Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 155, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802857

RESUMO

BACKGROUND: Rhizomucor miehei (RM) lipase is a regioselective lipase widely used in food, pharmaceutical and biofuel industries. However, the high cost and low purity of the commercial RM lipase limit its industrial applications. Therefore, it is necessary to develop cost-effective strategies for large-scale preparation of this lipase. The present study explored the high-level expression of RM lipase using superfolder green fluorescent protein (sfGFP)-mediated Escherichia coli secretion system. RESULTS: The sfGFP(-15) mutant was fused to the C-terminus of RM lipase to mediate its secretion expression. The yield of the fusion protein reached approximately 5.1 g/L with high-density fermentation in 5-L fermentors. Unlike conventional secretion expression methods, only a small portion of the target protein was secreted into the cell culture while majority of the fusion protein was still remained in the cytoplasm. However, in contrast to intracellular expression, the target protein in the cytoplasm could be transported efficiently to the supernatant through a simple washing step with equal volume of phosphate saline (PBS), without causing cell disruption. Hence, the approach facilitated the downstream purification step of the recombinant RM lipase. Moreover, contamination or decline of the engineered strain and degradation or deactivation of the target enzyme can be detected efficiently because they exhibited bright green fluorescence. Next, the target protein was immobilized with anion-exchange and macropore resins. Diethylaminoethyl sepharose (DEAE), a weak-basic anion-exchange resin, exhibited the highest bind capacity but inhibited the activity of RM lipase dramatically. On the contrary, RM lipase fixed with macropore resin D101 demonstrated the highest specific activity. Although immobilization with D101 didn't improve the activity of the enzyme, the thermostability of the immobilized enzyme elevated significantly. The immobilized RM lipase retained approximately 90% of its activity after 3-h incubation at 80 °C. Therefore, D101 was chosen as the supporting material of the target protein. CONCLUSION: The present study established a highly efficient strategy for large-scale preparation of RM lipase. This innovative technique not only provides high-purity RM lipase at a low cost but also has great potential as a platform for the preparation of lipases in the future.


Assuntos
Escherichia coli , Lipase , Rhizomucor , Lipase/genética , Lipase/metabolismo , Lipase/química , Rhizomucor/enzimologia , Rhizomucor/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/biossíntese , Fermentação
2.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806072

RESUMO

One of the indispensable applications of lipases in modification of oils and fats is the possibility to tailor the fatty acid content of triacylglycerols (TAGs), to meet specific requirements from various applications in food, nutrition, and cosmetic industries. Oleic acid (C18:1) and stearic acid (C18:0) are two common long fatty acids in the side chain of triglycerides in plant fats and oils that have similar chemical composition and structures, except for an unsaturated bond between C9 and C10 in oleic acid. Two lipases from Rhizomucor miehei (RML) and Rhizopus oryzae (ROL), show activity in reactions involving oleate and stearate, and share high sequence and structural identity. In this research, the preference for one of these two similar fatty acid side chains was investigated for the two lipases and was related to the respective enzyme structure. From transesterification reactions with 1:1 (molar ratio) mixed ethyl stearate (ES) and ethyl oleate (EO), both RML and ROL showed a higher activity towards EO than ES, but RML showed around 10% higher preference for ES compared with ROL. In silico results showed that stearate has a less stable interaction with the substrate binding crevice in both RML and ROL and higher tendency to freely move out of the substrate binding region, compared with oleate whose structure is more rigid due to the existence of the double bond. However, Trp88 from RML which is an Ala at the identical position in ROL shows a significant stabilization effect in the substrate interaction in RML, especially with stearate as a ligand.


Assuntos
Proteínas Fúngicas , Lipase , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Lipase/química , Lipase/genética , Simulação de Acoplamento Molecular , Ácidos Oleicos , Rhizomucor/enzimologia , Rhizopus oryzae/enzimologia , Análise de Sequência de Proteína , Estearatos , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Protein Expr Purif ; 180: 105804, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276128

RESUMO

Lipase from Rhizomucor miehei (RML) is a promising biocatalyst used in food industry, fine chemicals, and biodiesel production. Yeast surface display allows direct application of lipase in form of whole-cell biocatalyst, avoiding purification and immobilization process, but the protease of the host cell may affect the activity of displayed lipase. Herein, we used the protease-deficient Pichia pastoris, PichiaPink™ as host to display RML efficiently. RML gene, GCW21 gene and α-factor gene were co-cloned into plasmid pPink LC/HC and transformed into protease-deficient P. pastoris. After inducution expression for 96 h, the lipase activity of displayed RML reached 121.72 U/g in proteinase-A-deficient P. pastoris harboring high-copy plasmid, which exhibited 46.7% higher than recombinant P. pastoris without protease defect. Displayed RML occurred the maximum activity at pH 8.0 and 45 °C and the optimal substrate was p-nitrophenyl octanoate. Metal ions Li+, Na+, K+, and Mg2+ of 1-10 mM had activation towards displayed RML. Displayed RML was effectively improved in PichiaPink™ protease-deficient system, which may promote the further research and development for the industrial application of RML.


Assuntos
Técnicas de Visualização da Superfície Celular , Proteínas Fúngicas/biossíntese , Lipase/biossíntese , Rhizomucor/genética , Saccharomycetales , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Lipase/química , Lipase/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rhizomucor/enzimologia , Saccharomycetales/genética , Saccharomycetales/metabolismo
4.
Prep Biochem Biotechnol ; 51(9): 860-870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439089

RESUMO

Crude glycerol, a by-product of biodiesel production, was employed as the carbon source to produce lipase using Pichia pastoris. Under identical fermentation conditions, cell growth and lipase activity were improved using crude glycerol instead of pure glycerol. The impacts of crude glycerol impurities (methyl ester, grease, glycerol, methanol, and metal ions Na+, Ca2+, and Fe3+) on lipase production were investigated. Impurities accelerated P. pastoris entering the stationary phase. Na+, Ca2+, and grease in waste crude glycerol were the main factors influencing higher lipase activity. Through response surface optimization of Ca2+, Na+, and grease concentrations, lipase activity reached 1437 U/mL (15,977 U/mg), which was 2.5 times that of the control. This study highlights the economical and highly efficient valorization of crude glycerol, demonstrating its possible utilization as a carbon source to produce lipase by P. pastoris without pretreatment.


Assuntos
Meios de Cultura/farmacologia , Proteínas Fúngicas , Glicerol/farmacologia , Lipase , Rhizomucor/genética , Saccharomycetales/crescimento & desenvolvimento , Meios de Cultura/química , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Glicerol/química , Lipase/biossíntese , Lipase/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Rhizomucor/enzimologia , Saccharomycetales/genética
5.
Bioorg Chem ; 99: 103888, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32388204

RESUMO

Lipase TLIM was reported to be an efficient, commercially available and reusable catalyst for the Knoevenagel-Michael cascade reactions of aldehydes, malononitrile/ethyl cyanoacetate and 4-hydroxycoumarin/1, 3-cyclohexanedione/dimedone in aqueous DMSO. This methodology presents many superiorities such as simple procedure, mild reaction conditions, commercially available and reusable catalyst, high substrate applicability, the ability to be scaled up, and good to excellent yields.


Assuntos
Benzopiranos/metabolismo , Lipase/metabolismo , Benzopiranos/química , Biocatálise , Estrutura Molecular , Rhizomucor/enzimologia
6.
Molecules ; 25(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012738

RESUMO

Functional properties of each enzyme strictly depend on immobilization protocol used for linking enzyme and carrier. Different strategies were applied to prepare the immobilized derivatives of Rhizomucor miehei lipase (RML) and chemically aminated RML (NH2-RML). Both RML and NH2-RML forms were covalently immobilized on glyoxyl sepharose (Gx-RML and Gx-NH2-RML), glyoxyl sepharose dithiothreitol (Gx-DTT-RML and Gx-DTT-NH2-RML), activated sepharose with cyanogen bromide (CNBr-RML and CNBr-NH2-RML) and heterofunctional epoxy support partially modified with iminodiacetic acid (epoxy-IDA-RML and epoxy-IDA-NH2-RML). Immobilization varied from 11% up to 88% yields producing specific activities ranging from 0.5 up to 1.9 UI/mg. Great improvement in thermal stability for Gx-DTT-NH2-RML and epoxy-IDA-NH2-RML derivatives was obtained by retaining 49% and 37% of their initial activities at 70 °C, respectively. The regioselectivity of each derivative was also examined in hydrolysis of fish oil at three different conditions. All the derivatives were selective between cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. The highest selectivity (32.9 folds) was observed for epoxy-IDA-NH2-RML derivative in the hydrolysis reaction performed at pH 5 and 4 °C. Recyclability study showed good capability of the immobilized biocatalysts to be used repeatedly, retaining 50-91% of their initial activities after five cycles of the reaction.


Assuntos
Enzimas Imobilizadas/química , Óleos de Peixe/química , Lipase/química , Rhizomucor/enzimologia , Catálise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Solventes/química , Temperatura
7.
Bioorg Med Chem Lett ; 29(10): 1236-1240, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30898405

RESUMO

Lipase RMIM was firstly used as a promiscuous biocatalyst to catalyze the Knoevenagel-Michael cascade reactions of 4-hydroxycoumarin with aromatic, heterocyclic or aliphatic aldehydes to synthesize dicoumarol derivatives in water. Results showed that the adopted methodology could offer many advantages, such as mild reaction conditions, pure aqueous reaction system, wide substrate applicability, recyclable catalyst, excellent yields (81-98%), operational simplicity, and environmentally friendly reactions.


Assuntos
Dicumarol/síntese química , Lipase/química , Rhizomucor/enzimologia , Aldeídos/química , Catálise , Dicumarol/análogos & derivados , Química Verde/métodos , Estrutura Molecular , Temperatura , Fatores de Tempo , Água/química
8.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29101200

RESUMO

Rhizomucor miehei lipase (RML), as a kind of eukaryotic protein catalyst, plays an important role in the food, organic chemical, and biofuel industries. However, RML retains its catalytic activity below 50°C, which limits its industrial applications at higher temperatures. Soluble expression of this eukaryotic protein in Escherichia coli not only helps to screen for thermostable mutants quickly but also provides the opportunity to develop rapid and effective ways to enhance the thermal stability of eukaryotic proteins. Therefore, in this study, RML was engineered using multiple computational design methods, followed by filtration via conservation analysis and functional region assessment. We successfully obtained a limited screening library (only 36 candidates) to validate thermostable single point mutants, among which 24 of the candidates showed higher thermostability and 13 point mutations resulted in an apparent melting temperature ([Formula: see text]) of at least 1°C higher. Furthermore, both of the two disulfide bonds predicted from four rational-design algorithms were further introduced and found to stabilize RML. The most stable mutant, with T18K/T22I/E230I/S56C-N63C/V189C-D238C mutations, exhibited a 14.3°C-higher [Formula: see text] and a 12.5-fold increase in half-life at 70°C. The catalytic efficiency of the engineered lipase was 39% higher than that of the wild type. The results demonstrate that rationally designed point mutations and disulfide bonds can effectively reduce the number of screened clones to enhance the thermostability of RML.IMPORTANCER. miehei lipase, whose structure is well established, can be widely applied in diverse chemical processes. Soluble expression of R. miehei lipase in E. coli provides an opportunity to explore efficient methods for enhancing eukaryotic protein thermostability. This study highlights a strategy that combines computational algorithms to predict single point mutations and disulfide bonds in RML without losing catalytic activity. Through this strategy, an RML variant with greatly enhanced thermostability was obtained. This study provides a competitive alternative for wild-type RML in practical applications and further a rapid and effective strategy for thermostability engineering.


Assuntos
Temperatura Alta , Lipase/metabolismo , Mutação Puntual , Rhizomucor/enzimologia , Rhizomucor/genética , Temperatura , Algoritmos , Dissulfetos/química , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Escherichia coli/genética , Biblioteca Gênica , Cinética , Lipase/genética , Rhizomucor/metabolismo
9.
Bioorg Chem ; 78: 210-219, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29602045

RESUMO

We present an efficient approach to the synthesis of a series of glycyrrhetinic acid derivatives. Six derivatives, five of them new compounds, were obtained through chemoenzymatic reactions in very good to excellent yield. In order to find the optimal reaction conditions, the influence of various parameters such as enzyme source, nucleophile:substrate ratio, enzyme:substrate ratio, solvent and temperature was studied. The excellent results obtained by lipase catalysis made the procedure very efficient considering their advantages such as mild reaction conditions and low environmental impact. Moreover, in order to explain the reactivity of glycyrrhetinic acid and the acetylated derivative to different nucleophiles in the enzymatic reactions, molecular docking studies were carried out. In addition, one of the synthesized compounds exhibited remarkable antiviral activity against TK + and TK- strains of Herpes simplex virus type 1 (HSV-1), sensitive and resistant to acyclovir (ACV) treatment.


Assuntos
Antivirais/farmacologia , Ácido Glicirretínico/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Lipase/metabolismo , Simulação de Acoplamento Molecular , Aciclovir/farmacologia , Antivirais/química , Antivirais/metabolismo , Biocatálise , Candida/enzimologia , Carica/enzimologia , Relação Dose-Resposta a Droga , Eurotiales/enzimologia , Ácido Glicirretínico/química , Ácido Glicirretínico/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rhizomucor/enzimologia , Rhizopus/enzimologia , Relação Estrutura-Atividade
10.
Int J Mol Sci ; 19(2)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29439521

RESUMO

Immobilized enzymes have a very large region that is not in contact with the support surface and this region could be the target of new stabilization strategies. The chemical amination of these regions plus further cross-linking with aldehyde-dextran polymers is proposed here as a strategy to increase the stability of immobilized enzymes. Aldehyde-dextran is not able to react with single amino groups but it reacts very rapidly with polyaminated surfaces. Three lipases-from Thermomyces lanuginosus (TLL), Rhizomucor miehiei (RML), and Candida antarctica B (CALB)-were immobilized using interfacial adsorption on the hydrophobic octyl-Sepharose support, chemically aminated, and cross-linked. Catalytic activities remained higher than 70% with regard to unmodified conjugates. The increase in the amination degree of the lipases together with the increase in the density of aldehyde groups in the dextran-aldehyde polymer promoted a higher number of cross-links. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of those conjugates demonstrates the major role of the intramolecular cross-linking on the stabilization of the enzymes. The highest stabilization was achieved by the modified RML immobilized on octyl-Sepharose, which was 250-fold more stable than the unmodified conjugate. The TLL and the CALB were 40-fold and 4-fold more stable than the unmodified conjugate.


Assuntos
Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Candida/enzimologia , Reagentes de Ligações Cruzadas/química , Dextranos/química , Estabilidade Enzimática , Rhizomucor/enzimologia
11.
Prep Biochem Biotechnol ; 48(1): 92-102, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29194017

RESUMO

An alternative environmentally benign support was prepared from chitosan-chitin nanowhiskers (CS/CNWs) for covalent immobilization of Rhizomucor miehei lipase (RML) to increase the operational stability and recyclability of RML in synthesizing eugenyl benzoate. The CS/CNWs support and RML-CS/CNWs were characterized using X-ray diffraction, fluorescent microscopy, and Fourier transform infrared spectroscopy. Efficiency of the RML-CS/CNWs was compared to the free RML to synthesize eugenyl benzoate for parameters: reaction temperature, stirring rate, reusability, and thermal stability. Under optimal experimental conditions (50°C, 250 rpm, catalyst loading 3 mg/mL), a twofold increase in yield of eugenyl benzoate was observed for RML-CS/CNWs as compared to free RML, with the former achieving maximum yield of the ester at 62.1% after 5 hr. Results demonstrated that the strategy adopted to prepare RML-CS/CNWs was useful, producing an improved and prospectively greener biocatalyst that supported a sustainable process to prepare eugenyl benzoate. Moreover, RML-CS/CNWs are biodegradable and perform esterification reactions under ambient conditions as compared to the less eco-friendly conventional acid catalyst. This research provides a facile and promising approach for improving activity of RML in which the resultant RML-CS/CNWs demonstrated good operational stability for up to eight successive esterification cycles to synthesize eugenyl benzoate.


Assuntos
Benzoatos/metabolismo , Quitina/química , Quitosana/química , Enzimas Imobilizadas/metabolismo , Eugenol/análogos & derivados , Lipase/metabolismo , Rhizomucor/enzimologia , Benzoatos/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Esterificação , Eugenol/metabolismo , Microbiologia Industrial , Lipase/química , Nanoestruturas/química , Rhizomucor/química
12.
J Appl Microbiol ; 122(4): 1009-1019, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28028882

RESUMO

AIMS: This study was an attempt to create a novel milk clotting procedure using a recombinant bacterium capable of milk coagulation. METHODS AND RESULTS: The Rhizomucor pusillus proteinase (RPP) gene was sub-cloned into a pALF expression vector. The recombinant pALF-RPP vector was then electro-transferred into Lactococcus lactis. Finally, the milk coagulation ability of recombinant L. lactis carrying a RPP gene was evaluated. Nucleotide sequencing of DNA insertion from the clone revealed that the RPP activity corresponded to an open reading frame consisting of 1218 bp coding for a 43·45 kDa RPP protein. The RPP protein assay results indicated that the highest RPP enzyme expression with 870 Soxhlet units (SU) per ml and 7914 SU/OD were obtained for cultures which were incubated at pH 5·5 and 30°C. Interestingly, milk coagulation was observed after 205 min of inoculating milk with recombinant L. lactis carrying the RPP gene. CONCLUSION: The recombinant L. lactis carrying RPP gene has the ability to function as a starter culture for acidifying and subsequently coagulating milk by producing RPP as a milk coagulant agent. SIGNIFICANCE AND IMPACT OF THE STUDY: Creating a recombinant starter culture bacterium that is able to coagulate milk. It is significant because the recombinant L. lactis has the ability to work as a starter culture and milk coagulation agent.


Assuntos
Lactococcus lactis/genética , Leite , Peptídeo Hidrolases/genética , Animais , Ácido Láctico/metabolismo , Lactococcus lactis/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes/metabolismo , Rhizomucor/enzimologia , Rhizomucor/genética
13.
Biosci Biotechnol Biochem ; 81(8): 1612-1618, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28471330

RESUMO

l-Xylulose reductase (LXR) catalyzes the reduction of l-xylulose to xylitol in the fungal l-arabinose catabolic pathway. LXR (RpLXR) was purified from the pentose-fermenting zygomycetous fungus Rhizomucor pusillus NBRC 4578. The native RpLXR is a homotetramer composed of 29 kDa subunits and preferred NADPH as a coenzyme. The Km values were 8.71 mM for l-xylulose and 3.89 mM for dihydroxyacetone. The lxr3 (Rplxr3) gene encoding RpLXR consists of 792 bp and encodes a putative 263 amino acid protein (Mr = 28,341). The amino acid sequence of RpLXR showed high similarity to 3-oxoacyl-(acyl-carrier-protein) reductase. The Rplxr3 gene was expressed in Escherichia coli and the recombinant RpLXR exhibited properties similar to those of native RpLXR. Transcription of the Rplxr3 gene in R. pusillus NBRC 4578 was induced in the presence of l-arabinose and inhibited in the presence of d-glucose, d-xylose, and d-mannitol, indicating that RpLXR is involved in the l-arabinose catabolic pathway.


Assuntos
Proteínas Fúngicas/metabolismo , Subunidades Proteicas/metabolismo , Rhizomucor/enzimologia , Desidrogenase do Álcool de Açúcar/metabolismo , Xilitol/metabolismo , Xilulose/metabolismo , Arabinose/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Di-Hidroxiacetona/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Proteínas Fúngicas/genética , Expressão Gênica , Glucose/metabolismo , Cinética , Manitol/metabolismo , NADP/metabolismo , Fases de Leitura Aberta , Filogenia , Multimerização Proteica , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizomucor/química , Rhizomucor/classificação , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/genética , Xilose/metabolismo
14.
Lett Appl Microbiol ; 65(4): 335-342, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28763110

RESUMO

To enhance the overall expression level of lipase isozymes which catalyse the same reaction in Pichia pastoris through co-expression of isozymes from different sources; several types of co-expression ways were constructed to determine the co-expression efficiencies of lipase isozymes in P. pastoris. The results showed that the Kex2-mediated co-expression of lipase isozymes could express Rhizomucor miehei lipase (RML) and Thermomyces lanuginosus lipase (TLL) simultaneously, and GS-RMk-kTL displayed an average lipase activity of 306·91 U ml-1 , higher than GS-RML and GS-kTL (2·89 and 300·59 U ml-1 ) expressed independently in P. pastoris, and the sum of both (303·48 U ml-1 ), implying the potential of isozyme co-expression mediated by Kex2 in increasing the overall recombinant expression, but the low recombinant expression of RML in P. pastoris weakened the overall increasing effect on lipase expression in the isozyme co-expression strains. In addition, the fusion isozymes were successfully expressed, but with low lipase activities. Furthermore, 2A peptide could successfully mediate the co-expression and secretion of lipase isozymes, but it seriously affected the expression of TLL downstream of 2A peptide. SIGNIFICANCE AND IMPACT OF THE STUDY: The low production level is one of the limitation factors for decreasing the prices of enzymes and expanding their application in industry as the biocatalysts. This research focuses on developing lipase isozyme co-expression strategies in Pichia pastoris to enhance the expression level of overall lipase isozymes which catalyse the same reaction. The Kex2-mediated co-expression strategy of lipase isozymes could potentially enhance the overall isozyme expression, and isozyme co-expression might provide a new direction for improving the recombinant isozyme expression, and decreasing the production and application prices of these mixed enzymes as biocatalysts.


Assuntos
Engenharia Genética/métodos , Isoenzimas/biossíntese , Lipase/biossíntese , Pichia/enzimologia , Pichia/genética , Expressão Gênica/genética , Isoenzimas/economia , Isoenzimas/metabolismo , Lipase/economia , Lipase/metabolismo , Pichia/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Proteínas Recombinantes/metabolismo , Rhizomucor/enzimologia , Rhizomucor/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Bioprocess Biosyst Eng ; 40(10): 1463-1478, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28676893

RESUMO

The present work deals with the designing of biocompatible hybrid blend of cellulosic copolymers made of hydroxypropyl methylcellulose (HMC) and chitosan (CHI) for immobilization of Rhizomucor miehei lipase (RML), in order to construct the robust biocatalytic system to synthesize industrially important dodecanoate compounds (fatty acid esters). The present biocatalyst HMC:CHI:RML was characterized in detail by various physical and biochemical methods and subsequently applied for the synthesis of fatty acid esters. The protocol was optimized in detail with kinetic parameters which provides excellent % conversion, and further we have synthesized fifteen industrially important compounds which have wide potential for commercial applications. The immobilized lipase HMC:CHI:RML offered four- to eightfold higher conversion and biocatalytic activity as compared to crude lipase. Besides this, recyclability study was also performed to assess economic and industrial viability.


Assuntos
Quitosana/química , Enzimas Imobilizadas/química , Ésteres/síntese química , Ácidos Graxos/química , Proteínas Fúngicas/química , Derivados da Hipromelose/química , Lipase/química , Membranas Artificiais , Rhizomucor/enzimologia , Ésteres/química
16.
Prep Biochem Biotechnol ; 47(2): 199-210, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-27341522

RESUMO

The chemical route of producing geranyl propionate involves the use of toxic chemicals, liberation of unwanted by-products as well as problematic separation process. In view of such problems, the use of Rhizomucor miehei lipase (RML) covalently bound onto activated chitosan-graphene oxide (RML-CS/GO) support is suggested. Following analyses using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetry, properties of the RML-CS/GO were characterized. A response surface methodological approach using a 3-level-four-factor (incubation time, temperature, substrate molar ratio, and stirring rate) Box-Behnken design was used to optimize the experimental conditions to maximize the yield of geranyl propionate. Results revealed that 76 ± 0.02% of recovered protein had yielded 7.2 ± 0.04 mg g-1 and 211 ± 0.3% U g-1 of the maximum protein loading and esterification activity, respectively. The actual yield of geranyl propionate (49.46%) closely agreed with the predicted value (49.97%) under optimum reaction conditions (temperature: 37.67°C, incubation time: 10.20 hr, molar ratio (propionic acid:geraniol): 1:3.28, and stirring rate: 100.70 rpm) and hence, verifying the suitability of this approach. Since the method is performed under mild conditions, the RML-CS/GO biocatalyst may prove to be an environmentally benign alternative for producing satisfactory yield of geranyl propionate.


Assuntos
Quitosana/química , Enzimas Imobilizadas/química , Grafite/química , Lipase/química , Propionatos/síntese química , Rhizomucor/enzimologia , Meios de Cultura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Óxidos/química , Solventes
17.
Molecules ; 22(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28067789

RESUMO

Lipases from Candida antarctica (isoform B) and Rhizomucor miehei (CALB and RML) have been immobilized on octyl-agarose (OC) and further coated with polyethylenimine (PEI) and dextran sulfate (DS). The enzymes just immobilized on OC supports could be easily released from the support using 2% SDS at pH 7, both intact or after thermal inactivation (in fact, after inactivation most enzyme molecules were already desorbed). The coating with PEI and DS greatly reduced the enzyme release during thermal inactivation and improved enzyme stability. However, using OC-CALB/RML-PEI-DS, the full release of the immobilized enzyme to reuse the support required more drastic conditions: a pH value of 3, a buffer concentration over 2 M, and temperatures above 45 °C. However, even these conditions were not able to fully release the thermally inactivated enzyme molecules from the support, being necessary to increase the buffer concentration to 4 M sodium phosphate and decrease the pH to 2.5. The formation of unfolded protein/polymers composites seems to be responsible for this strong interaction between the octyl and some anionic groups of OC supports. The support could be reused five cycles using these conditions with similar loading capacity of the support and stability of the immobilized enzyme.


Assuntos
Candida/enzimologia , Enzimas Imobilizadas/química , Lipase/química , Rhizomucor/enzimologia , Sefarose/química , Adsorção , Reagentes de Ligações Cruzadas/química , Sulfato de Dextrana/química , Inibidores Enzimáticos/química , Proteínas Fúngicas/química , Polietilenoimina/química , Polímeros , Desdobramento de Proteína
18.
Molecules ; 22(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215562

RESUMO

Lipases are the most widely employed enzymes in commercial industries. The catalytic mechanism of most lipases involves a step called "interfacial activation". As interfacial activation can lead to a significant increase in catalytic activity, it is of profound importance in developing lipase immobilization methods. To obtain a potential biocatalyst for industrial biodiesel production, an effective strategy for enhancement of catalytic activity and stability of immobilized lipase was developed. This was performed through the combination of interfacial activation with hybrid magnetic cross-linked lipase aggregates. This biocatalyst was investigated for the immobilization of lipase from Rhizomucor miehei (RML). Under the optimal conditions, the activity recovery of the surfactant-activated magnetic RML cross-linked enzyme aggregates (CLEAs) was as high as 2058%, with a 20-fold improvement over the free RML. Moreover, the immobilized RML showed excellent catalytic performance for the biodiesel reaction at a yield of 93%, and more importantly, could be easily separated from the reaction mixture by simple magnetic decantation, and retained more than 84% of its initial activities after five instances of reuse. This study provides a new and versatile approach for designing and fabricating immobilized lipase with high activation and stability.


Assuntos
Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Jatropha/química , Lipase/química , Óleos de Plantas/química , Rhizomucor/química , Biocatálise , Biocombustíveis , Ativação Enzimática , Enzimas Imobilizadas/isolamento & purificação , Reutilização de Equipamento , Esterificação , Proteínas Fúngicas/isolamento & purificação , Lipase/isolamento & purificação , Imãs , Agregados Proteicos , Rhizomucor/enzimologia , Tensoativos/química
19.
Appl Microbiol Biotechnol ; 100(4): 1765-1776, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490553

RESUMO

A glycoside hydrolase (GH) family 17 ß-1,3-glucanosyltransferase (RmBgt17A) from Rhizomucor miehei CAU432 (CGMCC No. 4967) shared very low sequence homology (∼20 % identity) with that of other ß-1,3-glucanases,despite their similar structural folds. Structural comparison and sequence alignment between RmBgt17A and GH family 17 ß-1,3-glucanases suggested important roles for three residues (Tyr102, Trp157, and Glu158) located in the substrate-binding cleft of RmBgt17A in transglycosylation activity. A series of site-directed mutagenesis studies indicated that a single Glu-to-Ala mutation (E158A) modulates the function of RmBgt17A to that of a ß-1,3-glucanase. Mutant E158A exhibited high hydrolytic activity (39.95 U/mg) toward reduced laminarin, 348.5-fold higher than the wild type. Optimal pH and temperature of the purified RmBgt17A-E158A were 4.5 and 55 °C, respectively. TLC analysis suggested that RmBgt17A-E158A is an endo-ß-1,3-glucanase. Our study provides novel insight into protein engineering of the substrate-binding cleft of glycoside hydrolases to modulate the function of transglycosylation and hydrolysis.


Assuntos
Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Engenharia de Proteínas , Rhizomucor/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Cromatografia em Camada Fina , Glucana 1,3-beta-Glucosidase/química , Glucana Endo-1,3-beta-D-Glucosidase/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Rhizomucor/genética , Alinhamento de Sequência , Temperatura
20.
Biotechnol Appl Biochem ; 63(1): 67-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25643732

RESUMO

A new strain of Rhizomucor variabilis producing an active extracellular lipase was identified and characterized in the present studies. The culture conditions were optimized and the highest lipase production amounting to 136 U/mL was achieved after 4 days of cultivation. The optimum pH (5.5) and temperature (28 °C) were determined as the best conditions for R. variabilis lipase production. The isolated enzyme preparation exhibited maximum activity at 40 °C and pH 8.0. Lipase from R. variabilis was stable up to 50 °C during 2 H retaining 80% of its initial activity. The enzyme was highly stable in the pH range of 7.0-9.0. Moreover, the addition of naturally obtained exopolysaccharides (EPS) significantly enhanced lipase activity. The presence of EPS derived from Ganoderma applanatum and Rhizobium leguminosarum enhanced the lipase activity, which was 22% and 31%, respectively, higher than that in the control experiments. Simultaneously, the pH activity profiles remained unchanged. The Michaelis-Menten constant and the turnover number of the enzyme for p-nitrophenyl palmitate in the standard assay conditions were estimated at a level of 0.631 mM and 0.674 Sec(-1) . In conclusion, the results obtained in this work present a newly isolated lipase preparation stabilized with EPS or without modification as a very effective tool for industrial application.


Assuntos
Lipase/metabolismo , Rhizomucor/enzimologia , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Lipase/química , Lipase/isolamento & purificação , Polissacarídeos/metabolismo , Rhizomucor/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA