Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.033
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Microbiol ; 121(3): 578-592, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308564

RESUMO

Pathogenic Rhodococcus equi release the virulence-associated protein A (VapA) within macrophage phagosomes. VapA permeabilizes phagosome and lysosome membranes and reduces acidification of both compartments. Using biophysical techniques, we found that VapA interacts with model membranes in four steps: (i) binding, change of mechanical properties, (ii) formation of specific membrane domains, (iii) permeabilization within the domains, and (iv) pH-specific transformation of domains. Biosensor data revealed that VapA binds to membranes in one step at pH 6.5 and in two steps at pH 4.5 and decreases membrane fluidity. The integration of VapA into lipid monolayers was only significant at lateral pressures <20 mN m-1 indicating preferential incorporation into membrane regions with reduced integrity. Atomic force microscopy of lipid mono- and bilayers showed that VapA increased the surface heterogeneity of liquid disordered domains. Furthermore, VapA led to the formation of a new microstructured domain type and, at pH 4.5, to the formation of 5 nm high domains. VapA binding, its integration and lipid domain formation depended on lipid composition, pH, protein concentration and lateral membrane pressure. VapA-mediated permeabilization is clearly distinct from that caused by classical microbial pore formers and is a key contribution to the multiplication of Rhodococcus equi in phagosomes.


Assuntos
Rhodococcus equi , Proteína Estafilocócica A , Virulência , Proteína Estafilocócica A/metabolismo , Fatores de Virulência/metabolismo , Rhodococcus equi/metabolismo , Proteínas de Bactérias/metabolismo , Lipídeos
2.
Infect Immun ; 92(1): e0038323, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38018994

RESUMO

The virulence-associated protein A (VapA) produced by virulent Rhodococcus equi allows it to replicate in macrophages and cause pneumonia in foals. It is unknown how VapA interacts with mammalian cell receptors, but intracellular replication of avirulent R. equi lacking vapA can be restored by supplementation with recombinant VapA (rVapA). Our objectives were to determine whether the absence of the surface receptors Toll-like receptor 2 (TLR2), complement receptor 3 (CR3), or Fc gamma receptor III (FcγRIII) impacts R. equi phagocytosis and intracellular replication in macrophages, and whether rVapA restoration of virulence in R. equi is dependent upon these receptors. Wild-type (WT) murine macrophages with TLR2, CR3, or FcγRIII blocked or knocked out (KO) were infected with virulent or avirulent R. equi, with or without rVapA supplementation. Quantitative bacterial culture and immunofluorescence imaging were performed. Phagocytosis of R. equi was not affected by blockade or KO of TLR2 or CR3. Intracellular replication of virulent R. equi was not affected by TLR2, CR3, or FcγRIII blockade or KO; however, avirulent R. equi replicated in TLR2-/- and CR3-/- macrophages but not in WT and FcγRIII-/-. rVapA supplementation did not affect avirulent R. equi phagocytosis but promoted intracellular replication in WT and all KO cells. By demonstrating that TLR2 and CR3 limit replication of avirulent but not virulent R. equi and that VapA-mediated virulence is independent of TLR2, CR3, or FcγRIII, our study provides novel insights into the role of these specific surface receptors in determining the entry and intracellular fate of R. equi.


Assuntos
Infecções por Actinomycetales , Rhodococcus equi , Animais , Camundongos , Infecções por Actinomycetales/metabolismo , Infecções por Actinomycetales/microbiologia , Proteínas de Bactérias/genética , Cavalos , Macrófagos/microbiologia , Mamíferos , Fagocitose , Rhodococcus equi/genética , Rhodococcus equi/patogenicidade , Receptor 2 Toll-Like/genética , Fatores de Virulência , Interações Hospedeiro-Patógeno
3.
Mol Microbiol ; 119(3): 285-301, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36627747

RESUMO

Gram-positive Rhodococcus equi (Prescotella equi) is a lung pathogen of foals and immunocompromised humans. Intra-macrophage multiplication requires production of the bacterial Virulence-associated protein A (VapA) which is released into the phagosome lumen. VapA pH-neutralizes intracellular compartments allowing R. equi to multiply in an atypical macrophage phagolysosome. Here, we show that VapA does not support intra-macrophage growth of several other bacterial species demonstrating that only few bacteria have the specific preadaptations needed to profit from VapA. We show that the closest relative of R. equi, environmental Rhodococcus defluvii (Prescotella defluvii), does not multiply in macrophages at 37°C even when VapA is present because of its thermosensitivity but it does so once the infection temperature is lowered providing rare experimental evidence for 'thermal restriction'. Using growth experiments with isolated macrophage lysosomes and modified infection schemes we provide evidence that R. equi resists the attack by phagolysosome contents at low pH for several hours. During this time, R. equi produces and secretes VapA which enables it to grow at the expense of lysosome constituents. We present arguments that, under natural infection conditions, R. equi is VapA-less during the initial encounter with the host. This has important implications for vaccine development.


Assuntos
Rhodococcus equi , Proteína Estafilocócica A , Humanos , Animais , Cavalos , Virulência , Proteína Estafilocócica A/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias , Rhodococcus equi/genética , Rhodococcus equi/metabolismo , Macrófagos/microbiologia
4.
J Clin Microbiol ; 62(3): e0153723, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349145

RESUMO

Rhodococcus equi is an opportunistic pathogen known to cause pulmonary and extrapulmonary disease among immunocompromised patients. Treatment is frequently challenging due to intrinsic resistance to multiple antibiotic classes. While non-equi Rhodococcus spp. are prevalent, their clinical significance is poorly defined. There is also limited data on antibiotic susceptibility testing (AST) of Rhodococcus infection in humans. We conducted a single-center, retrospective cohort study evaluating clinical characteristics, microbiologic profile, and AST of Rhodococcus infections between June 2012 and 2022 at our tertiary academic medical center. Identification of Rhodococcus spp. was performed by Sanger 16S rRNA gene sequencing and/or matrix-assisted laser desorption ionization-time of flight mass spectrometry, and AST was performed by agar dilution. Three hundred twenty-two isolates of Rhodococcus spp. were identified from blood (50%), pulmonary (26%), and bone/joint (12%) sources. R. equi/hoagii, R. corynebacterioides, and R. erythropolis were the most frequently isolated species, with 19% of isolates identified only to genus level. One hundred ninety-nine isolates evaluated for AST demonstrated high-level resistance to amoxicillin/clavulanate, cephalosporins, and aminoglycosides. More than 95% susceptibility to imipenem, vancomycin, linezolid, rifampin, and clarithromycin was observed. Non-equi species showed a significantly more favorable AST profile relative to R. equi. Clinically significant Rhodococcus infection was rare with 10 cases diagnosed (majority due to R. equi) and managed. The majority of patients received 2- or 3-drug combination therapy for 2-6 months, with favorable clinical response. Significant differences in AST were observed between R. equi and non-equi species. Despite high antimicrobial resistance to several antibiotic classes, imipenem and vancomycin remain appropriate empiric treatment options for R. equi. Future research evaluating mechanisms underlying antimicrobial resistance is warranted.


Assuntos
Infecções por Actinomycetales , Rhodococcus equi , Rhodococcus , Humanos , Rhodococcus/genética , Vancomicina/uso terapêutico , Estudos Retrospectivos , RNA Ribossômico 16S , Infecções por Actinomycetales/tratamento farmacológico , Antibacterianos/uso terapêutico , Rhodococcus equi/genética , Imipenem/uso terapêutico
5.
BMC Microbiol ; 24(1): 249, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977999

RESUMO

Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that mainly causes fatal lung and extrapulmonary abscesses in foals and immunocompromised individuals. To date, no commercial vaccine against R. equi exists. We previously screened all potential vaccine candidates from the complete genome of R. equi using a reverse vaccinology approach. Five of these candidates, namely ABC transporter substrate-binding protein (ABC transporter), penicillin-binding protein 2 (PBD2), NlpC/P60 family protein (NlpC/P60), esterase family protein (Esterase), and M23 family metallopeptidase (M23) were selected for the evaluation of immunogenicity and immunoprotective effects in BALB/c mice model challenged with R. equi. The results showed that all five vaccine candidate-immunized mice experienced a significant increase in spleen antigen-specific IFN-γ- and TNF-α-positive CD4 + and CD8 + T lymphocytes and generated robust Th1- and Th2-type immune responses and antibody responses. Two weeks after the R. equi challenge, immunization with the five vaccine candidates reduced the bacterial load in the lungs and improved the pathological damage to the lungs and livers compared with those in the control group. NlpC/P60, Esterase, and M23 were more effective than the ABC transporter and PBD2 in inducing protective immunity against R. equi challenge in mice. In addition, these vaccine candidates have the potential to induce T lymphocyte memory immune responses in mice. In summary, these antigens are effective candidates for the development of protective vaccines against R. equi. The R. equi antigen library has been expanded and provides new ideas for the development of multivalent vaccines.


Assuntos
Infecções por Actinomycetales , Vacinas Bacterianas , Modelos Animais de Doenças , Imunidade Humoral , Camundongos Endogâmicos BALB C , Rhodococcus equi , Animais , Rhodococcus equi/imunologia , Rhodococcus equi/genética , Camundongos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Actinomycetales/prevenção & controle , Infecções por Actinomycetales/imunologia , Infecções por Actinomycetales/microbiologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Imunidade Celular , Feminino , Pulmão/microbiologia , Pulmão/imunologia , Pulmão/patologia , Carga Bacteriana , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Interferon gama/imunologia , Interferon gama/metabolismo
6.
PLoS Pathog ; 17(9): e1009888, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473814

RESUMO

Rhodococcus equi is a major cause of foal pneumonia and an opportunistic pathogen in immunocompromised humans. While alveolar macrophages constitute the primary replicative niche for R. equi, little is known about how intracellular R. equi is sensed by macrophages. Here, we discovered that in addition to previously characterized pro-inflammatory cytokines (e.g., Tnfa, Il6, Il1b), macrophages infected with R. equi induce a robust type I IFN response, including Ifnb and interferon-stimulated genes (ISGs), similar to the evolutionarily related pathogen, Mycobacterium tuberculosis. Follow up studies using a combination of mammalian and bacterial genetics demonstrated that induction of this type I IFN expression program is largely dependent on the cGAS/STING/TBK1 axis of the cytosolic DNA sensing pathway, suggesting that R. equi perturbs the phagosomal membrane and causes DNA release into the cytosol following phagocytosis. Consistent with this, we found that a population of ~12% of R. equi phagosomes recruits the galectin-3,-8 and -9 danger receptors. Interestingly, neither phagosomal damage nor induction of type I IFN require the R. equi's virulence-associated plasmid. Importantly, R. equi infection of both mice and foals stimulates ISG expression, in organs (mice) and circulating monocytes (foals). By demonstrating that R. equi activates cytosolic DNA sensing in macrophages and elicits type I IFN responses in animal models, our work provides novel insights into how R. equi engages the innate immune system and furthers our understanding how this zoonotic pathogen causes inflammation and disease.


Assuntos
Infecções por Actinomycetales/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Macrófagos/imunologia , Rhodococcus equi/imunologia , Animais , Citosol/imunologia , DNA/imunologia , Feminino , Doenças dos Cavalos/imunologia , Cavalos , Masculino , Camundongos
7.
Transpl Infect Dis ; 25(6): e14140, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37697912

RESUMO

Rhodococcosis is an uncommon cause of pulmonary infection in thoracic organ transplant recipients. We describe a heart transplant recipient diagnosed with Rhodococcus equi left upper lung abscess with empyema thoracis complicated by bacteremia. The patient was successfully treated with appropriate antibiotics, adequate surgical resection, and optimization of immunosuppressants.


Assuntos
Infecções por Actinomycetales , Empiema , Transplante de Coração , Abscesso Pulmonar , Rhodococcus equi , Rhodococcus , Humanos , Abscesso Pulmonar/tratamento farmacológico , Infecções por Actinomycetales/diagnóstico , Infecções por Actinomycetales/tratamento farmacológico , Transplante de Coração/efeitos adversos
8.
World J Microbiol Biotechnol ; 39(9): 231, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347336

RESUMO

Rhodococcus equi is responsible for foal pneumonia worldwide, with a significant economic impact on the production and breeding of horses. In Chile, the first case was reported in 2000, and since then, its incidence has been increasing. Distinctive characteristics of R. equi as an intracellular pathogen in macrophages, emergence of virulence plasmids encoding surface lipoprotein antigens, and appearance of antibiotic resistance against macrolides and rifampicin have significantly complicated the treatment of R. equi pneumonia in foals. Therefore, in vitro susceptibility studies of first-line and newer antibiotics against R. equi are the first step to establishing effective treatments and optimizing new therapeutic options. The aim of the present study is to determine the susceptibility profile of fourteen strains of R. equi isolated from foals in Chile to several antibiotics of the macrolide group including azithromycin, amikacin, tildipirosin and gamithromycin as well as others such as rifampicin, doxycycline and ceftiofur. Identification of R. equi in collected isolates from foals in Chile has been performed by CAMP test and PCR based on detecting of the gene encoding the 16 S rRNA. The presence of genes encoding virulence plasmids was also determined using PCR. Results obtained have demonstrated presence of virulent R. equi strains in Chile. In vitro susceptibility pattern to different antibiotics has shown better results for doxycycline and rifampicin similar to previous studies performed. Current macrolides have been evaluated in order to consider alternative treatment options in a context of emerging resistance to classic macrolides and rifampicin, obtaining better results with gamithromycin (MIC range of 0.125 to 128 mg/ml) than with tildipirosin (MIC range of 16 to 128 mg/ml). An adequate diagnosis of bacterial susceptibility based on antibiograms is necessary to treat the Rhodococcus equi infection in foals.


Assuntos
Rhodococcus equi , Rifampina , Cavalos , Animais , Rifampina/farmacologia , Doxiciclina , Rhodococcus equi/genética , Chile , Macrolídeos , Antibacterianos/farmacologia
9.
Vet Clin North Am Equine Pract ; 39(1): 1-14, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36898784

RESUMO

Foals become infected shortly after birth; most develop subclinical pneumonia and 20% to 30% develop clinical pneumonia that requires treatment. It is now well established that the combination of screening programs based on thoracic ultrasonography and treatment of subclinical foals with antimicrobials has led to the development of resistant Rhodococcus equi strains. Thus, targeted treatment programs are needed. Administration of R equi-specific hyperimmune plasma shortly after birth is beneficial as foals develop less severe pneumonia but does not seem to prevent infection. This article provides a summary of clinically relevant research published during this past decade.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Pneumonia , Rhodococcus equi , Animais , Cavalos , Infecções por Actinomycetales/prevenção & controle , Infecções por Actinomycetales/veterinária , Doenças dos Cavalos/prevenção & controle , Pneumonia/veterinária
10.
Emerg Infect Dis ; 28(9): 1899-1903, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997496

RESUMO

A multidrug-resistant clone of the animal and human pathogen Rhodococcus equi, MDR-RE 2287, has been circulating among equine farms in the United States since the 2000s. We report the detection of MDR-RE 2287 outside the United States. Our finding highlights the risk for MDR-RE spreading internationally with horse movements.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Rhodococcus equi , Infecções por Actinomycetales/tratamento farmacológico , Infecções por Actinomycetales/epidemiologia , Infecções por Actinomycetales/veterinária , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Doenças dos Cavalos/epidemiologia , Cavalos , Humanos , Macrolídeos , Rhodococcus equi/genética , Rifampina , Estados Unidos
11.
Artigo em Inglês | MEDLINE | ID: mdl-36107761

RESUMO

Opinion 106 of the Judicial Commission has clarified the nomenclature of the taxon variously named Rhodococcus equi, 'Prescottella equi' and Rhodococcus hoagii. As a consequence, we present here the genus name Prescottella and that of its nomenclatural type species, Prescottella equi comb. nov., for valid publication and propose the reclassification of four rhodococcal species as novel combinations in the genus, namely Prescottella agglutinans Guo et al. 2015 comb. nov., Prescottella defluvii Kämpfer et al. 2014 comb. nov., Prescottella soli Li et al. 2015 comb. nov. and Prescottella subtropica Lee et al. 2019 comb. nov. In addition, we note that a clinical isolate, strain 86-07 (=W8901), likely represents an additional species within the genus Prescottella. Nearly a century after the original description of the type strain of the type species as Corynebacterium equi, we provide a stable home for Prescottella equi and its relatives.


Assuntos
Rhodococcus equi , Rhodococcus , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Cavalos , Filogenia , RNA Ribossômico 16S/genética , Rhodococcus equi/genética , Análise de Sequência de DNA
12.
Microbiol Immunol ; 66(6): 307-316, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35274358

RESUMO

Rhodococcus equiis the causative agent of pyogenic pneumonia in foals, and a virulence-associated protein A (VapA) encoded on the pVAPA virulence plasmid is important for its pathogenicity. In this study, we analyzed the virulence of R. equi strain U19, originally isolated in the Netherlands in 1997 and the genetic characteristics of the pVAPA_U19 plasmid. U19 expressed VapA that was regulated by temperature and pH and underwent significant intracellular proliferation in macrophages. The restriction fragment length polymorphism of pVAPA_U19 digested with EcoRI was similar to that of pREAT701 (85 kb Type I) harbored by R. equi ATCC33701, although the band pattern at 10-20 kb differed. Whole-genome sequencing showed that pVAPA_U19 was 51,684 bp in length and that the vapA pathogenicity island region and the replication/participation were almost identical to those in pREAT701. By contrast, the open reading frames (ORF26-ORF45) genes of pREAT701 (approximately 29,000 bp) were absent from pVAPA_U19. In this lacking region, mobility (MOB) genes, such as relaxase, which allow conjugative DNA processing, and the mating pair formation (MPF) genes, which are a form of the Type IV secretion system and provide the mating channel, were present. Coculture between U19 and five different recipient strains (two plasmid-cured strains and three cryptic plasmid-harboring strains) demonstrated that pVAPA_U19 could not support conjugation. Therefore, pVAPA_U19 does not differ significantly from the previously reported pVAPA in terms of virulence and plasmid replication and maintenance but is a nonmobilizable plasmid unable to cause conjugation because of the absence of genes related to MOB and MPF.


Assuntos
Doenças dos Cavalos , Rhodococcus equi , Rhodococcus , Animais , Proteínas de Bactérias/genética , Cavalos/genética , Plasmídeos/genética , Rhodococcus/genética , Rhodococcus equi/genética , Virulência/genética , Fatores de Virulência/genética
13.
Lett Appl Microbiol ; 74(1): 27-31, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34608644

RESUMO

Rhodococcus equi was isolated from the gastrointestinal contents of earthworms (family Megascolecidae) and their surrounding soil collected from pastures of two horse-breeding farms in Aomori Prefecture, outdoor pig pens, forest in Towada campus, orange groves and forest where wild boars (Sus scrofa) are established in Tanabe, Wakayama Prefecture. The number of R. equi in the lower gastrointestinal contents of 23 earthworms collected from our campus was significantly larger than that of the upper gastrointestinal content. The mean numbers of R. equi from the gastrointestinal contents of earthworms collected from the various places were 2·3-fold to 39·7-fold more than those of the surrounding soil samples. In all, 1771 isolates from the earthworms and 489 isolates from the soil samples were tested for the presence of vapA and vapB genes using polymerase chain reaction. At the horse-breeding farm N, 9 of the 109 isolates (8·3%) from the earthworms and 7 of the 106 isolates (6·6%) from the soil samples were positive for the vapA gene. At the University's forest, one of the 250 isolates (0·4%) from the gastrointestinal contents of the earthworm was positive for the vapB gene. These results revealed that R. equi can be found in significant quantities in the gastrointestinal contents of earthworms, suggesting that they act as an accumulator of R. equi in the soil environment and as a source or reservoir of animal infection.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Oligoquetos , Rhodococcus equi , Animais , Conteúdo Gastrointestinal , Cavalos , Microbiologia do Solo
14.
Lett Appl Microbiol ; 75(4): 908-912, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35707941

RESUMO

Clinical samples from 123 foals with suspected rhodococcosis submitted to the Veterinary Microbiological Diagnostic Centre of the Faculty of Veterinary Medicine between 1993 and 2006 were tested for the presence of the virulence gene vapA. Of the 123 samples, 120 were vapA-positive and 3 vapA-negative Rhodococcus equi were isolated. The 120 vapA-positive R. equi were isolated from 70 tracheal wash, 19 lung tissues, 7 lymph nodes, 6 synovial fluids, 13 abscesses or pus and single isolates from the uterus, gut, cerebrospinal fluid, abdomen fluid and faeces. Of the 120 isolates, 46 were from Dutch warmblood horses, 23 from Friesian horses, 14 from Trotters, 4 from Holsteiners, 3 from Arab breed, 2 from ponies, 1 from a Welsh pony and 27 from undefined breed horses. Using plasmid profile analysis of the 120 isolates, 117 isolates contained the 85-kb type I plasmid, 2 contained the 87-kb type I plasmid and 1 contained the novel 52-kb non-mobilizable virulence plasmid reported recently. These results showed that the virulent R. equi strains harbouring a virulence plasmid of 85-kb type I or 87-kb type I, which have been detected in clinical isolates from five European countries, are widespread in the Netherlands. This is the first report of plasmid types of clinical R. equi isolates in the Netherlands.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Rhodococcus equi , Infecções por Actinomycetales/epidemiologia , Infecções por Actinomycetales/microbiologia , Infecções por Actinomycetales/veterinária , Animais , Proteínas de Bactérias/genética , Feminino , Doenças dos Cavalos/epidemiologia , Cavalos/genética , Países Baixos , Plasmídeos/genética , Rhodococcus equi/genética , Microbiologia do Solo , Virulência/genética , Fatores de Virulência/genética
15.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077142

RESUMO

Rhodococcus equi (R. equi) is a Gram-positive coccobacillus that causes pneumonia in foals of less than 3 months, which have the ability of replication in macrophages. The ability of R. equi persist in macrophages is dependent on the virulence plasmid pVAPA. Gram-positive extracellular vesicles (EVs) carry a variety of virulence factors and play an important role in pathogenic infection. There are few studies on R. equi-derived EVs (R. equi-EVs), and little knowledge regarding the mechanisms of how R. equi-EVs communicate with the host cell. In this study, we examine the properties of EVs produced by the virulence strain R. equi 103+ (103+-EVs) and avirulenct strain R. equi 103− (103−-EVs). We observed that 103+-EVs and 103−-EVs are similar to other Gram-positive extracellular vesicles, which range from 40 to 260 nm in diameter. The 103+-EVs or 103−-EVs could be taken up by mouse macrophage J774A.1 and cause macrophage cytotoxicity. Incubation of 103+-EVs or 103−-EVs with J774A.1 cells would result in increased expression levels of IL-1ß, IL-6, and TNF-α. Moreover, the expression of TLR2, p-NF-κB, p-p38, and p-ERK were significantly increased in J774A.1 cells stimulated with R. equi-EVs. In addition, we presented that the level of inflammatory factors and expression of TLR2, p-NF-κB, p-p38, and p-ERK in J774A.1 cells showed a significant decreased when incubation with proteinase K pretreated-R. equi-EVs. Overall, our data indicate that R. equi-derived EVs are capable of mediating inflammatory responses in macrophages via TLR2-NF-κB/MAPK pathways, and R. equi-EVs proteins were responsible for TLR2-NF-κB/MAPK mediated inflammatory responses in macrophage. Our study is the first to reveal potential roles for R. equi-EVs in immune response in R. equi-host interactions and to compare the differences in macrophage inflammatory responses mediated by EVs derived from virulent strain R. equi and avirulent strain R. equi. The results of this study have improved our knowledge of the pathogenicity of R. equi.


Assuntos
Infecções por Actinomycetales , Vesículas Extracelulares , Rhodococcus equi , Infecções por Actinomycetales/metabolismo , Infecções por Actinomycetales/veterinária , Animais , Vesículas Extracelulares/metabolismo , Cavalos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Rhodococcus equi/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
16.
Biochemistry ; 60(49): 3771-3782, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843221

RESUMO

A new method to trap catalytic intermediate species was employed with Fe-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase). ReNHase was incubated with substrates in a 23% (w/w) NaCl/H2O eutectic system that remained liquid at -20 °C, thereby permitting the observation of transient species that were present at electron paramagnetic resonance (EPR)-detectable levels in samples frozen while in the steady state. FeIII-EPR signals from the resting enzyme were unaffected by the presence of 23% NaCl, and the catalytic activity was ∼55% that in the absence of NaCl at the optimum pH of 7.5. The reaction of ReNHase in the eutectic system at -20 °C with the substrates acetonitrile or benzonitrile induced significant changes in the EPR spectra. A previously unobserved signal with highly rhombic g-values (g1 = 2.31) was observed during the steady state but did not persist beyond the exhaustion of the substrate, indicating that it arises from a catalytically competent intermediate. Distinct signals due to product complexes provide a detailed mechanism for product release, the rate-limiting step of the reaction. Assignment of the observed EPR signals was facilitated by density functional theory calculations, which provided candidate structures and g-values for various proposed ReNHase intermediates. Collectively, these results provide new insights into the catalytic mechanism of NHase and offer a new approach for isolating and characterizing EPR-active intermediates in metalloenzymes.


Assuntos
Acetonitrilas/química , Proteínas de Bactérias/química , Hidroliases/química , Ferro/química , Nitrilas/química , Rhodococcus equi/química , Acetonitrilas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Temperatura Baixa , Solventes Eutéticos Profundos/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hidroliases/genética , Hidroliases/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Cinética , Nitrilas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus equi/enzimologia , Cloreto de Sódio/química , Especificidade por Substrato , Água/química
17.
Emerg Infect Dis ; 27(2): 529-537, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496218

RESUMO

Multidrug resistance has been detected in the animal and zoonotic human pathogen Rhodococcus equi after mass macrolide/rifampin antibioprophylaxis in endemically affected equine farms in the United States. Multidrug-resistant (MDR) R. equi emerged upon acquisition of pRERm46, a conjugative plasmid conferring resistance to macrolides, lincosamides, streptogramins, and, as we describe, tetracycline. Phylogenomic analyses indicate that the increasing prevalence of MDR R. equi since it was first documented in 2002 is caused by a clone, R. equi 2287, attributable to coselection of pRErm46 with a chromosomal rpoBS531F mutation driven by macrolide/rifampin therapy. pRErm46 spillover to other R. equi genotypes has given rise to a novel MDR clone, G2016, associated with a distinct rpoBS531Y mutation. Our findings illustrate that overuse of antimicrobial prophylaxis in animals can generate MDR pathogens with zoonotic potential. MDR R. equi and pRErm46-mediated resistance are currently disseminating in the United States and are likely to spread internationally through horse movements.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Rhodococcus equi , Rhodococcus , Infecções por Actinomycetales/tratamento farmacológico , Infecções por Actinomycetales/epidemiologia , Infecções por Actinomycetales/veterinária , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Doenças dos Cavalos/epidemiologia , Cavalos , Macrolídeos/farmacologia , Rhodococcus equi/genética , Estados Unidos/epidemiologia
18.
J Clin Microbiol ; 59(10): e0114921, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34319806

RESUMO

Clonal multidrug resistance recently emerged in Rhodococcus equi, complicating the therapeutic management of this difficult-to-treat animal- and human-pathogenic actinomycete. The currently spreading multidrug-resistant (MDR) "2287" clone arose in equine farms upon acquisition, and coselection by mass macrolide-rifampin therapy, of the pRErm46 plasmid carrying the erm(46) macrolide-lincosamide-streptogramin resistance determinant, and of an rpoBS531F mutation. Here, we screened a collection of susceptible and macrolide-resistant R. equi strains from equine clinical cases using a panel of 15 antimicrobials against rapidly growing mycobacteria (RGM) and nocardiae and other aerobic actinomycetes (NAA). R. equi isolates-including MDR ones-were generally susceptible to linezolid, minocycline, tigecycline, amikacin, and tobramycin according to Staphylococcus aureus interpretive criteria, plus imipenem, cefoxitin, and ceftriaxone based on Clinical and Laboratory Standards Institute (CLSI) guidelines for RGM/NAA. Susceptibility to ciprofloxacin and moxifloxacin was borderline according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. Molecular analyses linked pRErm46 to significantly increased MICs for trimethoprim-sulfamethoxazole and doxycycline, in addition to clarithromycin, within the RGM/NAA panel, and to streptomycin, spectinomycin, and tetracycline resistance. pRErm46 variants with spontaneous deletions in the class 1 integron (C1I) region, observed in ≈30% of erm(46)-positive isolates, indicated that the newly identified resistances were attributable to the C1I's sulfonamide (sul1) and aminoglycoside (aaA9) resistance cassettes and adjacent tetRA(33) determinant. Most MDR isolates carried the rpoBS531F mutation of the 2287 clone, while different rpoB mutations (S531L, S531Y) detected in two cases suggest the emergence of novel MDR R. equi strains.


Assuntos
Rhodococcus equi , Rhodococcus , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Cavalos , Humanos , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Rhodococcus equi/genética
19.
J Antimicrob Chemother ; 76(8): 2040-2048, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33855442

RESUMO

BACKGROUND: This study introduces a newly created strain (Rhodococcus equiEtBr25) by exposing R. equi ATCC 33701 to ethidium bromide (EtBr), a substrate for MDR transporters. Such an approach allowed us to investigate the resulting phenotype and genetic mechanisms underlying the efflux-mediated resistance in R. equi. METHODS: R. equi ATCC 33701 was stimulated with increasing concentrations of EtBr. The antimicrobial susceptibility of the parental strain and R. equiEtBr25 was investigated in the presence/absence of efflux pump inhibitors (EPIs). EtBr efflux was evaluated by EtBr-agar method and flow cytometry. The presence of efflux pump genes was determined by conventional PCR before to quantify the expression of 30 genes coding for membrane transporters by qPCR. The presence of erm(46) and mutations in 23S rRNA, and gyrA/gyrB was assessed by PCR and DNA sequencing to exclude the occurrence of resistance mechanisms other than efflux. RESULTS: R. equi EtBr25 showed an increased EtBr efflux. Against this strain, the activity of EtBr, azithromycin and ciprofloxacin was more affected than that of rifampicin and azithromycin/rifampicin combinations. Resistances were reversed by combining the antimicrobials with EPIs. Gene expression analysis detected a marked up-regulation of REQ_RS13460 encoding for a Major Facilitator Superfamily (MFS) transporter. G→A transition occurred in the transcriptional repressor tetR/acrR adjacent to REQ_RS13460. CONCLUSIONS: Exposure of R. equi to EtBr unmasked an efflux-mediated defence against azithromycin and ciprofloxacin, which seemingly correlates with the overexpression of a specific MFS transporter. This genotype may mirror an insidious low-level resistance of clinically important isolates that could be countered by EPI-based therapies.


Assuntos
Rhodococcus equi , Rhodococcus , Antibacterianos/farmacologia , Etídio , Humanos , Testes de Sensibilidade Microbiana , Rhodococcus equi/genética
20.
Int J Med Microbiol ; 311(6): 151519, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34280738

RESUMO

Rhodococcus equi is a saprophytic soil bacterium and intracellular pathogen that causes refractory suppurative pneumonia in foals and has emerged as a pathogenic cause of zoonotic disease. Several studies have reported human infections caused by R. equi harboring a recently described third type of virulence plasmid, the ruminant-associated pVAPN, which carries the vapN virulence determinant. Herein, we analyzed pathogenicity and genomic features of nine vapN-harboring R. equi isolated from human patients with and without HIV/AIDS. Four of these strains showed significant VapN production and proliferation in cultured macrophages. These strains were lethally pathogenic after inoculation with 1.0 × 108 CFU in mice and reproduced a necrotizing granulomatous inflammation in the liver and spleen similar to that observed in humans. Additionally, we determined entire genome sequences of all nine strains. Lengths of sequences were 5.0-5.3 Mbp, and GC contents were 68.7 %-68.8 %. All strains harbored a 120- or 125-kbp linear plasmid carrying vapN (Type I or Type II pVAPN) classified on the basis of differences in the distal sequences on the 3' side. Interestingly, VapN production differed significantly among strains harboring nearly identical types of pVAPN with variation limited to several SNPs and short base pair indels. The pVAPN sequences possessed by the VapN-producing strains did not retain any common genetic characteristics, and more detailed analyses, including chromosomal genes, are needed to further elucidate the VapN expression mechanism.


Assuntos
Infecções por Actinomycetales , Rhodococcus equi , Rhodococcus , Infecções por Actinomycetales/veterinária , Animais , Genômica , Cavalos , Humanos , Camundongos , Plasmídeos/genética , Rhodococcus equi/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA