Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(1): 212-223.e17, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241607

RESUMO

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.4 and 3.3 Å resolution, respectively. Furthermore, a 6.5 Å reconstruction of apo Cas13d combined with hydrogen-deuterium exchange revealed conformational dynamics that have implications for RNA scanning. These structures, together with biochemical and cellular characterization, provide insights into its RNA-guided, RNA-targeting mechanism and delineate a blueprint for the rational design of improved transcriptome engineering technologies.


Assuntos
Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/fisiologia , Ribonucleases/fisiologia , Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Microscopia Crioeletrônica/métodos , Endonucleases/metabolismo , Células HEK293 , Humanos , Conformação Molecular , RNA/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/ultraestrutura , Ribonucleases/metabolismo , Ribonucleases/ultraestrutura
2.
Biochemistry ; 60(22): 1755-1763, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33999611

RESUMO

The dynamics of peptide-protein binding and unbinding of a variant of the RNase S system has been investigated. To initiate the process, a photoswitchable azobenzene moiety has been covalently linked to the S-peptide, thereby switching its binding affinity to the S-protein. Transient fluorescence quenching was measured with the help of a time-resolved fluorometer, which has been specifically designed for these experiments and is based on inexpensive light-emitting diodes and laser diodes only. One mutant shows on-off behavior with no specific binding detectable in one of the states of the photoswitch. Unbinding is faster by at least 2 orders of magnitude, compared to that of other variants of the RNase S system. We conclude that unbinding is essentially barrier-less in that case, revealing the intrinsic dynamics of the unbinding event, which occurs on a time scale of a few hundred microseconds in a strongly stretched-exponential manner.


Assuntos
Peptídeos/metabolismo , Ligação Proteica/fisiologia , Ribonucleases/metabolismo , Cinética , Peptídeos/química , Proteínas/química , Proteínas/metabolismo , Ribonucleases/fisiologia , Ribonucleases/ultraestrutura , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos
3.
Plant Physiol ; 184(4): 1702-1716, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037127

RESUMO

Recent studies have shown that loss of pollen-S function in S4' pollen from sweet cherry (Prunus avium) is associated with a mutation in an S haplotype-specific F-box4 (SFB4) gene. However, how this mutation leads to self-compatibility is unclear. Here, we examined this mechanism by analyzing several self-compatible sweet cherry varieties. We determined that mutated SFB4 (SFB4') in S4' pollen (pollen harboring the SFB4' gene) is approximately 6 kD shorter than wild-type SFB4 due to a premature termination caused by a four-nucleotide deletion. SFB4' did not interact with S-RNase. However, a protein in S4' pollen ubiquitinated S-RNase, resulting in its degradation via the 26S proteasome pathway, indicating that factors in S4' pollen other than SFB4 participate in S-RNase recognition and degradation. To identify these factors, we used S4-RNase as a bait to screen S4' pollen proteins. Our screen identified the protein encoded by S 4 -SLFL2, a low-polymorphic gene that is closely linked to the S-locus. Further investigations indicate that SLFL2 ubiquitinates S-RNase, leading to its degradation. Subcellular localization analysis showed that SFB4 is primarily localized to the pollen tube tip, whereas SLFL2 is not. When S 4 -SLFL2 expression was suppressed by antisense oligonucleotide treatment in wild-type pollen tubes, pollen still had the capacity to ubiquitinate S-RNase; however, this ubiquitin-labeled S-RNase was not degraded via the 26S proteasome pathway, suggesting that SFB4 does not participate in the degradation of S-RNase. When SFB4 loses its function, S4-SLFL2 might mediate the ubiquitination and degradation of S-RNase, which is consistent with the self-compatibility of S4' pollen.


Assuntos
Polinização/genética , Polinização/fisiologia , Prunus avium/genética , Prunus avium/fisiologia , Ribonucleases/genética , Ribonucleases/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia , China , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
4.
Nucleic Acids Res ; 47(13): 7035-7048, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31114929

RESUMO

The eIF4E-homologous protein (4EHP) is a translational repressor that competes with eIF4E for binding to the 5'-cap structure of specific mRNAs, to which it is recruited by protein factors such as the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins (GIGYF). Several experimental evidences suggest that GIGYF proteins are not merely facilitating 4EHP recruitment to transcripts but are actually required for the repressor activity of the complex. However, the underlying molecular mechanism is unknown. Here, we investigated the role of the uncharacterized Drosophila melanogaster (Dm) GIGYF protein in post-transcriptional mRNA regulation. We show that, when in complex with 4EHP, Dm GIGYF not only elicits translational repression but also promotes target mRNA decay via the recruitment of additional effector proteins. We identified the RNA helicase Me31B/DDX6, the decapping activator HPat and the CCR4-NOT deadenylase complex as binding partners of GIGYF proteins. Recruitment of Me31B and HPat via discrete binding motifs conserved among metazoan GIGYF proteins is required for downregulation of mRNA expression by the 4EHP-GIGYF complex. Our findings are consistent with a model in which GIGYF proteins additionally recruit decapping and deadenylation complexes to 4EHP-containing RNPs to induce translational repression and degradation of mRNA targets.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Fator de Iniciação 4E em Eucariotos/fisiologia , Regulação da Expressão Gênica , Proteínas de Ligação ao Cap de RNA/fisiologia , RNA Mensageiro/genética , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Animais , Sequência Conservada , RNA Helicases DEAD-box/fisiologia , Regulação para Baixo , Endopeptidases/fisiologia , Genes Reporter , Complexos Multiproteicos , Biossíntese de Proteínas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Ribonucleases/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Molecules ; 26(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833876

RESUMO

Barnase is an extracellular ribonuclease secreted by Bacillus amyloliquefaciens that was originally studied as a small stable enzyme with robust folding. The identification of barnase intracellular inhibitor barstar led to the discovery of an incredibly strong protein-protein interaction. Together, barnase and barstar provide a fully genetically encoded toxin-antitoxin pair having an extremely low dissociation constant. Moreover, compared to other dimerization systems, the barnase-barstar module provides the exact one-to-one ratio of the complex components and possesses high stability of each component in a complex and high solubility in aqueous solutions without self-aggregation. The unique properties of barnase and barstar allow the application of this pair for the engineering of different variants of targeted anticancer compounds and cytotoxic supramolecular complexes. Using barnase in suicide gene therapy has also found its niche in anticancer therapy. The application of barnase and barstar in contemporary experimental cancer therapy is reflected in the review.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Ribonucleases/metabolismo , Bacillus/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/fisiologia , Humanos , Cinética , Modelos Moleculares , Nanotecnologia/métodos , Neoplasias/tratamento farmacológico , Conformação Proteica/efeitos dos fármacos , Ribonucleases/antagonistas & inibidores , Ribonucleases/fisiologia
6.
PLoS Pathog ; 14(11): e1007331, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30475899

RESUMO

HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late in infection and packaged into virions. Paradoxically, vhs is active against not only host but also virus transcripts, and is involved in host shutoff and the temporal expression of the virus transcriptome. Two other virus proteins-VP22 and VP16 -are proposed to regulate vhs to prevent uncontrolled and lethal mRNA degradation but their mechanism of action is unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was independent of their relative abundance or transcription rate. However, vhs endoribonuclease activity was not found to be overactive against any of the cell transcriptome in Δ22-infected cells but rather was delayed, while its activity against the virus transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but also late transcripts were retained in the nucleus by a vhs-dependent mechanism, a characteristic that extended to cellular transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-induced nuclear retention and not degradation of infected cell mRNA. We have therefore revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late protein production.


Assuntos
Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Ribonucleases/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Endorribonucleases/genética , Regulação Viral da Expressão Gênica/genética , Células HeLa , Humanos , Estabilidade de RNA , RNA Mensageiro/genética , RNA Viral/genética , Ribonucleases/fisiologia , Transcriptoma , Proteínas Virais/fisiologia , Vírion/metabolismo
7.
Plant Physiol ; 179(3): 929-942, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30679267

RESUMO

Toxic proteins are prime targets for molecular farming (the generation of pharmacologically active or biotechnologically usable compounds in plants) and are also efficient tools for targeted cell ablation in genetics, developmental biology, and biotechnology. However, achieving conditional activity of cytotoxins and maintaining the toxin-expressing plants as stably transformed lines remain challenging. Here, we produce a switchable version of the highly cytotoxic bacterial RNase barnase by fusing the protein to a portable protein degradation cassette, the low-temperature degron cassette. This method allows conditional genetics based on conditional protein degradation via the N-end rule or N-degron pathway and has been used to vice versa accumulate and/or deplete a diverse variety of highly active, unstable or stable target proteins in different living multicellular organisms and cell systems. Moreover, we expressed the barnase fusion under control of the trichome-specific TRIPTYCHON promoter. This enabled efficient temperature-dependent control of protein accumulation in Arabidopsis (Arabidopsis thaliana) leaf hairs (trichomes). By tuning the levels of the protein, we were able to control the fate of trichomes in vivo. The on-demand formation of trichomes through manipulating the balance between stabilization and destabilization of barnase provides proof of concept for a robust and powerful tool for conditional switchable cell arrest. We present this tool as a potential strategy for the manufacture and accumulation of cytotoxic proteins and toxic high-value products in plants or for conditional genetic cell ablation.


Assuntos
Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Ribonucleases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Engenharia de Proteínas , Ribonucleases/genética , Ribonucleases/fisiologia , Biologia Sintética/métodos , Temperatura , Nicotiana/genética , Nicotiana/metabolismo , Tricomas/metabolismo
8.
Biochem J ; 476(19): 2927-2938, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31530713

RESUMO

Detection and degradation of foreign nucleic acids is an ancient form of host defense. However, the underlying mechanisms are not completely clear. MCPIP1 is an endoribonuclease and an important regulator in both innate and adaptive immunity by targeting inflammatory mRNA degradation. Here we report that MCPIP1 RNase can also selectively detect and degrade the mRNAs encoded by transfected plasmids. In transient transfection, MCPIP1 expression potently degraded the mRNA from exogenously transfected vectors, which is independent on the vector, genes and cell types used. Conversely, the expression of transfected plasmids in MCPIP1-null cells is significantly higher than that in wild-type cells. Interestingly, overexpression of MCPIP1 or MCPIP1 deficiency does not affect the expression of the exogenous genes incorporated into the host genome in a stable cell line or the global gene expression of host genome. This ability is not associated with PKR/RNase L system, as PKR inhibitors does not block MCPIP1-mediated mRNA degradation of exogenously transfected genes. Lastly, expression of MCPIP1 suppressed replication of Zika virus in infected cells. The study may provide a model for understanding the antiviral mechanisms of MCPIP1, and a putative tool to increase the expression of transfected exogenous genes.


Assuntos
Estabilidade de RNA , RNA Mensageiro/química , RNA Viral/química , Ribonucleases/fisiologia , Fatores de Transcrição/fisiologia , Replicação Viral/fisiologia , Infecção por Zika virus/genética , Zika virus/genética , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Transfecção
9.
Biochem Biophys Res Commun ; 515(2): 378-385, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31155290

RESUMO

Atherosclerotic plaque rupture is the main cause of acute coronary syndrome (ACS). Angiotensin II (Ang II) and macrophage apoptosis are involved in the pathogenesis of atherosclerosis. However, the underlying mechanisms remain unclear. We aimed to address the role of monocyte chemotactic protein-induced protein 1 (MCPIP1) in Ang II-induced macrophage apoptosis and vulnerable plaque formation. In mouse peritoneal macrophages, Ang II promoted endoplasmic reticulum (ER) stress-dependent macrophage apoptosis. Ang II markedly upregulated the expression of MCPIP1 via activating p38 mitogen-activated protein kinase (p38 MAPK). Treatment with MCPIP1 shRNA downregulated ER stress-related proteins and decreased macrophage apoptosis induced by Ang II. Ang II also activated the AMP-activated protein kinase (AMPK) signaling in macrophages. Inhibition of AMPK reduced macrophage apoptosis by inhibiting the p38 MAPK/MCPIP1/ER stress pathway. Furthermore, blocking the Ang II type 1 receptor (AT1R) with losartan effectively inhibited Ang II-induced macrophage apoptosis and AMPK/p38 MAPK/MCPIP1/ER pathway activation. In the atherosclerotic vulnerable plaque model in mice, losartan inhibited the progression of atherosclerosis and transformed vulnerable plaque into a more stable phenotype. Moreover, losartan markedly decreased the number of CD68+TUNEL+, CD68+MCPIP1+, CD68+p-eIF2α+ and CD68+CHOP+ cells in the lesion area. Taken together, Ang II promotes macrophage apoptosis via the AMPK/p38 MAPK/MCPIP1/ER stress pathway in macrophages via its receptor AT1R, which may contribute to vulnerable plaque formation. Our study clarifies a novel regulatory role of MCPIP1 in Ang II-induced macrophage apoptosis and plaque instability, providing a potential therapeutic target for prevention of ACS.


Assuntos
Angiotensina II/fisiologia , Apoptose/fisiologia , Placa Aterosclerótica/etiologia , Ribonucleases/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Losartan/farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos Peritoneais/patologia , Macrófagos Peritoneais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica/patologia , Placa Aterosclerótica/fisiopatologia , Células RAW 264.7 , RNA Interferente Pequeno/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Ribonucleases/antagonistas & inibidores , Ribonucleases/genética
10.
PLoS Biol ; 14(11): e2000998, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27893764

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi's sarcoma, encodes 25 mature viral miRNAs. MCP-1-induced protein-1 (MCPIP1), a critical regulator of immune homeostasis, has been shown to suppress miRNA biosynthesis via cleavage of precursor miRNAs through its RNase domain. We demonstrate that MCPIP1 can directly cleave KSHV and EBV precursor miRNAs and that MCPIP1 expression is repressed following de novo KSHV infection. In addition, repression with siRNAs to MCPIP1 in KSHV-infected cells increased IL-6 and KSHV miRNA expression, supporting a role for MCPIP1 in IL-6 and KSHV miRNA regulation. We also provide evidence that KSHV miRNAs repress MCPIP1 expression by targeting the 3'UTR of MCPIP1. Conversely, expression of essential miRNA biogenesis components Dicer and TRBP is increased following latent KSHV infection. We propose that KSHV infection inhibits a negative regulator of miRNA biogenesis (MCPIP1) and up-regulates critical miRNA processing components to evade host mechanisms that inhibit expression of viral miRNAs. KSHV-mediated alterations in miRNA biogenesis represent a novel mechanism by which KSHV interacts with its host and a new mechanism for the regulation of viral miRNA expression.


Assuntos
Herpesvirus Humano 8/fisiologia , MicroRNAs/fisiologia , Ribonucleases/fisiologia , Fatores de Transcrição/fisiologia , Humanos , RNA Interferente Pequeno/genética , Ribonucleases/genética , Fatores de Transcrição/genética
11.
J Immunol ; 199(12): 4066-4077, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29127149

RESUMO

Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of Ifng, but not Il4 or Il17a Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as Furin and Il12rb1, via their 3' untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically.


Assuntos
Miocardite/imunologia , Miocárdio/patologia , Ribonucleases/fisiologia , Células Th1/imunologia , Ubiquitina-Proteína Ligases/fisiologia , Regiões 3' não Traduzidas , Animais , Fibrose , Furina/biossíntese , Furina/genética , Regulação da Expressão Gênica/imunologia , Células HeLa , Homeostase , Humanos , Interferon gama/biossíntese , Interferon gama/genética , Interleucina-17/biossíntese , Interleucina-17/genética , Interleucina-4/biossíntese , Interleucina-4/genética , Células Jurkat , Ativação Linfocitária , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Miocardite/genética , RNA Mensageiro/biossíntese , Receptores de Interleucina-12/biossíntese , Receptores de Interleucina-12/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/deficiência , Ribonucleases/genética , Organismos Livres de Patógenos Específicos , Baço/citologia , Baço/imunologia , Células Th1/patologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
12.
Mol Cell ; 43(6): 940-9, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21925382

RESUMO

In Escherichia coli, RNA degradation often begins with conversion of the 5'-terminal triphosphate to a monophosphate, creating a better substrate for internal cleavage by RNase E. Remarkably, no homolog of this key endonuclease is present in many bacterial species, such as Bacillus subtilis and various pathogens. Here, we report that the degradation of primary transcripts in B. subtilis can nevertheless be triggered by an analogous process to generate a short-lived, monophosphorylated intermediate. Like its E. coli counterpart, the B. subtilis RNA pyrophosphohydrolase that catalyzes this event is a Nudix protein that prefers unpaired 5' ends. However, in B. subtilis, this modification exposes transcripts to rapid 5' exonucleolytic degradation by RNase J, which is absent in E. coli but present in most bacteria lacking RNase E. This pathway, which closely resembles the mechanism by which deadenylated mRNA is degraded in eukaryotic cells, explains the stabilizing influence of 5'-terminal stem-loops in such bacteria.


Assuntos
Bacillus subtilis/genética , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Fosforilação , Pirofosfatases/genética , Pirofosfatases/fisiologia , Ribonucleases/metabolismo , Ribonucleases/fisiologia , Nudix Hidrolases
13.
Nucleic Acids Res ; 45(11): 6848-6863, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28402567

RESUMO

Nonsense-mediated mRNA decay (NMD) is essential for removing premature termination codon-containing transcripts from cells. Studying the NMD pathway in model organisms can help to elucidate the NMD mechanism in humans and improve our understanding of how this biologically important process has evolved. Ciliates are among the earliest branching eukaryotes; their NMD mechanism is poorly understood and may be primordial. We demonstrate that highly conserved Upf proteins (Upf1a, Upf2 and Upf3) are involved in the NMD pathway of the ciliate, Tetrahymena thermophila. We further show that a novel protozoa-specific nuclease, Smg6L, is responsible for destroying many NMD-targeted transcripts. Transcriptome-wide identification and characterization of NMD-targeted transcripts in vegetative Tetrahymena cells showed that many have exon-exon junctions downstream of the termination codon. However, Tetrahymena may lack a functional exon junction complex (EJC), and the Tetrahymena ortholog of an EJC core component, Mago nashi (Mag1), is dispensable for NMD. Therefore, NMD is EJC independent in this early branching eukaryote.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Protozoários/fisiologia , RNA Mensageiro/metabolismo , Ribonucleases/fisiologia , Tetrahymena thermophila/genética , Sequência de Aminoácidos , Sequência Conservada , Éxons , RNA de Protozoário/metabolismo , Tetrahymena thermophila/enzimologia , Transcriptoma
14.
Plant Mol Biol ; 93(1-2): 35-48, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27681945

RESUMO

KEY MESSAGE: The manuscript by Alves et al. entitled "Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants" describes the identification and characterization of tRNAderived sRNA fragments in plants. By combining bioinformatic analysis and genetic and molecular approaches, we show that tRF biogenesis does not rely on canonical microRNA/siRNA processing machinery (i.e., independent of DICER-LIKE proteins). Moreover, we provide evidences that the Arabidopsis S-like Ribonuclease 1 (RNS1) might be involved in the biogenesis of tRFs. Detailed analyses showed that plant tRFs are sorted into different types of ARGONAUTE proteins and that they have potential target candidate genes. Our work advances the understanding of the tRF biology in plants by providing evidences that plant and animal tRFs shared common features and raising the hypothesis that an interplay between tRFs and other sRNAs might be important to fine-tune gene expression and protein biosynthesis in plant cells. Small RNA (sRNA) fragments derived from tRNAs (3'-loop, 5'-loop, anti-codon loop), named tRFs, have been reported in several organisms, including humans and plants. Although they may interfere with gene expression, their biogenesis and biological functions in plants remain poorly understood. Here, we capitalized on small RNA sequencing data from distinct species such as Arabidopsis thaliana, Oryza sativa, and Physcomitrella patens to examine the diversity of plant tRFs and provide insight into their properties. In silico analyzes of 19 to 25-nt tRFs derived from 5' (tRF-5s) and 3'CCA (tRF-3s) tRNA loops in these three evolutionary distant species showed that they are conserved and their abundance did not correlate with the number of genomic copies of the parental tRNAs. Moreover, tRF-5 is the most abundant variant in all three species. In silico and in vivo expression analyses unraveled differential accumulation of tRFs in Arabidopsis tissues/organs, suggesting that they are not byproducts of tRNA degradation. We also verified that the biogenesis of most Arabidopsis 19-25 nt tRF-5s and tRF-3s is not primarily dependent on DICER-LIKE proteins, though they seem to be associated with ARGONAUTE proteins and have few potential targets. Finally, we provide evidence that Arabidopsis ribonuclease RNS1 might be involved in the processing and/or degradation of tRFs. Our data support the notion that an interplay between tRFs and other sRNAs might be important to fine tune gene expression and protein biosynthesis in plant cells.


Assuntos
Genoma de Planta , RNA de Plantas/química , RNA de Transferência/química , Arabidopsis/genética , Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Biologia Computacional , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , RNA de Plantas/metabolismo , RNA de Transferência/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ribonucleases/genética , Ribonucleases/metabolismo , Ribonucleases/fisiologia
15.
Planta ; 245(4): 779-792, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28025674

RESUMO

MAIN CONCLUSION: Localization of the RNase RNS2 to the vacuole via a C-terminal targeting signal is essential for its function in rRNA degradation and homeostasis. RNase T2 ribonucleases are highly conserved enzymes present in the genomes of nearly all eukaryotes and many microorganisms. Their constitutive expression in different tissues and cell types of many organisms suggests a housekeeping role in RNA homeostasis. The Arabidopsis thaliana class II RNase T2, RNS2, is encoded by a single gene and functions in rRNA degradation. Loss of RNS2 results in RNA accumulation and constitutive activation of autophagy, possibly as a compensatory mechanism. While the majority of RNase T2 enzymes is secreted, RNS2 is located within the vacuole and in the endoplasmic reticulum (ER), possibly within ER bodies. As RNS2 has a neutral pH optimum, and the endomembrane organelles are connected by vesicle transport, the site within the endomembrane system at which RNS2 functions is unclear. Here we demonstrate that localization to the vacuole is essential for the physiological function of RNS2. A mutant allele of RNS2, rns2-1, results in production of an active RNS2 RNase but with a mutation that removes a putative C-terminal vacuolar targeting signal. The mutant protein is, therefore, secreted from the cell. This results in a constitutive autophagy phenotype similar to that observed in rns2 null mutants. These findings illustrate that the intracellular retention of RNS2 and localization within the vacuole are critical for its cellular function.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ribonucleases/fisiologia , Vacúolos/enzimologia , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Autofagia/fisiologia , Clonagem Molecular , Homeostase/fisiologia , Protoplastos/fisiologia , RNA Ribossômico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacúolos/fisiologia
16.
J Biol Chem ; 290(21): 13372-85, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25861989

RESUMO

DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1ß or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1ß or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dano ao DNA/genética , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , NF-kappa B/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleases/fisiologia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação
17.
Part Fibre Toxicol ; 13(1): 55, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27782836

RESUMO

BACKGROUND: Silicosis is characterized by accumulation of fibroblasts and excessive deposition of extracellular matrix. Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) plays a critical role in fibrosis induced by SiO2. However, the details of the downstream events of MCPIP1 activity in pulmonary fibrosis remain unclear. To elucidate the role of MCPIP1-induced autophagy in SiO2-induced fibrosis, both the upstream molecular mechanisms and the functional effects of SiO2 on cell apoptosis, proliferation and migration were investigated. RESULTS: Experiments using primary cultures of alveolar macrophages from healthy donors and silicosis patients as well as differentiated U937 macrophages demonstrated the following results: 1) SiO2 induced macrophage autophagy in association with enhanced expression of MCPIP1; 2) autophagy promoted apoptosis and activation of macrophages exposed to SiO2, and these events induced the development of silicosis; 3) MCPIP1 facilitated macrophage apoptosis and activation via p53 signaling-mediated autophagy; and 4) SiO2-activated macrophages promoted the proliferation and migration of fibroblasts via the MCPIP1/p53-mediated autophagy pathway. CONCLUSIONS: Our results elucidated a link between SiO2-induced fibrosis and MCPIP1/p53 signaling-mediated autophagy. These findings provide novel insight into the potential targeting of MCPIP1 or autophagy in the development of potential therapeutic strategies for silicosis.


Assuntos
Autofagia/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Ribonucleases/fisiologia , Dióxido de Silício/toxicidade , Fatores de Transcrição/fisiologia , Apoptose/efeitos dos fármacos , Humanos , Macrófagos/imunologia , RNA Interferente Pequeno/genética , Ribonucleases/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/metabolismo , Células U937
18.
Circulation ; 129(5): 598-606, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24201302

RESUMO

BACKGROUND: Atherosclerosis and vascular remodeling after injury are driven by inflammation and mononuclear cell infiltration. Extracellular RNA (eRNA) has recently been implicated to become enriched at sites of tissue damage and to act as a proinflammatory mediator. Here, we addressed the role of eRNA in high-fat diet-induced atherosclerosis and neointima formation after injury in atherosclerosis-prone mice. METHODS AND RESULTS: The presence of eRNA was revealed in atherosclerotic lesions from high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice in a time-progressive fashion. RNase activity in plasma increased within the first 2 weeks (44±9 versus 70±7 mU/mg protein; P=0.0012), followed by a decrease to levels below baseline after 4 weeks of high-fat diet (44±9 versus 12±2 mU/mg protein; P<0.0001). Exposure of bone marrow-derived macrophages to eRNA resulted in a concentration-dependent upregulation of the proinflammatory mediators tumor necrosis factor-α, arginase-2, interleukin-1ß, interleukin-6, and interferon-γ. In a model of accelerated atherosclerosis after arterial injury in apolipoprotein E-deficient (ApoE(-/-)) mice, treatment with RNase1 diminished the increased plasma level of eRNA evidenced after injury. Likewise, RNase1 administration reduced neointima formation in comparison with vehicle-treated ApoE(-/-) controls (25.0±6.2 versus 46.9±6.9×10(3) µm(2), P=0.0339) and was associated with a significant decrease in plaque macrophage content. Functionally, RNase1 treatment impaired monocyte arrest on activated smooth muscle cells under flow conditions in vitro and inhibited leukocyte recruitment to injured carotid arteries in vivo. CONCLUSIONS: Because eRNA is associated with atherosclerotic lesions and contributes to inflammation-dependent plaque progression in atherosclerosis-prone mice, its targeting with RNase1 may serve as a new treatment option against atherosclerosis.


Assuntos
Líquido Extracelular/fisiologia , Placa Aterosclerótica/sangue , RNA/fisiologia , Ribonucleases/fisiologia , Animais , Aterosclerose/sangue , Aterosclerose/induzido quimicamente , Aterosclerose/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Líquido Extracelular/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/tratamento farmacológico , RNA/sangue , Ribonucleases/uso terapêutico
19.
Kidney Int ; 87(1): 151-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25075772

RESUMO

Recent evidence suggests antimicrobial peptides protect the urinary tract from infection. Ribonuclease 7 (RNase 7), a member of the RNase A superfamily, is a potent epithelial-derived protein that maintains human urinary tract sterility. RNase 7 expression is restricted to primates, limiting evaluation of its antimicrobial activity in vivo. Here we identified ribonuclease 6 (RNase 6) as the RNase A superfamily member present in humans and mice that is most conserved at the amino acid level relative to RNase 7. Like RNase 7, recombinant human and murine RNase 6 has potent antimicrobial activity against uropathogens. Quantitative real-time PCR and immunoblot analysis indicate that RNase 6 mRNA and protein are upregulated in the human and murine urinary tract during infection. Immunostaining located RNase 6 to resident and infiltrating monocytes, macrophages, and neutrophils. Uropathogenic E. coli induces RNase 6 peptide expression in human CD14(+) monocytes and murine bone marrow-derived macrophages. Thus, RNase 6 is an inducible, myeloid-derived protein with markedly different expression from the epithelial-derived RNase 7 but with equally potent antimicrobial activity. Our studies suggest RNase 6 serves as an evolutionarily conserved antimicrobial peptide that participates in the maintenance of urinary tract sterility.


Assuntos
Endorribonucleases/fisiologia , Ribonucleases/fisiologia , Sistema Urinário/enzimologia , Sistema Urinário/microbiologia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana
20.
Nucleic Acids Res ; 41(19): 9141-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23921629

RESUMO

Nucleus-encoded ribonucleases and RNA-binding proteins influence chloroplast gene expression through their roles in RNA maturation and stability. One mechanism for mRNA 5' end maturation posits that sequence-specific pentatricopeptide repeat (PPR) proteins define termini by blocking the 5'→3' exonucleolytic activity of ribonuclease J (RNase J). To test this hypothesis in vivo, virus-induced gene silencing was used to reduce the expression of three PPR proteins and RNase J, both individually and jointly, in Nicotiana benthamiana. In accordance with the stability-conferring function of the PPR proteins PPR10, HCF152 and MRL1, accumulation of the cognate RNA species atpH, petB and rbcL was reduced when the PPR-encoding genes were silenced. In contrast, RNase J reduction alone or combined with PPR deficiency resulted in reduced abundance of polycistronic precursor transcripts and mature counterparts, which were replaced by intermediately sized species with heterogeneous 5' ends. We conclude that RNase J deficiency can partially mask the absence of PPR proteins, and that RNase J is capable of processing chloroplast mRNAs up to PPR protein-binding sites. These findings support the hypothesis that RNase J is the major ribonuclease responsible for maturing chloroplast mRNA 5' termini, with RNA-binding proteins acting as barriers to its activity.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Cloroplastos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , RNA de Transferência/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Ribonucleases/fisiologia , Nicotiana/anatomia & histologia , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA