrofia de Múltiplos Sistemas , Transtornos da Motilidade Ocular , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ataxia/complicações , Medições dos Movimentos Oculares/normas , Reações Falso-Positivas , Seguimentos , Atrofia de Múltiplos Sistemas/complicações , Nistagmo Fisiológico , Transtornos da Motilidade Ocular/complicações , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/fisiopatologia , Acompanhamento Ocular Uniforme , Reflexo Vestíbulo-Ocular , Reprodutibilidade dos Testes , Movimentos Sacádicos , Sensibilidade e Especificidade
9.
Exp Brain Res ; 242(6): 1469-1479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695940

RESUMO

Ocular torsion and vertical divergence reflect the brain's sensorimotor integration of motion through the vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR) to roll rotations. Torsion and vergence however express different response patterns depending on several motion variables, but research on their temporal dynamics remains limited. This study investigated the onset times of ocular torsion (OT) and vertical vergence (VV) during visual, vestibular, and visuovestibular motion, as well as their relative decay rates following prolonged optokinetic stimulations. Temporal characteristics were retrieved from three separate investigations where the level of visual clutter and acceleration were controlled. Video eye-tracking was used to retrieve the eye-movement parameters from a total of 41 healthy participants across all trials. Ocular torsion consistently initiated earlier than vertical vergence, particularly evident under intensified visual information density, and higher clutter levels were associated with more balanced decay rates. Additionally, stimulation modality and accelerations affected the onsets of both eye movements, with visuovestibular motion triggering earlier responses compared to vestibular motion, and increased accelerations leading to earlier onsets for both movements. The present study showed that joint visuovestibular responses produced more rapid onsets, indicating a synergetic sensorimotor process. It also showed that visual content acted as a fusional force during the decay period, and imposed greater influence over the torsional onset compared to vergence. Acceleration, by contrast, did not affect the temporal relationship between the two eye movements. Altogether, these findings provide insights into the sensorimotor integration of the vestibulo-ocular and optokinetic reflex arcs.


Assuntos
Reflexo Vestíbulo-Ocular , Humanos , Adulto , Masculino , Feminino , Reflexo Vestíbulo-Ocular/fisiologia , Adulto Jovem , Rotação , Movimentos Oculares/fisiologia , Vestíbulo do Labirinto/fisiologia , Percepção de Movimento/fisiologia , Convergência Ocular/fisiologia
10.
Exp Brain Res ; 242(7): 1797-1806, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839617

RESUMO

People with multiple sclerosis (PwMS) who report dizziness often have gaze instability due to vestibulo-ocular reflex (VOR) deficiencies and compensatory saccade (CS) abnormalities. Herein, we aimed to describe and compare the gaze stabilization mechanisms for yaw and pitch head movements in PwMS. Thirty-seven PwMS (27 female, mean ± SD age = 53.4 ± 12.4 years old, median [IQR] Expanded Disability Status Scale Score = 3.5, [1.0]. We analyzed video head impulse test results for VOR gain, CS frequency, CS latency, gaze position error (GPE) at impulse end, and GPE at 400 ms after impulse start. Discrepancies were found for median [IQR] VOR gain in yaw (0.92 [0.14]) versus pitch-up (0.71 [0.44], p < 0.001) and pitch-down (0.81 [0.44], p = 0.014]), CS latency in yaw (258.13 [76.8]) ms versus pitch-up (208.78 [65.97]) ms, p = 0.001] and pitch-down (132.17 [97.56] ms, p = 0.006), GPE at impulse end in yaw (1.15 [1.85] degs versus pitch-up (2.71 [3.9] degs, p < 0.001), and GPE at 400 ms in yaw (-0.25 [0.98] degs) versus pitch-up (1.53 [1.07] degs, p < 0.001) and pitch-down (1.12 [1.82] degs, p = 0.001). Compared with yaw (0.91 [0.75]), CS frequency was similar for pitch-up (1.03 [0.93], p = 0.999) but lower for pitch-down (0.65 [0.64], p = 0.023). GPE at 400 ms was similar for yaw and pitch-down (1.88 [2.76] degs, p = 0.400). We postulate that MS may have preferentially damaged the vertical VOR and saccade pathways in this cohort.


Assuntos
Esclerose Múltipla , Reflexo Vestíbulo-Ocular , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/complicações , Adulto , Reflexo Vestíbulo-Ocular/fisiologia , Idoso , Fixação Ocular/fisiologia , Movimentos da Cabeça/fisiologia , Movimentos Sacádicos/fisiologia , Teste do Impulso da Cabeça/métodos
11.
Exp Brain Res ; 242(1): 99-108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966504

RESUMO

Vestibular nuclei and cerebellar function comprise vestibular neural networks that control vestibular-related responses. However, the vestibular-related responses to simultaneous stimulation of these regions are unclear. This study aimed to examine whether the combination of noisy galvanic vestibular stimulation (nGVS) and cerebellar transcranial direct current stimulation (ctDCS) using a complex transcranial electrical stimulation device alters vestibular-dominant standing stability and vestibulo-ocular reflex (VOR) function. The center of foot pressure (COP) sway and VOR of participants (28 healthy, young adults) were assessed under four conditions of transcranial electrical stimulation using nGVS and ctDCS. The COP was calculated with the participant standing on a soft-foam surface with eyes closed using a force plate to evaluate body sway. VOR measurements were collected via passive head movements and fixation on a target projected onto the front wall using a video head impulse test (vHIT). VOR gain was calculated in six directions using a semicircular canal structure based on the ratio of eye movement to head movement. The nGVS + ctDCS and nGVS + sham ctDCS conditions decreased COP sway compared to the sham nGVS + ctDCS and sham nGVS + sham ctDCS conditions. No significant differences were observed in the main effect of stimulation or the interaction of stimulation and direction on the vHIT parameters. The results of this study suggest that postural stability may be independently affected by nGVS. Our findings contribute to the basic neurological foundation for the clinical application of neurorehabilitation using transcranial electrical stimulation of the vestibular system.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Vestíbulo do Labirinto , Adulto Jovem , Humanos , Equilíbrio Postural/fisiologia , Vestíbulo do Labirinto/fisiologia , Canais Semicirculares/fisiologia , Movimentos Oculares , Reflexo Vestíbulo-Ocular/fisiologia , Estimulação Elétrica
12.
Bioelectromagnetics ; 45(4): 171-183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38348647

RESUMO

In recent years, an increasing number of studies have discussed the mechanisms of vestibular activation in strong magnetic field settings such as occur in a magnetic resonance imaging scanner environment. Amid the different hypotheses, the Lorentz force explanation currently stands out as the most plausible mechanism, as evidenced by activation of the vestibulo-ocular reflex. Other hypotheses have largely been discarded. Nonetheless, both human data and computational modeling suggest that electromagnetic induction could be a valid mechanism which may coexist alongside the Lorentz force. To further investigate the induction hypothesis, we provide, herein, a first of its kind dosimetric analysis to estimate the induced electric fields at the vestibular system and compare them with what galvanic vestibular stimulation would generate. We found that electric fields strengths from induction match galvanic vestibular stimulation strengths generating vestibular responses. This review examines the evidence in support of electromagnetic induction of vestibular responses, and whether movement-induced time-varying magnetic fields should be further considered and investigated.


Assuntos
Reflexo Vestíbulo-Ocular , Vestíbulo do Labirinto , Humanos , Estimulação Elétrica/métodos , Reflexo Vestíbulo-Ocular/fisiologia , Vestíbulo do Labirinto/fisiologia , Fenômenos Eletromagnéticos , Imageamento por Ressonância Magnética
13.
Dyslexia ; 30(4): e1782, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39172020

RESUMO

Different studies have tried to establish a relationship between dyslexia and the vestibular system function. Subjective Visual Vertical/Horizontal (SVV and SVH) and Video Head Impulse Test (VHIT) are useful for studying the vestibular system and can be easily performed in children. Our aim was to evaluate the vestibular function in dyslexic children by SVV/SVH and VHIT. We enrolled 18 dyslexic children (10M/8F; mean age 10.7 ± 2.3 years; range 7-14 years) and 18 age-matched children with typical development of learning abilities. All children performed VHIT, SVV and SVH. We found normal gain and symmetry of vestibulo-ocular-reflex both in dyslexic and typically developing children. Fifteen out of 18 dyslexic children (83.3%) showed a difference of at least one amongst SVV or SVH. The mean value of SVV was 2.3° and the mean value of SVH was 2.6°. Statistical analysis showed a significant difference between typically developing and dyslexic children for both SVV and SVH. We confirm a relationship between dyslexia and the alteration of SVV and SVH. Our results could be related to the pathogenetic hypothesis of a visual processing impairment related to a dysfunction of the magnocellular pathway or to a general deficit related to a multimodal cortical network.


Assuntos
Dislexia , Teste do Impulso da Cabeça , Humanos , Dislexia/fisiopatologia , Criança , Feminino , Masculino , Adolescente , Reflexo Vestíbulo-Ocular/fisiologia
14.
Clin J Sport Med ; 34(5): 417-424, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329287

RESUMO

OBJECTIVE: Pediatric athletes with concussion present with a variety of impairments on clinical assessment and require individualized treatment. The Buffalo Concussion Physical Examination is a brief, pertinent clinical assessment for individuals with concussion. The purpose of this study was to identify physical examination subtypes in pediatric athletes with concussion within 2 weeks of injury that are relevant to diagnosis and treatment. DESIGN: Secondary analysis of a published cohort study and clinician consensus. SETTING: Three university-affiliated sports medicine centers. PARTICIPANTS: Two hundred seventy children (14.9 ± 1.9 years). INDEPENDENT VARIABLES: Orthostatic intolerance, horizontal and vertical saccades, smooth pursuits, vestibulo-ocular reflex, near-point convergence, complex tandem gait, neck range of motion, neck tenderness, and neck spasm. MAIN OUTCOME MEASURES: Correlations between independent variables were calculated, and network graphs were made. k -means and hierarchical clustering were used to identify clusters of impairments. Optimal number of clusters was assessed. Results were reviewed by experienced clinicians and consensus was reached on proposed subtypes. RESULTS: Physical examination clusters overlapped with each other, and no optimal number of clusters was identified. Clinician consensus suggested 3 possible subtypes: (1) visio-vestibular (horizontal and vertical saccades, smooth pursuits, and vestibulo-ocular reflex), (2) cervicogenic (neck range of motion and spasm), and (3) autonomic/balance (orthostatic intolerance and complex tandem gait). CONCLUSIONS: Although we identified 3 physical examination subtypes, it seemed that physical examination findings alone are not enough to define subtypes that are both statistically supported and clinically relevant, likely because they do not include symptoms, assessment of mood or cognitive problems, or graded exertion testing.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Exame Físico , Humanos , Concussão Encefálica/diagnóstico , Adolescente , Masculino , Feminino , Criança , Traumatismos em Atletas/diagnóstico , Reflexo Vestíbulo-Ocular/fisiologia , Movimentos Sacádicos/fisiologia , Acompanhamento Ocular Uniforme/fisiologia , Amplitude de Movimento Articular
15.
Eur Arch Otorhinolaryngol ; 281(2): 743-755, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37642710

RESUMO

PURPOSE: In case of an acute unilateral vestibulopathy (UVP), compensatory strategies such as restoration and adaptation will lead to a decrease in intensity of the symptoms. Although measurements of compensatory strategies are available, currently, an overview taking the different strategies into account is lacking. The objectives of this study are to explore compensatory strategies and to investigate the association between compensatory strategies and patient characteristics. METHODS: Restoration was objectified by the vestibulo-ocular reflex (VOR) gain on the video head impulse test, and adaptation-consisting of visual, multisensory, and behavioral substitution-was objectified by the Visual Vertigo Analog Scale (VVAS), Antwerp Vestibular Compensation Index (AVeCI), and Perez and Rey score (PR score), respectively. Adequate restoration and adaptation levels were interpreted as follows: VOR gain > 0.80, VVAS ≤ 40%, AVeCI > 0 and PR score ≤ 55. RESULTS: Sixty-two UVP patients, 34 men and 28 women, were included with an average age of 52.1 ± 17.3 years. At 10.5 ± 1.4 weeks after onset, 41.9% of the UVP patients reached adequate restoration levels and 58.1-86.9% reached adequate adaptation levels. Furthermore, significant associations were found between (1) restoration status and UVP etiology [Odds Ratio (OR) with 95% CI: 4.167 {1.353;12.828}] and balance performance (OR: 4.400 {1.258;15.386}), (2) visual sensory substitution status and perceived handicap (OR: 8.144 {1.644;40.395}), anxiety (OR: 10.000 {1.579;63.316}) and depression (OR: 16.667 {2.726;101.896}), and (3) behavioral substitution status and balance performance (OR: 4.143 {1.341;12.798}). CONCLUSION: UVP patients with adequate compensatory strategies presented with better balance performance, lower perceived handicap, and lower anxiety and depression scores.


Assuntos
Vertigem , Vestíbulo do Labirinto , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Reflexo Vestíbulo-Ocular , Teste do Impulso da Cabeça , Estudos Prospectivos
16.
Eur Arch Otorhinolaryngol ; 281(8): 4029-4038, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38341823

RESUMO

PURPOSE: This retrospective cohort study aimed to investigate the effect of minimally invasive cochlear implantation (CI) on the vestibular function (VF) and residual hearing (RH) as well as their relationship in pediatric recipients before and after surgery. METHODS: Twenty-four pediatric patients with preoperative low frequency residual hearing (LFRH) (250 or 500 Hz ≤ 80 dB HL) who underwent minimally invasive CI were enrolled. Pure-tone thresholds, the cervical/ocular vestibular-evoked myogenic potential (cVEMP/oVEMP), and video head impulse test (vHIT) were all evaluated in the 24 pediatric patients with preoperative normal VF before and at 1 and 12 months after surgery. The relationship between changes in hearing and VF was analyzed preoperatively and at 1 and 12 months postoperatively. RESULTS: There were no significant differences on VF preservation and hearing preservation (HP) at both 1 and 12 months post-CI (p > 0.05). At 1 month post-CI, the correlations of the variations in vestibulo-ocular reflex (VOR) gains of horizontal semicircular canal (HSC) and posterior semicircular canal (PSC) and the shift in 250 Hz threshold were negatively correlated (r = - 0.41, p = 0.04 and r = - 0.43, p = 0.04, respectively). At 12 months post-CI, the shift in 250 Hz threshold negatively correlated to the variations in VOR gain of superior semicircular canal (SSC) (r = - 0.43, p = 0.04); the HP positively correlated to the variation in oVEMP-amplitude ratio (AR) (r = 0.41, p = 0.04). CONCLUSION: Our study confirmed that there were partial correlations between VF preservation and HP both in the short- and long-terms after atraumatic CI surgery, especially with the 250 Hz threshold. Regarding the variation of PSC function, the correlation with hearing status was variable with time after atraumatic CI surgery. Minimally invasive techniques for HP are successful and effective for the preservation of VF in pediatric patients both in the short- and long-terms.


Assuntos
Implante Coclear , Procedimentos Cirúrgicos Minimamente Invasivos , Potenciais Evocados Miogênicos Vestibulares , Humanos , Implante Coclear/métodos , Feminino , Masculino , Estudos Retrospectivos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Pré-Escolar , Criança , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Audiometria de Tons Puros , Resultado do Tratamento , Audição/fisiologia , Testes de Função Vestibular , Teste do Impulso da Cabeça/métodos , Vestíbulo do Labirinto/fisiopatologia , Vestíbulo do Labirinto/cirurgia , Lactente
17.
Adv Physiol Educ ; 48(2): 211-214, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38234296

RESUMO

The study aims to develop a novel methodology to demonstrate the vestibulo-ocular reflex (VOR) and nystagmus by caloric stimulation in an undergraduate medical physiology laboratory. The experimental setup involved two sets of electrodes: one set positioned laterally to both eyes, and another set positioned vertically over either the right or left eye. The caloric method is used to stimulate ears, which involves irrigation of warm (44°C) and cold (30°C) water into the ears while maintaining a temperature difference of approximately ±7°C from the body temperature. The changes in chorioretinal potential were calibrated to angular displacement by a two-point calibration method, and angular velocity was derived after taking the first-time derivative. The results obtained from the digital data acquisition system were compared to the traditional instrument used in our Otorhinolaryngology Department [Interacoustics Videonystagmography (VNG) System for hospitals, medical grade] for the normal subject's data. No significant differences in angular velocity were noted (P > 0.05). The cold stimuli elicit a more pronounced VOR compared to the warm stimuli. It has been consistently observed that the onset of nystagmus occurs approximately 20 s after irrigation, reaching its peak intensity between 45 and 90 s, and gradually diminishing until it ceases after approximately 200 s. Our developed methodology enables the recording and quantification of nystagmus using easily accessible equipment. This study serves the goal of visualizing the physiological process of VOR and thereby fulfills the goal of an effective teaching tool for demonstrating to undergraduate medical students.NEW & NOTEWORTHY We developed a novel methodology to demonstrate and visualize the most common and important physiological phenomenon like the vestibulo-ocular reflex as a teaching module for undergraduate students.


Assuntos
Temperatura Baixa , Reflexo Vestíbulo-Ocular , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Olho , Estudantes
18.
Laryngorhinootologie ; 103(6): 413-421, 2024 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-38195848

RESUMO

The diagnosis of ocular motor disorders and the different forms of a nystagmus is based on a systematic clinical examination of all types of eye movements: eye position, spontaneous nystagmus, range of eye movements, smooth pursuit, saccades, gaze-holding function, vergence, optokinetic nystagmus, as well as testing of the function of the vestibulo-ocular reflex (VOR) and visual fixation suppression of the VOR. Relevant anatomical structures are the midbrain, pons, medulla, cerebellum, and cortex. There is a simple clinical rule: vertical and torsional eye movements are generated in the midbrain, horizontal in the pons. The cerebellum is relevant for almost all types of eye movements; typical pathological findings are saccadic smooth pursuit, gaze-evoked nystagmus or dysmetric saccades.Nystagmus is defined as a rhythmic, most often involuntary eye movement. It normally consists of a slow (pathological) drift of the eyes and a fast central compensatory movement of the eyes back to the primary position (re-fixation saccade). There are three major categories: first, spontaneous nystagmus, i. e. nystagmus which occurs in the gaze straight ahead position as upbeat or downbeat nystagmus; second, nystagmus that becomes visible at eccentric gaze only and third, nystagmus which can be elicited by certain maneuvers, e. g. head-shaking, head positioning, air pressure or hyperventilation, most of which are of peripheral vestibular origin. The most frequent central types of spontaneous nystagmus are downbeat and upbeat, infantile, pure torsional, pendular fixation, periodic alternating, and seesaw nystagmus. Many types of central nystagmus allow a precise neuroanatomical localization: for instance, downbeat nystagmus, which is most often caused by a bilateral floccular lesion or dysfunction, or upbeat nystagmus, which is caused by a lesion in the mesencephalon or medulla oblongata. Examples of pharmacotherapy are the use of 4-aminopyridine for downbeat and upbeat nystagmus, memantine or gabapentin for fixation pendular nystagmus or baclofen for periodic alternating nystagmus.


Assuntos
Nistagmo Patológico , Reflexo Vestíbulo-Ocular , Humanos , Nistagmo Patológico/diagnóstico , Nistagmo Patológico/fisiopatologia , Reflexo Vestíbulo-Ocular/fisiologia , Transtornos da Motilidade Ocular/fisiopatologia , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/terapia , Movimentos Sacádicos/fisiologia
19.
J Sport Rehabil ; 33(5): 325-332, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688463

RESUMO

CONTEXT: Sports-related concussions are commonly occurring injuries as a result of sports and recreation that may cause alterations in brain functioning. It is important to be able to evaluate the impact of these injuries on function to manage the injury recovery and ensure recovery. Recent literature suggests the use of objective evaluation strategies in a multifaceted approach to evaluate and manage these injuries. It is important to understand the relationships between the assessments and how best to utilize each assessment. The purpose of this study was to investigate if relationships exist between measures of vestibular function at baseline in assessments that may be used following sports-related concussions. Additionally, a secondary purpose was to determine if self-reported symptoms were related to performance on the assessments. This study aimed to identify if these assessments measured independent functions of the vestibulo-ocular reflex or if some redundancy existed among the assessment strategies. DESIGN: A cross-sectional study design was used in a cohort of collegiate athletes ages 18-24. METHODS: Participants completed demographics questionnaires, the Post-Concussion Symptom Scale, Gaze Stabilization Test, and Concussion Balance Test. Spearman rho correlations were used to examine the relationships between the measures. RESULTS: One hundred and thirty-five collegiate athletes (82 males and 53 females) were included, representative of 3 sports (cheerleading, soccer, and football) with a mean age of 19.77 (1.42) years old. There were weak to moderate, significant relationships between measures of Gaze Stabilization Test and Concussion Balance Test errors (r = .20-.31, P = .001-.03). CONCLUSIONS: The direction of these relationships indicated that greater Concussion Balance Test errors were associated with greater Gaze Stabilization Test performance. These relationships may be attributed to the difficulty created by the foam conditions and the integration of more complex sensory tasks required to maintain balance during the more difficult conditions.


Assuntos
Atletas , Traumatismos em Atletas , Concussão Encefálica , Equilíbrio Postural , Humanos , Masculino , Concussão Encefálica/fisiopatologia , Concussão Encefálica/diagnóstico , Feminino , Equilíbrio Postural/fisiologia , Adulto Jovem , Estudos Transversais , Traumatismos em Atletas/fisiopatologia , Adolescente , Reflexo Vestíbulo-Ocular/fisiologia , Universidades
20.
J Neurophysiol ; 130(4): 999-1007, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702547

RESUMO

Long-term dance training is known to improve postural control, especially in challenging postural tasks. However, the effect of dance training on the vestibulo-ocular reflex (VOR) has yet to be properly assessed. This study directly investigated whether VOR parameters are influenced by long-term dance training by testing dancers and controls using the video head impulse test. VOR gains using two of the most common methods (area ratio and instantaneous gains), latency and amplitude of the first saccade, if applicable, were computed. Results revealed a larger VOR gain as measured by area gain and instantaneous gain at 40 ms specifically for left-head impulses, but not right-head impulses. No significant differences in saccade frequency, amplitude, or latency were observed between groups. These differences appear to stem from a modified eye-to-head relationship during high-velocity head impulses in dancers. More specifically, the dancers' eyes lead head movement during passively applied head impulses, which result in higher VOR gain.NEW & NOTEWORTHY This study demonstrates, for the first time, that long-term dance training results in a nonlinear relationship between eye and head velocity within the first milliseconds following passive head impulse. The data also suggest a larger VOR gain in dancers. This finding suggests that dance training may modify eye-head relationship in passive high-frequency head movements. This is of particular interest for vestibular rehabilitation.


Assuntos
Dança , Reflexo Vestíbulo-Ocular/fisiologia , Movimentos Oculares , Movimentos Sacádicos , Movimentos da Cabeça/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA