Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 794
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 160(5): 928-939, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723167

RESUMO

Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even early after telomerase inactivation (ETI), yeast mother cells show transient DNA damage response (DDR) episodes, stochastically altered cell-cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI phenotypes occurred well before the population senescence caused late after telomerase inactivation (LTI). They were morphologically distinct from LTI senescence, were genetically uncoupled from telomere length, and were rescued by elevating dNTP pools. Our combined genetic and single-cell analyses show that, well before critical telomere shortening, telomerase is continuously required to respond to transient DNA replication stress in mother cells and that a lack of telomerase accelerates otherwise normal aging.


Assuntos
Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Ciclo Celular , Cromossomos Fúngicos/metabolismo , Replicação do DNA , Mitocôndrias/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo
2.
Cell ; 149(5): 1023-34, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632967

RESUMO

F-box proteins are the substrate binding subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes. Using affinity purifications and mass spectrometry, we identified RRM2 (the ribonucleotide reductase family member 2) as an interactor of the F-box protein cyclin F. Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides (dNTPs), which are necessary for both replicative and repair DNA synthesis. We found that, during G2, following CDK-mediated phosphorylation of Thr33, RRM2 is degraded via SCF(cyclin F) to maintain balanced dNTP pools and genome stability. After DNA damage, cyclin F is downregulated in an ATR-dependent manner to allow accumulation of RRM2. Defective elimination of cyclin F delays DNA repair and sensitizes cells to DNA damage, a phenotype that is reverted by expressing a nondegradable RRM2 mutant. In summary, we have identified a biochemical pathway that controls the abundance of dNTPs and ensures efficient DNA repair in response to genotoxic stress.


Assuntos
Ciclinas/metabolismo , Reparo do DNA , Ribonucleosídeo Difosfato Redutase/metabolismo , Motivos de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Regulação para Baixo , Fase G2 , Instabilidade Genômica , Humanos , Proteínas Serina-Treonina Quinases/metabolismo
3.
PLoS Genet ; 20(5): e1011148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776358

RESUMO

The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Proteína Rad52 de Recombinação e Reparo de DNA , Ribonucleotídeo Redutases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dano ao DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Reparo do DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo
4.
Mol Cell ; 66(2): 206-220.e9, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28416140

RESUMO

Cells exposed to hypoxia experience replication stress but do not accumulate DNA damage, suggesting sustained DNA replication. Ribonucleotide reductase (RNR) is the only enzyme capable of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs). However, oxygen is an essential cofactor for mammalian RNR (RRM1/RRM2 and RRM1/RRM2B), leading us to question the source of dNTPs in hypoxia. Here, we show that the RRM1/RRM2B enzyme is capable of retaining activity in hypoxia and therefore is favored over RRM1/RRM2 in order to preserve ongoing replication and avoid the accumulation of DNA damage. We found two distinct mechanisms by which RRM2B maintains hypoxic activity and identified responsible residues in RRM2B. The importance of RRM2B in the response to tumor hypoxia is further illustrated by correlation of its expression with a hypoxic signature in patient samples and its roles in tumor growth and radioresistance. Our data provide mechanistic insight into RNR biology, highlighting RRM2B as a hypoxic-specific, anti-cancer therapeutic target.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/enzimologia , Replicação do DNA , DNA de Neoplasias/biossíntese , Oxigênio/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/radioterapia , Dano ao DNA , DNA de Neoplasias/genética , Feminino , Células HCT116 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Interferência de RNA , Tolerância a Radiação , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética , Fatores de Tempo , Transfecção , Carga Tumoral , Hipóxia Tumoral , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer ; 130(17): 2988-2999, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682652

RESUMO

BACKGROUND: Genetic polymorphisms of molecules are known to cause individual differences in the therapeutic efficacy of anticancer drugs. However, to date, germline mutations (but not somatic mutations) for anticancer drugs have not been adequately studied. The objective of this study was to investigate the association between germline polymorphisms of gemcitabine metabolic and transporter genes with carbohydrate antigen 19-9 (CA 19-9) response (decrease ≥50% from the pretreatment level at 8 weeks) and overall survival (OS) in patients with metastatic pancreatic cancer who receive gemcitabine-based chemotherapy. METHODS: This multicenter, prospective, observational study enrolled patients with metastatic pancreatic cancer patients who were receiving gemcitabine monotherapy or gemcitabine plus nanoparticle albumin-bound paclitaxel combination chemotherapy. Thirteen polymorphisms that may be involved in gemcitabine responsiveness were genotyped, and univariate and multivariate logistic regression analyses were used to determine the association of these genotypes with CA 19-9 response and OS. The significance level was set at 5%. RESULTS: In total, 180 patients from 11 hospitals in Japan were registered, and 159 patients whose CA 19-9 response could be assessed were included in the final analysis. Patients who had a CA 19-9 response had significantly longer OS (372 vs. 241 days; p = .007). RRM1 2464A>G and RRM2 175T>G polymorphisms suggested a weak association with CA 19-9 response and OS, but it was not statistically significant. COX-2 -765G>C polymorphism did not significantly correlate with CA 19-9 response but was significantly associated with OS (hazard ratio, 2.031; p = .019). CONCLUSIONS: Genetic polymorphisms from the pharmacokinetics of gemcitabine did not indicate a significant association with efficacy, but COX-2 polymorphisms involved in tumor cell proliferation might affect OS.


Assuntos
Antígeno CA-19-9 , Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Desoxicitidina/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Feminino , Masculino , Idoso , Estudos Prospectivos , Pessoa de Meia-Idade , Antígeno CA-19-9/sangue , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ribonucleosídeo Difosfato Redutase/genética , Antimetabólitos Antineoplásicos/uso terapêutico , Idoso de 80 Anos ou mais , Paclitaxel/uso terapêutico , Paclitaxel/administração & dosagem , Adulto , Metástase Neoplásica , Transportador Equilibrativo 1 de Nucleosídeo/genética , Resultado do Tratamento , Testes Farmacogenômicos , Genótipo
6.
Am J Physiol Gastrointest Liver Physiol ; 327(4): G485-G498, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39259911

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition worldwide, demanding further investigation into its pathogenesis. Circular RNAs (circRNAs) are emerging as pivotal regulators in MASLD processes, yet their pathological implications in MASLD remain poorly understood. This study focused on elucidating the role of circular RNA ribonucleotide reductase subunit M2 (circRRM2) in MASLD progression. In this study, we used both in vitro and in vivo MASLD models using long-chain-free fatty acid (FFA)-treated hepatocytes and high-fat diet (HFD)-induced MASLD in mice, respectively. We determined the expression patterns of circRRM2, microRNA-142-5p (miR-142-5p), and neuregulin 1 (NRG1) in livers of MASLD-afflicted mice and MASLD hepatocytes by RT-qPCR. Dual-luciferase reporter assays verified the binding relationships among circRRM2, miR-142-5p, and NRG1. We conducted further analyses of their roles in MASLD hepatocytes and modulated circRRM2, miR-142-5p, and NRG1 expression in vitro by transfection. Our findings were validated in vivo. The results demonstrated reduced levels of circRRM2 and NRG1, along with elevated miR-142-5p expression in MASLD livers and hepatocytes. Overexpression of circRRM2 downregulated lipogenesis-related genes and decreased triglycerides accumulation in livers of MASLD mice. MiR-142-5p, which interacts with circRRM2, effectively counteracted the effects of circRRM2 in MASLD hepatocytes. Furthermore, NRG1 was identified as a miR-142-5p target, and its overexpression mitigated the regulatory impact of miR-142-5p on MASLD hepatocytes. In conclusion, circRRM2, via its role as a miR-142-5p sponge, upregulating NRG1, possibly influenced triglycerides accumulation in both in vitro and in vivo MASLD models.NEW & NOTEWORTHY CircRRM2 expression was downregulated in free fatty acid (FFA)-challenged hepatocytes and high-fat diet (HFD) fed mice. Overexpressed circular RNA ribonucleotide reductase subunit M2 (circRRM2) attenuated metabolic dysfunction-associated steatotic liver disease (MASLD) development by suppressing FFA-induced triglycerides accumulation. CircRRM2 targeted microRNA-142-5p (miR-142-5p), which served as an upstream inhibitor of neuregulin 1 (NRG1) and collaboratively regulated MASLD progression.


Assuntos
Dieta Hiperlipídica , Hepatócitos , MicroRNAs , Neuregulina-1 , RNA Circular , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Hepatócitos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Masculino , Neuregulina-1/genética , Neuregulina-1/metabolismo , Camundongos Endogâmicos C57BL , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Humanos , Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Ribonucleosídeo Difosfato Redutase
7.
J Virol ; 97(8): e0026723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582207

RESUMO

Avian leukemia virus subgroup J (ALV-J) causes various diseases associated with tumor formation and decreased fertility and induced immunosuppressive disease, resulting in significant economic losses in the poultry industry globally. Virus usually exploits the host cellular machinery for their replication. Although there are increasing evidences for the cellular proteins involving viral replication, the interaction between ALV-J and host proteins leading to the pivotal steps of viral life cycle are still unclear. Here, we reported that ribonucleoside-diphosphate reductase subunit M2 (RRM2) plays a critical role during ALV-J infection by interacting with capsid protein P27 and activating Wnt/ß-catenin signaling. We found that the expression of RRM2 is effectively increased during ALV-J infection, and that RRM2 facilitates ALV-J replication by interacting with viral capsid protein P27. Furthermore, ALV-J P27 activated Wnt/ß-catenin signaling by promoting ß-catenin entry into the nucleus, and RRM2 activated Wnt/ß-catenin signaling by enhancing its phosphorylation at Ser18 during ALV-J infection. These data suggest that the upregulation of RRM2 expression by ALV-J infection favors viral replication in host cells via activating Wnt/ß-catenin signaling. IMPORTANCE Our results revealed a novel mechanism by which RRM2 facilitates ALV-J growth. That is, the upregulation of RRM2 expression by ALV-J infection favors viral replication by interacting with capsid protein P27 and activating Wnt/ß-catenin pathway in host cells. Furthermore, the phosphorylation of serine at position 18 of RRM2 was verified to be the important factor regulating the activation of Wnt/ß-catenin signaling. This study provides insights for further studies of the molecular mechanism of ALV-J infection.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Ribonucleosídeo Difosfato Redutase , Via de Sinalização Wnt , Animais , Vírus da Leucose Aviária/metabolismo , beta Catenina/metabolismo , Proteínas do Capsídeo/metabolismo , Galinhas , Ribonucleosídeo Difosfato Redutase/metabolismo
8.
Inflamm Res ; 73(3): 459-473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286859

RESUMO

OBJECTIVE: Sepsis and sepsis-associated organ failure are devastating conditions for which there are no effective therapeutic agent. Several studies have demonstrated the significance of ferroptosis in sepsis. The study aimed to identify ferroptosis-related genes (FRGs) in sepsis, providing potential therapeutic targets. METHODS: The weighted gene co-expression network analysis (WGCNA) was utilized to screen sepsis-associated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to explore gene functions. Three machine learning methods were employed to identify sepsis-related hub genes. Survival and multivariate Cox regression analysis allowed further screening for the key gene RRM2 associated with prognosis. The immune infiltration analysis of the screened sepsis key genes was performed. Additionally, a cecum ligation and puncture (CLP)-induced mouse sepsis model was constructed to validate the expression of key gene in the sepsis. RESULTS: Six sepsis-associated differentially expressed FRGs (RRM2, RPL7A, HNRNPA1, PEBP1, MYL8B and TXNIP) were screened by WGCNA and three machine learning methods analysis. Survival analysis and multivariate Cox regression analysis showed that RRM2 was a key gene in sepsis and an independent prognostic factor associated with clinicopathological and molecular features of sepsis. Immune cell infiltration analysis demonstrated that RRM2 had a connection to various immune cells, such as CD4 T cells and neutrophils. Furthermore, animal experiment demonstrated that RRM2 was highly expressed in CLP-induced septic mice, and the use of Fer-1 significantly inhibited RRM2 expression, inhibited serum inflammatory factor TNF-α, IL-6 and IL-1ß expression, ameliorated intestinal injury and improved survival in septic mice. CONCLUSION: RRM2 plays an important role in sepsis and may contribute to sepsis through the ferroptosis pathway. This study provides potential therapeutic targets for sepsis.


Assuntos
Ferroptose , Ribonucleosídeo Difosfato Redutase , Sepse , Animais , Camundongos , Linfócitos T CD4-Positivos , Ceco , Modelos Animais de Doenças , Ferroptose/genética , Sepse/genética , Fator de Necrose Tumoral alfa , Ribonucleosídeo Difosfato Redutase/metabolismo
9.
Mol Cell ; 59(6): 1011-24, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26365377

RESUMO

The ATR-Chk1 pathway is critical for DNA damage responses and cell-cycle progression. Chk1 inhibition is more deleterious to cycling cells than ATR inhibition, raising questions about ATR and Chk1 functions in the absence of extrinsic replication stress. Here we show that a key role of ATR in S phase is to coordinate RRM2 accumulation and origin firing. ATR inhibitor (ATRi) induces massive ssDNA accumulation and replication catastrophe in a fraction of early S-phase cells. In other S-phase cells, however, ATRi induces moderate ssDNA and triggers a DNA-PK and Chk1-mediated backup pathway to suppress origin firing. The backup pathway creates a threshold such that ATRi selectively kills cells under high replication stress, whereas Chk1 inhibitor induces cell death at a lower threshold. The levels of ATRi-induced ssDNA correlate with ATRi sensitivity in a panel of cell lines, suggesting that ATRi-induced ssDNA could be predictive of ATRi sensitivity in cancer cells.


Assuntos
Proteína Quinase Ativada por DNA/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Quinases/fisiologia , Fase S , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Origem de Replicação , Ribonucleosídeo Difosfato Redutase/metabolismo , Estresse Fisiológico
10.
Mol Cell ; 58(3): 431-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25891074

RESUMO

Repetitive extragenic palindromic (REP) sequences are highly structured elements found downstream of ∼500 genes in Escherichia coli that result in extensive stem-loop structures in their mRNAs. However, their physiological role has remained elusive. Here, we show that REP sequences can downregulate translation, but only if they are within 15 nt of a termination codon; a spacing of 16 nt has no effect, suggesting that the REP element acts to stall ribosome movement. Ribosome stalling leads to cleavage of the mRNA and induction of the trans-translation process. Using nrdAB as a model, we find that its regulation can be partially reversed by overexpression of RNA helicases and can be fully overcome upon UV stress, emphasizing the importance of this regulatory process. Since 50% of REP-associated genes have these elements within the critical 15 nt, these findings identify a regulatory mechanism with the potential to affect translation from a large number of genes.


Assuntos
Proteínas de Escherichia coli/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Sequências Repetitivas de Ácido Nucleico/genética , Northern Blotting , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Genéticos , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/genética
11.
Proc Natl Acad Sci U S A ; 117(13): 7140-7149, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32188783

RESUMO

The recognition of cis-regulatory RNA motifs in human transcripts by RNA binding proteins (RBPs) is essential for gene regulation. The molecular features that determine RBP specificity are often poorly understood. Here, we combined NMR structural biology with high-throughput iCLIP approaches to identify a regulatory mechanism for U2AF2 RNA recognition. We found that the intrinsically disordered linker region connecting the two RNA recognition motif (RRM) domains of U2AF2 mediates autoinhibitory intramolecular interactions to reduce nonproductive binding to weak Py-tract RNAs. This proofreading favors binding of U2AF2 at stronger Py-tracts, as required to define 3' splice sites at early stages of spliceosome assembly. Mutations that impair the linker autoinhibition enhance the affinity for weak Py-tracts result in promiscuous binding of U2AF2 along mRNAs and impact on splicing fidelity. Our findings highlight an important role of intrinsically disordered linkers to modulate RNA interactions of multidomain RBPs.


Assuntos
RNA/metabolismo , Fator de Processamento U2AF/metabolismo , Animais , Bovinos , Imunoprecipitação da Cromatina/métodos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Motivo de Reconhecimento de RNA , Ribonucleosídeo Difosfato Redutase/metabolismo
12.
Genes Dev ; 29(7): 690-5, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25838540

RESUMO

In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the RNR regulatory subunit RRM2 (Rrm2(TG)) present supraphysiological RNR activity and reduced chromosomal breakage at fragile sites. Moreover, increased Rrm2 gene dosage significantly extends the life span of ATR mutant mice. Our study reveals the first genetic condition in mammals that reduces fragile site expression and alleviates the severity of a progeroid disease by increasing RNR activity.


Assuntos
Quebra Cromossômica , Sítios Frágeis do Cromossomo/genética , Dosagem de Genes/genética , Longevidade/genética , Proteínas Serina-Treonina Quinases/genética , Ribonucleosídeo Difosfato Redutase/genética , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática/genética , Fibroblastos/citologia , Humanos , Camundongos , Nucleosídeos/metabolismo , Análise de Sobrevida
13.
Mol Microbiol ; 116(1): 343-358, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33721378

RESUMO

Campylobacter jejuni is a microaerophilic zoonotic pathogen with an atypical respiratory Complex I that oxidizes a flavodoxin (FldA) instead of NADH. FldA is essential for viability and is reduced via pyruvate and 2-oxoglutarate oxidoreductases (POR/OOR). Here, we show that FldA can also be reduced by FqrB (Cj0559), an NADPH:FldA reductase. An fqrB deletion mutant was viable but displayed a significant growth defect. FqrB is related to flavoprotein reductases from Gram-positive bacteria that can reduce NrdI, a specialized flavodoxin that is needed for tyrosyl radical formation in NrdF, the beta subunit of class 1b-type (Mn) ribonucleotide reductase (RNR). However, C. jejuni possesses a single class Ia-type (Fe) RNR (NrdAB) that would be expected to be ferredoxin dependent. We show that CjFldA is an unusually high potential flavodoxin unrelated to NrdI, yet growth of the fqrB mutant, but not the wild-type or a complemented strain, was stimulated by low deoxyribonucleoside (dRNS) concentrations, suggesting FldA links FqrB and RNR activity. Using purified proteins, we confirmed the NrdB tyrosyl radical could be regenerated in an NADPH, FqrB, and FldA dependent manner, as evidenced by both optical and electron paramagnetic resonance (EPR) spectroscopy. Thus, FldA activates RNR in C. jejuni, partly explaining its essentiality.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Flavodoxina/metabolismo , Flavoproteínas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Oxirredutases do Álcool/metabolismo , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Deleção de Genes , Oxirredução , Piruvato Sintase/metabolismo , Ribonucleotídeo Redutases/metabolismo
14.
RNA ; 26(3): 290-305, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31907208

RESUMO

microRNAs (miRNAs), a class of small and endogenous molecules that control gene expression, are broadly involved in biological processes. Although a number of cofactors that assist or antagonize let-7 miRNA biogenesis are well-established, more auxiliary factors remain to be investigated. Here, we identified SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) as a new player for let-7a miRNA. SYNCRIP interacts with pri-let-7a both in vivo and in vitro. Knockdown of SYNCRIP impairs, while overexpression of SYNCRIP promotes, the expression of let-7a miRNA. A broad miRNA profiling analysis revealed that silencing of SYNCRIP regulates the expression of a set of mature miRNAs positively or negatively. In addition, SYNCRIP is associated with microprocessor complex and promotes the processing of pri-let-7a. Strikingly, the terminal loop of pri-let-7a was shown to be the main contributor for its interaction with SYNCRIP. Functional studies demonstrated that the SYNCRIP RRM2-3 domain can promote the processing of pri-let-7a. Structure-based alignment of RRM2-3 with other RNA binding proteins identified the residues likely to participate in protein-RNA interactions. Taken together, these findings suggest the promising role that SYNCRIP plays in miRNA regulation, thus providing insights into the function of SYNCRIP in eukaryotic development.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Regulação da Expressão Gênica/genética , Humanos , MicroRNAs/química , Ribonucleosídeo Difosfato Redutase/genética
15.
Pancreatology ; 22(3): 401-413, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35300916

RESUMO

BACKGROUND/OBJECTIVES: Ribonucleotide Reductase M2 subunit (RRM2) is elevated in pancreatic cancer and involved in DNA synthesis and cell proliferation. But its specific mechanism including genetic differences and upstream regulatory pathways remains unclear. METHODS: We analyzed RRM2 expression of 178 pancreatic cancer patients in Gene Expression Profiling Interactive Analysis (GEPIA) database. Besides, more pancreatic cancer specimens were collected and detected RRM2 expression by immunohistochemistry. RRM2 knockdown by shRNA was applied for functional and mechanism analysis in vitro. Xenograft tumor growth was significantly slower by RRM2 silencing in vivo. RESULTS: It showed that high RRM2 expression had a poorer overall survival and disease free survival. RRM2 expression was higher in tumor grade 2 and 3 than grade 1. Immunohistochemistry data validated that high RRM2 expression predicted worse survival. RRM2 knockdown significantly reduced cell proliferation, inhibited colony formation and suppressed cell cycle progress. Further mechanism assay showed silencing RRM2 lead to inactivation of PI3K/AKT/mTOR pathway and inhibition of mutant p53, which induce S phase arrest and/or apoptosis. In panc-1 cells, S-phase arrest mediated by mutant p53 inhibition, p21 increase and cell cycle related proteins change. While in miapaca-2 cells, induction of apoptosis and S-phase arrest mediated by CDK1 played a coordinated role. CONCLUSION: Taken together, high RRM2 expression was associated with worse prognosis. Importantly, RRM2 knockdown deactivated PI3K/AKT/mTOR pathway, resulting in cell cycle arrest and/or apoptosis. This study shed light on the molecular mechanism of RRM2 in pancreatic tumor progression and is expected to provide a new theoretical basis for pancreatic cancer treatment.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Humanos , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Ribonucleosídeo Difosfato Redutase , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
16.
Nitric Oxide ; 118: 26-30, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742907

RESUMO

The intracellular concentration of reduced glutathione (GSH) lies in the range of 1-10 mM, thereby indisputably making it the most abundant intracellular thiol. Such a copious amount of GSH makes it the most potent and robust cellular antioxidant that plays a crucial role in cellular defence against redox stress. The role of GSH as a denitrosylating agent is well established; in this study, we demonstrate GSH mediated denitrosylation of HepG2 cell-derived protein nitrosothiols (PSNOs), by a unique spin-trapping mechanism, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin trapping agent, followed by a western blot analysis. We also report our findings of two, hitherto unidentified substrates of GSH mediated S-denitrosylation, namely S-nitrosoglutaredoxin 1 (Grx1-SNO) and S-nitrosylated R1 subunit of ribonucleotide reductase (R1-SNO).


Assuntos
Glutarredoxinas/metabolismo , Glutationa/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , S-Nitrosotióis/metabolismo , Óxidos N-Cíclicos/química , Glutarredoxinas/química , Células Hep G2 , Humanos , Ribonucleosídeo Difosfato Redutase/química , S-Nitrosotióis/química , Marcadores de Spin , Detecção de Spin , Tiorredoxinas/química , Tiorredoxinas/metabolismo
17.
Ann Hepatol ; 27(6): 100743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35964907

RESUMO

INTRODUCTION AND OBJECTIVES: Circular RNA (circRNA) has attracted extensive attention in studies related to the malignant progression of cancer, including hepatocellular carcinoma (HCC). Therefore, its molecular mechanism in HCC needs to be further explored. MATERIALS AND METHODS: The expression levels of circ_0008285, microRNA (miR)-384 and ribonucleotide reductase subunit M2 (RRM2) mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was analyzed using cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, cell apoptosis was analyzed by flow cytometry, and cell migration and invasion were detected by transwell assay. Protein level was detected by western blot. The relationships between miR-384 and circ_0008285 or RRM2 were predicted by bioinformatics software and validated by dual luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS: Circ_0008285 expression is elevated to HCC tissues and cell lines. Silencing of circ_0008285 inhibited the proliferation, migration and invasion of HCC cells but accelerated cell apoptosis in vitro and impeded HCC tumorigenesis in vivo. Mechanistically, circ_0008285 directly interacted with miR-384, and miR-384 silencing attenuated the effects of circ_0008285 interference on cell proliferation, migration, invasion, and apoptosis. RRM2 was a direct target of miR-384, and RRM2 overexpression reversed the effects of miR-384 overexpression on cell proliferation, migration, invasion, and apoptosis. In addition, circ_0008285 regulated RRM2 expression by sponging miR-384. CONCLUSION: In this study, circ_0008285 could promote the malignant biological behaviors of HCC cells through miR-384/RRM2 axis and has the potential to become a therapeutic target for HCC, providing a new idea for targeted therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Ribonucleosídeo Difosfato Redutase , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Circular/genética , Ribonucleosídeo Difosfato Redutase/genética
18.
Proc Natl Acad Sci U S A ; 116(8): 2935-2944, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718402

RESUMO

Human antigen R (HuR) is a key regulator of cellular mRNAs containing adenylate/uridylate-rich elements (AU-rich elements; AREs). These are a major class of cis elements within 3' untranslated regions, targeting these mRNAs for rapid degradation. HuR contains three RNA recognition motifs (RRMs): a tandem RRM1 and 2, followed by a flexible linker and a C-terminal RRM3. While RRM1 and 2 are structurally characterized, little is known about RRM3. Here we present a 1.9-Å-resolution crystal structure of RRM3 bound to different ARE motifs. This structure together with biophysical methods and cell-culture assays revealed the mechanism of RRM3 ARE recognition and dimerization. While multiple RNA motifs can be bound, recognition of the canonical AUUUA pentameric motif is possible by binding to two registers. Additionally, RRM3 forms homodimers to increase its RNA binding affinity. Finally, although HuR stabilizes ARE-containing RNAs, we found that RRM3 counteracts this effect, as shown in a cell-based ARE reporter assay and by qPCR with native HuR mRNA targets containing multiple AUUUA motifs, possibly by competing with RRM12.


Assuntos
Proteínas ELAV/química , Proteína Semelhante a ELAV 1/química , Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/química , Regiões 3' não Traduzidas , Elementos Ricos em Adenilato e Uridilato/genética , Cristalografia por Raios X , Dimerização , Proteína Semelhante a ELAV 1/genética , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Ligação a RNA/genética , Ribonucleosídeo Difosfato Redutase/química , Proteínas Supressoras de Tumor/química
19.
Pharmazie ; 77(7): 224-229, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199183

RESUMO

Pancreatic cancer is one of the most common malignancies with very poor prognosis due to its broad resistance to chemotherapy. ARID1A, a subunit of SWI/SNF complex, is involved in pancreatic carcinogenesis through epigenetic silencing of oncogenes. In this study, we aimed to explore whether ARID1A was implicated in the gemcitabine resistance in pancreatic cancer patients via regulating RRM2. We examined the effect of ARID1A depletion on the gemcitabine sensitivity in pancreatic cancer cells and explored the role of RRM2 in ARID1A-mediated pancreatic cancer cells chemosensitivity to gemcitabine. We found that Knockout of ARID1A led to gemcitabine resistance in pancreatic cancer cells, effect of which could be reversed by RRM2, a gemcitabine resistance related gene. ARID1A decreased the transcription of RRM2, and directly bound to the promoter of RRM2. Moreover, expression of RRM2 was negatively correlated with ARID1A in pancreatic cancer tissues. Thus, ARID1A-mediated RRM2 epigenetic suppression is crucial for enhancement of pancreatic cancer chemosensitivity to gemcitabine, and ARID1A could be used as a biomarker to guide the gemcitabine chemotherapy of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Ribonucleosídeo Difosfato Redutase , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Epigênese Genética/genética , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Fatores de Transcrição/genética , Gencitabina , Neoplasias Pancreáticas
20.
J Bacteriol ; 203(23): e0030421, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34543109

RESUMO

Expression of the Escherichia coli dnaN-encoded ß clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. A mutant clamp (ßE202K bearing a glutamic acid-to-lysine substitution at residue 202) binds to DNA polymerase III (Pol III) with higher affinity than the wild-type clamp, suggesting that its failure to impede growth is independent of its ability to sequester Pol III away from the replication fork. Our results demonstrate that the dnaNE202K strain underinitiates DNA replication due to insufficient levels of DnaA-ATP and expresses several DnaA-regulated genes at altered levels, including nrdAB, that encode the class 1a ribonucleotide reductase (RNR). Elevated expression of nrdAB was dependent on hda function. As the ß clamp-Hda complex regulates the activity of DnaA by stimulating its intrinsic ATPase activity, this finding suggests that the dnaNE202K allele supports an elevated level of Hda activity in vivo compared with the wild-type strain. In contrast, using an in vitro assay reconstituted with purified components the ßE202K and wild-type clamp proteins supported comparable levels of Hda activity. Nevertheless, co-overexpression of the nrdAB-encoded RNR relieved the growth defect caused by elevated levels of the ß clamp. These results support a model in which increased cellular levels of DNA precursors relieve the ability of elevated ß clamp levels to impede growth and suggest either that multiple effects stemming from the dnaNE202K mutation contribute to elevated nrdAB levels or that Hda plays a noncatalytic role in regulating DnaA-ATP by sequestering it to reduce its availability. IMPORTANCE DnaA bound to ATP acts in initiation of DNA replication and regulates the expression of several genes whose products act in DNA metabolism. The state of the ATP bound to DnaA is regulated in part by the ß clamp-Hda complex. The dnaNE202K allele was identified by virtue of its inability to impede growth when expressed ≥10-fold higher than chromosomally expressed levels. While the dnaNE202K strain exhibits several phenotypes consistent with heightened Hda activity, the wild-type and ßE202K clamp proteins support equivalent levels of Hda activity in vitro. Taken together, these results suggest that ßE202K-Hda plays a noncatalytic role in regulating DnaA-ATP. This, as well as alternative models, is discussed.


Assuntos
DNA Polimerase III/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Bactérias/genética , DNA Polimerase III/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformação Proteica , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA