Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 664
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 179, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715123

RESUMO

Salmonella infections pose a significant threat to animal and human health. Phytochemicals present a potential alternative treatment. Galla chinensis tannic acid (GCTA), a hydrolyzable polyphenolic compound, inhibits bacterial growth and demonstrates potential as an alternative or supplement to antibiotics to prevent Salmonella infections. However, little is known about the antimicrobial mechanism of GCTA against Salmonella. Here, we revealed 456 differentially expressed proteins upon GCTA treatment, impacting pathways related to DNA replication, repair, genomic stability, cell wall biogenesis, and lipid metabolism using TMT-labeled proteomic analysis. TEM analysis suggested altered bacterial morphology and structure post-treatment. A Salmonella-infected-mouse model indicated that GCTA administration improved inflammatory markers, alleviated intestinal histopathological alterations, and reduced Salmonella enterica serovar Enteritidis (S. Enteritidis) colonization in the liver and spleen of Salmonella-infected mice. The LD50 of GCTA was 4100 mg/kg with an oral single dose, vastly exceeding the therapeutic dose. Thus, GCTA exhibited antibacterial and anti-infective activity against S. Enteritidis. Our results provided insight into the molecular mechanisms of these antibacterial effects, and highlights the potential of GCTA as an alternative to antibiotics.


Assuntos
Proteômica , Salmonelose Animal , Salmonella enteritidis , Taninos , Animais , Salmonella enteritidis/efeitos dos fármacos , Camundongos , Taninos/farmacologia , Taninos/uso terapêutico , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Feminino , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Camundongos Endogâmicos BALB C , Medicamentos de Ervas Chinesas , Polifenóis
2.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911764

RESUMO

Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.


Assuntos
Antibacterianos/uso terapêutico , Enrofloxacina/uso terapêutico , Salmonelose Animal/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Salmonelose Animal/tratamento farmacológico
3.
BMC Microbiol ; 23(1): 370, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030982

RESUMO

BACKGROUND: Salmonella enterica are important foodborne pathogens and the third leading cause of death among diarrheal infections worldwide. This cross-sectional study investigated the frequency of antibiotic-resistant Salmonella enterica in commercial and smallholder farm environments in the Ashanti Region of Ghana. A total of 1490 environmental samples, comprising 800 (53.7%) soil (from poultry, pigs, sheep, goats and cattle farms), 409 (27.4%) pooled poultry fecal and 281 (18.9%) dust (from poultry farms) samples, were collected from 30 commercial and 64 smallholder farms. All samples were processed using standard culture methods. Isolates were identified by biochemical methods and confirmed using the VITEK 2 System. Antibiotic susceptibility testing was carried out by disk diffusion following the EUCAST guidelines. Serotyping was performed using the Kauffman White Le Minor Scheme. RESULTS: The overall Salmonella frequency was 6.0% (n/N = 90/1490); the frequency varied according to the type of sample collected and included: 8.9% for dust (n/N = 25/281), 6.5% for soil (n/N = 52/800) and 3.2% for pooled poultry fecal samples (n/N = 13/409). Salmonella was also recovered from commercial farm environments (8.6%, n/N = 68/793) than from smallholder farms (3.2%, n/N = 22/697) (PR = 2.7, CI: 1.7 - 4.4). Thirty-four different Salmonella serovars were identified, the two most common being Rubislaw (27.8%, n/N = 25/90) and Tamale (12.2%, n/N = 11/90). Serovar diversity was highest in strains from soil samples (70.6%, n/N = 24/34) compared to those found in the dust (35.2%, n/N = 12/34) and in fecal samples (29.4%, n/N = 10/34). Salmonella frequency was much higher in the rainy season (8.4%, n/N = 85/1007) than in the dry season (1.0%, n/N = 5/483) (PR = 8.4, 95% CI: 3.3 - 20.0). Approximately 14.4% (n/N = 13/90) of the isolates were resistant to at least one of the tested antimicrobials, with 84.6% (n/N = 11/13) being resistant to multiple antibiotics. All Salmonella Kentucky (n = 5) were resistant to ciprofloxacin. CONCLUSION: This study showed that farm environments represent an important reservoir for antibiotic-resistant Salmonella, which warrants monitoring and good husbandry practices, especially in commercial farms during the rainy season, to control the spread of this pathogen.


Assuntos
Salmonelose Animal , Salmonella enterica , Animais , Bovinos , Suínos , Ovinos , Fazendas , Gana/epidemiologia , Estudos Transversais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aves Domésticas , Cabras , Solo , Poeira , Salmonelose Animal/tratamento farmacológico
4.
Microb Pathog ; 184: 106323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633505

RESUMO

Salmonella enterica serovar Typhimurium (S. typhimurium) is a common Gram-negative foodborne pathogen that threatens public health and hinders the development of livestock industry. Resveratrol, an important component in grape fruits and seeds, has been shown to possess multiple biological activities, but its potential effects on S. typhimurium-mediated virulence have been rarely reported. In this study, we investigated the effect of resveratrol on S. typhimurium flagella -mediated virulence. The results showed that resveratrol significantly reduced the transcription of flagella genes and swimming motility of S. typhimurium, and also inhibited the transcription of T3SS-related virulence genes with varying degrees inhibiting bacterial growth. Simultaneously, resveratrol significantly reduced the adhesion of S. typhimurium to HeLa cells. Unfortunately, resveratrol does not improve the survival rate of S. typhimurium-infected mice, but it reduces the bacterial load in the liver and spleen of infected mice, and it also has a certain degree of anti-inflammatory activity. In summary, these results indicated that resveratrol has the potential to be developed as an alternative drug or antibacterial agent to prevent Salmonella infection.


Assuntos
Salmonelose Animal , Natação , Humanos , Animais , Camundongos , Resveratrol/farmacologia , Células HeLa , Sorogrupo , Salmonella typhimurium/genética , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Proteínas de Bactérias/genética
5.
BMC Vet Res ; 19(1): 242, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990191

RESUMO

BACKGROUND: Salmonella Enteritidis is a zoonotic pathogen and poses a substantial risk to human health, as well as significant financial losses to the livestock and poultry industries. It is currently urgent to identify alternatives to antibiotic treatment. RESULTS: In this study, we explored the influence of Puerarin on the immunological response, intestinal flora, serum metabolome, and growth performance of chicks infected with Salmonella Enteritidis. Chicks were weighed at specific time points and the average daily gain (ADG) was calculated. Serum, intestinal, and cecal content samples were collected on days 10 and 17. The results showed that 100 mg/kg of Puerarin significantly suppressed inflammation and enhanced immune function. Metabolomic analysis showed significant differences in serum metabolites after Puerarin treatment and suggested that Puerarin may regulate abnormal amino acid and lipid metabolism after Salmonella Enteritidis infection through the autophagic and ABC transporter pathways. In addition, Puerarin suppressed Salmonella Enteritidis-induced intestinal flora dysbiosis through modulation of the microbial community structures (increased Lactobacillus, Faecalibacterium, and Subdoligranulum), as demonstrated by 16S rRNA analysis. CONCLUSIONS: In conclusion, Puerarin can improve growth performance in chicks, suppress the inflammatory response in vivo, enhance immunity, and regulate lipid and amino acid metabolism and the intestinal flora.


Assuntos
Microbiota , Doenças das Aves Domésticas , Salmonelose Animal , Humanos , Animais , Salmonella enteritidis , RNA Ribossômico 16S , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/prevenção & controle , Galinhas/microbiologia , Aminoácidos , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Ceco/microbiologia
6.
Antimicrob Agents Chemother ; 66(10): e0059722, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094258

RESUMO

Frequent outbreaks of Salmonella Typhimurium infection, in both animal and human populations and with the potential for zoonotic transmission, pose a significant threat to the public health sector. The rapid emergence and spread of more invasive multidrug-resistant clinical isolates of Salmonella further highlight the need for the development of new drugs with effective broad-spectrum bactericidal activities. The synthesis and evaluation of main-chain cationic polyimidazolium 1 (PIM1) against several Gram-positive and Gram-negative bacteria have previously demonstrated the efficacy profile of PIM1. The present study focuses on the antibacterial and anti-biofilm activities of PIM1 against Salmonella in both in vitro and in ovo settings. In vitro, PIM1 exhibited bactericidal activity against three strains of Salmonella at a low dosage of 8 µg/mL. The anti-biofilm activity of PIM1 was evident by its elimination of planktonic cells within preformed biofilms in a dose-dependent manner. During the host cell infection process, PIM1 reduces the extracellular bacterial load, which reduces adhesion and invasion to limit the establishment of infection. Once intracellular, Salmonella strains were tolerant and protected from PIM1 treatment. In a chicken egg infection model, PIM1 exhibited therapeutic activity for both Salmonella strains, using stationary-phase and exponential-phase inocula. Moreover, PIM1 showed a remarkable efficacy against the stationary-phase inocula of drug-resistant Salmonella by eliminating the bacterial burden in >50% of the infected chicken egg embryos. Collectively, our results highlight the potential for PIM1 as a replacement therapy for existing antibiotic applications on the poultry farm, given the efficiency and low toxicity profile demonstrated in our agriculturally relevant chicken embryo model.


Assuntos
Salmonelose Animal , Infecções por Salmonella , Embrião de Galinha , Animais , Humanos , Salmonella typhimurium , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Biofilmes , Galinhas , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia
7.
BMC Vet Res ; 18(1): 37, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033077

RESUMO

BACKGROUND: Dogs are one of the important asymptomatic carriers of antimicrobial resistant and potentially pathogenic strains of Salmonella. They can harbor large bacterial load in the intestines and mesenteric lymph nodes which can be shed in their feces with the possibility of transmission to humans. Therefore, a cross-sectional study was conducted with the objectives of estimating the prevalence of non-typhoidal Salmonella, assessing the risk factors for dog's Salmonella carriage, and profiling the antimicrobial resistance pattern of Salmonella isolates among housed dogs in Harar town, Eastern Ethiopia. A total of 415 rectal swab samples were collected from randomly selected dogs. Samples were examined for non-typhoidal Salmonella using standard bacteriologic culture and biochemical tests. The disk diffusion method (Kirby-Bauer test) was employed to evaluate the isolates for their susceptibility against five antimicrobials. RESULTS: Non-typhoidal Salmonella were isolated from 26 (6.3%) of the rectal swab samples, with significantly higher occurrence in diarrheic (15.2%) than non-diarrheic (5.5%) dogs. The risk of Salmonella harboring was significantly higher in female dogs than in male dogs (OR = 2.5, p = 0.027). Dogs fecal shedding of Salmonella was relatively higher in households who used offal as a main feed type for their dogs (23.1%; 95% CI = 5-53.8) than those who used leftover food (10.1%; 95% CI = 5.7-16.1) and practiced mixed feeding system (17%; 95% CI = 7.6-30.8). Salmonella isolates showed higher resistance to ampicillin (41.7%), while all isolates were fully susceptible to gentamicin. Moreover, 58.3% of Salmonella isolates showed resistance to at least one of the tested antimicrobials. Majorities (72.7%) of the dog owners had no awareness on the risk of zoonotic salmonellosis from dog and all of the respondents use bare hand to clean dog kennel. CONCLUSION: Our study reveals the importance of both diarrheic and apparently healthy housed dogs in the harboring and shedding of antimicrobial resistant non-typhoidal Salmonella. The risk of non-typhoidal Salmonella spread among pet owners is not negligible, especially in households who use offal as main feed type. Therefore, an integrated approach such as: proper dog handling practices; continuous evaluation of antimicrobial resistance; and rational use of antimicrobials in the field of veterinary sector are necessary to tackle the problem.


Assuntos
Antibacterianos/farmacologia , Doenças do Cão , Farmacorresistência Bacteriana , Salmonelose Animal , Salmonella , Animais , Estudos Transversais , Doenças do Cão/tratamento farmacológico , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Cães/microbiologia , Etiópia/epidemiologia , Feminino , Masculino , Testes de Sensibilidade Microbiana/veterinária , Prevalência , Fatores de Risco , Salmonella/efeitos dos fármacos , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/epidemiologia
8.
Microb Pathog ; 161(Pt B): 105298, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34801645

RESUMO

Salmonella, an important zoonotic pathogen, causes significant morbidity and mortality in both humans and animals. Phloretin mainly isolated from strawberries and apples has the effects of treating inflammation and pathogenic bacteria, but its protective efficacy and mechanism of action against Salmonella spp. are less clear. In this study, we found that phloretin alleviated body weight loss, colon length shortening, and colonic pathological damage caused by S. Typhimurium. Phloretin also decreased S. Typhimurium translocation to the mesenteric lymph nodes (MLN) and spleen. Further mechanism studies showed that phloretin significantly inhibited inflammation and oxidative stress levels in the colonic tissue. Phloretin also prevented S. Typhimurium-mediated impairment in the colon epithelium barrier by the regulation ZO-1 and occludin levels. Interestingly, phloretin did not inhibit S. typhimurium growth in vitro, but reduced the internalization of S. Typhimurium into Caco-2 cells. Taken together, these findings indicated that phloretin may be a new dietary strategy to combat the disease.


Assuntos
Salmonelose Animal , Salmonella enterica , Animais , Células CACO-2 , Humanos , Camundongos , Floretina/farmacologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/prevenção & controle , Salmonella typhimurium , Sorogrupo
9.
BMC Vet Res ; 17(1): 135, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785042

RESUMO

BACKGROUND: Salmonella spp. represent a significant zoonotic concern to pregnant owners as infection can cause septic abortions and post-partum illness. Enteric salmonellosis is well documented in canines however urinary salmonellosis is rarely described and Salmonella prostatitis has never been described in dogs. CASE PRESENTATION: This case report describes the diagnosis and management of a five-year-old, intact male Labrador Retriever mix dog that was diagnosed with Salmonella prostatitis among other comorbidities including heartworm infestation. Additionally, mitigation of zoonotic spread is emphasized as one of the owners was six months pregnant at the time of diagnosis. DISCUSSION: The pathogenesis of Salmonella prostatitis is unknown but explanations pertaining to enteric salmonellosis, such as the lifestyle and stress of living as a stray may have contributed and contamination from an enteric infection may have also been possible. Several recommendations were made to reduce the likelihood of zoonotic transmission including frequent hand washing, avoidance of the patient's mouth, change in location of where the patient was fed, the use of an isolated area outside for urination and defecation, and the use of dilute bleach to clean areas soiled by the patient's bodily fluids. Monitoring of the prostatic infection was facilitated with prostatic wash instead of urine culture. This decision was made as prostatic infections have been shown to intermittently shed bacteria into the urine, leading to possible false negative urine cultures and potential catastrophic zoonotic infection.


Assuntos
Doenças do Cão/microbiologia , Prostatite/veterinária , Salmonelose Animal/tratamento farmacológico , Animais , Dirofilariose/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/parasitologia , Cães , Masculino , Orquiectomia/veterinária , Prostatite/diagnóstico , Prostatite/tratamento farmacológico , Prostatite/microbiologia , Salmonella arizonae/isolamento & purificação , Zoonoses/prevenção & controle
10.
Foodborne Pathog Dis ; 18(4): 283-289, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33567225

RESUMO

Within Ethiopia, there is a lack of information on the genetic relatedness of Salmonella from cattle, beef, and diarrheic patients and its potential transmission from cattle to humans through consumption of contaminated beef. The objective of this study was to assess the prevalence and determine the serotypes, genetic relatedness, and antimicrobial resistance of Salmonella in cattle in two local slaughterhouses, in beef at retail shops, and in diarrheic patients in the only hospital in Bishoftu, Ethiopia. Salmonella was detected in 2.5% (6/240) of cattle samples, in 8.7% (11/127) of beef samples, and in 2.3% (5/216) of the diarrheic patients. Four Salmonella serotypes: Salmonella Typhimurium, Salmonella Eastbourne, Salmonella Saintpaul, and Salmonella Cotham were identified. Salmonella Typhimurium and Salmonella Eastbourne were isolated from cattle and beef, whereas Salmonella Saintpaul and Salmonella Cotham were isolated only from diarrheic patients. Except for serotype Salmonella Saintpaul, all isolates were grouped into five pulsotypes, of which two pulsotypes contained isolates from cattle and beef. Isolates from humans represented unique pulsotypes. Among the 22 Salmonella isolates tested, 95.5% were resistant to at least 1 of the 14 antimicrobials tested. Three Salmonella isolates originating from cattle were multidrug resistant. One human isolate was susceptible to all antimicrobials tested. More specifically, resistance to ampicillin, sulfamethoxazole, tetracycline, tigecycline, and trimethoprim were observed. The most frequently observed resistance was to sulfamethoxazole (90.9%, 20/22) followed by trimethoprim (22.7%, 5/22). The study revealed considerable Salmonella contamination of beef at retail shops, antimicrobial resistance to commonly used antimicrobials, and shared genetically similar Salmonella serotypes between cattle and beef; the link with humans could not be established. Still, the findings of Salmonella in cattle and beef, the propensity of transfer of Salmonella from cattle to beef coupled with the common consumption of raw/undercooked beef are likely to pose public health risk in Ethiopia.


Assuntos
Doenças dos Bovinos/epidemiologia , Diarreia/epidemiologia , Carne Vermelha/microbiologia , Salmonelose Animal/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella/isolamento & purificação , Matadouros , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antibacterianos/farmacologia , Bovinos/microbiologia , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Criança , Pré-Escolar , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Farmacorresistência Bacteriana Múltipla , Etiópia/epidemiologia , Feminino , Microbiologia de Alimentos , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Prevalência , Salmonella/efeitos dos fármacos , Salmonella/genética , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Sorotipagem , Adulto Jovem
11.
J Antimicrob Chemother ; 75(10): 2914-2918, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32613238

RESUMO

OBJECTIVES: To determine the immune cell populations associated with Salmonella enterica serovar Typhimurium before and after ciprofloxacin treatment using a murine model of systemic infection. The effect of depletion of immune cells associating with Salmonella on treatment outcome was also determined. METHODS: We infected mice with a Salmonella enterica serovar Typhimurium strain expressing GFP and used multicolour flow cytometry to identify splenic immune cell populations associating with GFP-positive Salmonella before and after treatment with ciprofloxacin. This was followed by depletion of different immune cell populations using antibodies and liposomes. RESULTS: Our results identified CD11b+CD11chi/lo (dendritic cells/macrophages) and Ly6G+CD11b+ (neutrophils) leucocytes as the main host cell populations that are associated with Salmonella after ciprofloxacin treatment. We therefore proceeded to test the effects of depletion of such populations during treatment. We show that depletion of Ly6G+CD11b+ populations resulted in an increase in the number of viable bacterial cells in the spleen at the end of ciprofloxacin treatment. Conversely, treatment with clodronate liposomes during antimicrobial treatment, which depleted the CD11b+CD11chi/lo populations, resulted in lower numbers of viable bacteria in the tissues. CONCLUSIONS: Our study identified host cells where Salmonella bacteria persist during ciprofloxacin treatment and revealed a dual and opposing effect of removal of Ly6G+CD11b+ and CD11b+CD11chi/lo host cells on the efficacy of antimicrobial treatment. This suggests a dichotomy in the role of these populations in clearance/persistence of Salmonella during antimicrobial treatment.


Assuntos
Salmonelose Animal , Infecções por Salmonella , Salmonella enterica , Animais , Ciprofloxacina/farmacologia , Camundongos , Neutrófilos , Infecções por Salmonella/tratamento farmacológico , Salmonelose Animal/tratamento farmacológico , Baço
12.
BMC Microbiol ; 20(1): 118, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410630

RESUMO

BACKGROUND: The antibiotics generally used in farm animals are rapidly losing their effectiveness all over the world as bacteria develop antibiotic resistance. Like some other pathogenic bacteria multidrug-resistant strains of Salmonella enterica serovar Typhimurium (S. Typhimurium) are also frequently found in animals and humans which poses a major public health concern. New strategies are needed to block the development of resistance and to prolong the life of traditional antibiotics. Thus, this study aimed to increase the efficacy of existing antibiotics against S. Typhimurium by combining them with opportunistic phenolic compounds gallic acid (GA), epicatechin, epicatechin gallate, epigallocatechin and hamamelitannin. Fractional inhibitory concentration indexes (FICI) of phenolic compound-antibiotic combinations against S. Typhimurium were determined. Based on the FICI and clinical importance, 1 combination (GA and ceftiofur) was selected for evaluating its effects on the virulence factors of this bacterium. Viability of Rattus norvegicus (IEC-6) cell in presence of this antibacterial combination was evaluated. RESULTS: Minimum inhibitory concentrations (MICs) of GA, epigallocatechin and hamamelitannin found against different strains of S. Typhimurium were 256, (512-1024), and (512-1024) µg/mL, respectively. Synergistic antibacterial effect was obtained from the combination of erythromycin-epicatechin gallate (FICI: 0.50) against S. Typhimurium. Moreover, additive effects (FICI: 0.502-0.750) were obtained from 16 combinations against this bacterium. The time-kill assay and ultrastructural morphology showed that GA-ceftiofur combination more efficiently inhibited the growth of S. Typhimurium compared to individual antimicrobials. Biofilm viability, and swimming and swarming motilities of S. Typhimurium in presence of GA-ceftiofur combination were more competently inhibited than individual antimicrobials. Viabilities of IEC-6 cells were more significantly enhanced by GA-ceftiofur combinations than these antibacterials alone. CONCLUSIONS: This study suggests that GA-ceftiofur combination can be potential medication to treat S. Typhimurium-associated diarrhea and prevent S. Typhimurium-associated blood-stream infections (e.g.: fever) in farm animals, and ultimately its transmission from animal to human. Further in vivo study to confirm these effects and safety profiles in farm animal should be undertaken for establishing these combinations as medications.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fenóis/farmacologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/fisiologia , Animais , Animais Domésticos , Biofilmes/crescimento & desenvolvimento , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cefalosporinas/farmacologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Eritromicina/farmacologia , Ácido Gálico/farmacologia , Testes de Sensibilidade Microbiana , Ratos , Salmonelose Animal/tratamento farmacológico , Salmonella typhimurium/efeitos dos fármacos , Sorogrupo
13.
Vet Res ; 51(1): 56, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32307001

RESUMO

Butyrate has been used extensively as a feed additive to improve gut health and to decrease Salmonella colonization in poultry. Salmonella mainly colonizes the ceca so butyrate concentrations should be increased in this gut segment. Discrepancies on the effects of butyrate on Salmonella colonization, described in the scientific literature, could thus be due to butyrate release location effects. In this study, newly developed butyrate formulations were evaluated for their effect on cecal butyrate concentrations and on colonization by Salmonella Enteritidis. In a first trial, broilers were randomly allocated to 7 dietary treatment groups with formulations based on different approaches to modify the butyrate release profile: release from wax matrices based on diffusion/erosion; micropellets supposedly release butyrate around pH 7 in the colon; tributyrin is based on the hydrolysis of esters in the small intestine. Fat-protected butyrate was included as a reference, because of its known effect on reduction of Salmonella colonization. Four days after infection, the number of cfu Salmonella per g cecal content and spleen were determined. Butyrate formulations in a wax matrix significantly reduced the Salmonella colonization in cecal content. In a second trial, wax and fat-protected butyrate treatments were replicated and results from the first trial were confirmed. Compared to the control group a higher proportion of butyrate concentration was observed in ceca for those groups with reduced Salmonella colonization. This was associated with a beneficial shift in the cecal microbiota. In conclusion, formulations that increase cecal butyrate concentrations are superior in protecting against Salmonella Enteritidis colonization.


Assuntos
Derrame de Bactérias , Butiratos/metabolismo , Galinhas , Microbioma Gastrointestinal , Doenças das Aves Domésticas/tratamento farmacológico , Salmonelose Animal/tratamento farmacológico , Ração Animal/análise , Animais , Butiratos/administração & dosagem , Ceco/microbiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/efeitos dos fármacos
14.
BMC Vet Res ; 16(1): 49, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041607

RESUMO

BACKGROUND: Uvaria chamae (Annonaceae), Phyllantus amarus (Phyllantaceae) and Lantana camara (Verbenaceae) are empirically alleged to be used as Beninese medicinal plants in the treatment of salmonellosis. This study aimed to produce scientific data on in vitro and in vivo efficacy of Uvaria chamae, Lantana camara and Phyllantus amarus on multiresistant Salmonella spp isolated in Benin. RESULTS: After performing in vitro tests on aqueous and ethanolic extracts of these plants, only the aqueous extract of Uvaria chamae (leaves) showed the best anti-Salmonella's activity and was used for this in vivo experiment. The induction of salmonellosis revealed 9 × 108 CFU/ml was the optimal concentration triggering and maintaining symptoms in chicks. This infective concentration was used for in vivo assessment. Twenty-four hours post inoculation, the symptoms of salmonellosis (wet cloaca, diarrhea stools and somnolence) were observed in infected groups. After 7 days of treatment, the reduction of bacterial load at 100 mg/L, 200 mg/L, 400 mg/L of the extract was respectively 85%, 52.38% and 98% for Uvaria chamae, Phyllantus amarus and Lantana camara in the chick's groups infected with Salmonella Typhimurium ATCC 14028. On the other hand, colistin completely cancelled the bacterial load (reduction rate of 100%). With the groups infected with Salmonella spp (virulent strain), the reduction rate of bacterial load at 100 mg/L, 200 mg/L, 400 mg/L of extract was 0%, 98.66%, and 99.33%. The extracts at 200 and 400 mg/L were more active than colistin, which reduced the bacterial load by 33.33%. The toxicity tests did not show any negative effect of Colistin and the Uvaria chamae's extract on the biochemical and hematological parameters of the chicks. CONCLUSION: The aqueous extract of Uvaria chamae is active in vitro and in vivo on multiresistant strains of Salmonella enterica. This plant is a good candidate for the development of an improved traditional medicine for the management of salmonellosis.


Assuntos
Lantana/química , Malpighiales/química , Extratos Vegetais/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Salmonella/efeitos dos fármacos , Uvaria/química , Animais , Benin , Galinhas , Extratos Vegetais/química , Plantas Medicinais , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia
15.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530706

RESUMO

Salmonella spp. are estimated to cause 1.2 million cases of human foodborne illness each year in the United States, and pigs can often be asymptomatically colonized with Salmonella spp. (>50% of farms). Recent reports state that 18.3% of Salmonella enterica serovar Typhimurium isolates are resistant to ≥3 antimicrobial classes, and multidrug-resistant (MDR) strains are associated with an increased hospitalization rate and other complications. Chlortetracycline is commonly used in swine production to prevent/treat various diseases; therefore, chlortetracycline treatment of pigs unknowingly colonized with MDR Salmonella may have collateral effects on Salmonella spp. (and other gut bacteria). In this study, we determined the effect of in-feed chlortetracycline (400 g/ton) on shedding and colonization of pigs challenged with the MDR S Typhimurium strain DT104 (n = 11/group). We also assessed the impact on the fecal microbiota over the 12-day experimental period and on the ileum, cecum, and tonsil microbiota at 7 days postinoculation (dpi). In MDR S Typhimurium-inoculated pigs, chlortetracycline administration significantly increased fecal shedding at 2 dpi (+1.4 log10 CFU/g; P < 0.001) and enhanced tonsil colonization (+3.1 log10 CFU/g; P < 0.001). There were few major alterations detected in the gut or tonsillar microbiota of pigs treated with MDR S Typhimurium and/or chlortetracycline. The tonsillar transcriptome was largely unaffected despite increased colonization by MDR S Typhimurium following inoculation of the chlortetracycline-treated pigs. These results highlight the idea that chlortetracycline administration can enhance shedding and colonization of MDR S Typhimurium in pigs, which could increase the risk of environmental dissemination of MDR Salmonella strains.IMPORTANCESalmonella spp. are an important cause of foodborne illness in North America, and pork products are associated with sporadic cases and outbreaks of human salmonellosis. Isolates of Salmonella may be resistant to multiple antibiotics, and infections with multidrug-resistant (MDR) Salmonella spp. are more difficult to treat, leading to increased hospitalization rates. Swine operations commonly use antimicrobials, such as chlortetracycline, to prevent/treat infections, which may have collateral effects on pig microbial populations. Recently, we demonstrated that chlortetracycline induces the expression of genes associated with pathogenesis and invasion in MDR Salmonella enterica serovar Typhimurium in vitro In our current study, we show increased tonsillar colonization and fecal shedding of the MDR S Typhimurium strain DT104 from pigs administered chlortetracycline. Therefore, pigs unknowingly colonized with multidrug-resistant Salmonella spp. and receiving chlortetracycline for an unrelated infection may be at a greater risk for disseminating MDR Salmonella spp. to other pigs and to humans through environmental or pork product contamination.


Assuntos
Derrame de Bactérias/efeitos dos fármacos , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Tonsila Palatina/microbiologia , Salmonella enterica/efeitos dos fármacos , Ração Animal , Animais , Antibacterianos/farmacologia , Ceco/microbiologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Sorogrupo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle
16.
Microb Pathog ; 137: 103754, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31539587

RESUMO

Lactobacillus reuteri, a typical intestinal symbiotic bacterium, plays an important role in maintaining intestinal flora stability and host health. However, the effect of Lactobacillus reuteri on peritoneal macrophages has not been thoroughly studied. Our study indicated that Lactobacillus reuteri could activate macrophages and that macrophages treated with Lactobacillus reuteri have an enhanced ability to phagocytose and to kill intracellular Salmonella typhimurium. Lactobacillus reuteri may reduce the inflammatory response caused by Salmonella typhimurium by regulating NO, thus effectively protecting mice against Salmonella typhimurium invasion and dissemination to the liver and spleen. Taken together, these data demonstrated the protective effect of Lactobacillus reuteri on macrophages and mice challenged with Salmonella typhimurium through in vitro and in vivo experiments.


Assuntos
Limosilactobacillus reuteri/fisiologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Substâncias Protetoras/farmacologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Imunização , Intestinos/microbiologia , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mortalidade , Fagocitose , Probióticos/uso terapêutico , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Baço/microbiologia
17.
Microb Pathog ; 137: 103773, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31604155

RESUMO

Salmonella enteritidis is an important foodborne pathogen that has caused multiple outbreaks of infection associated with poultry and egg consumption. Thus, the prevention and inhibition of Salmonella enteritidis infection are of great concern. Lactic acid bacteria have anti-pathogenic activity; however, their underlying mechanisms and modes of action have not yet been clarified. In this study, the antibacterial mechanism of Lactobacillus reuteri S5 (L. reuteri S5) against Salmonella enteritidis ATCC13076 (S. enteritidis ATCC13076) was studied by different methods. We found that L. reuteri S5 was able to form a stable biofilm formation, colonizing the entire intestinal tract of chickens. In addition, bacterial cultures and the cell-free supernatant (CFS) of L. reuteri S5 inhibited SE ATCC13076 growth, and this growth inhibition was also observed in the co-culture assay. This effect may be predominantly caused by antimicrobial metabolites produced by L. reuteri S5. Furthermore, treatment with the CFS of L. reuteri S5 resulted in a significant reduction in the expression of Salmonella virulence, motility and adhesion genes and a significant reduction in the motility ability and inhibitory effect on biofilm formation. In addition, the damage to the membrane structure and intracellular structure induced by the CFS of L. reuteri S5 could be observed on Transmission electron microscopy images and dodecyl sulfate, sodium salt (SDS)-Polyacrylamide gel electrophoresis confirmed the disruptive action of the CFS of L. reuteri S5 on the cytoplasmic membrane. Our findings demonstrate that L. reuteri S5, an intestinal Lactobacillus species associated with chicken health, is able to form biofilm and stably colonize chicken intestines. It also possesses anti-SE activity, preventing SE growth, inhibits the expression of SE genes involved in adhesion and invasion, virulence and cell membrane integrity, inhibits SE biofilm formation and motility, damages or destroys bacterial structures, and inhibits intracellular protein synthesis. L. reuteri S5 therefore has potential applications as a probiotic agent.


Assuntos
Limosilactobacillus reuteri/fisiologia , Doenças das Aves Domésticas/tratamento farmacológico , Probióticos/administração & dosagem , Salmonelose Animal/tratamento farmacológico , Salmonella enteritidis/efeitos dos fármacos , Animais , Antibiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Galinhas , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/genética , Salmonella enteritidis/fisiologia
18.
Microb Pathog ; 136: 103712, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31491551

RESUMO

The growing problem of antibiotic resistance has attracted people's attention; thus, the search for new antibacterial agents is imminent. In this study, a series of antimicrobial peptides (AMPs) based on the porcine antibacterial peptide PMAP-36 were designed by amino acid substitution to develop peptide analogues as new classes of antimicrobial agents. By extending the α-helix and increasing the positive charge, two peptide analogues, PMAP-36PW and PMAP-36PK, were synthesized. The antibacterial activities of PMAP-36 and its peptide analogues were detected in vitro and in vivo. The results showed that PMAP-36PW and PMAP-36PK had a broadened antibacterial spectrum compared to that of PMAP-36. After the modification, PMAP-36PW and PMAP-36PK exhibited antibacterial activities on swine Escherichia coli K88, while PMAP-36 did not. PMAP-36, PMAP-36PW and PMAP-36PK did not have antibacterial activities against Enterococcus faecium B21. PMAP-36 PW had significant antibacterial activity against seven bacterial strains compared to PMAP-36, and PMAP-36PK had significant antibacterial activity against five bacterial strains compared to PMAP-36. Furthermore, PMAP-36PW exhibited enhanced pH stability. Moreover, in the in vivo efficacy assessment of mice infected with Salmonella choleraesuis C78-1 and Listeria monocytogenes CICC 21533, the peptide analogues exhibited an impressive therapeutic effect by reducing bacterial gene copies and decreasing inflammatory damage in mouse livers and lungs, resulting in a reduction in mouse mortality. This study provides reference data for the design of clinically effective antibacterial peptides.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Estruturas Animais/patologia , Animais , Anti-Infecciosos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/genética , Modelos Animais de Doenças , Listeriose/tratamento farmacológico , Listeriose/patologia , Camundongos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/patologia , Resultado do Tratamento
19.
BMC Vet Res ; 15(1): 108, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961581

RESUMO

BACKGROUND: This study aimed to examine the prevalence, serovars, and antimicrobial resistance of Salmonella isolates from broiler chickens in Kagoshima, Japan. A total of 192 flocks and 3071 samples were collected from broiler chickens at local farms in Kagoshima, Japan from 2009 to 2012. RESULT: Among the tested farms, 49.0% of flocks were positive for Salmonella, and 243 isolates were obtained from 3071 cecal samples (7.9%). All the Salmonella isolates were one of three serovars: S. Infantis (57.6%); (140/243), S. Manhattan (40.3%; 98/243 and S. Schwarzengrund (2.1%; 5/243). The proportion of S. Infantis isolates decreased from 66.0% in 2009 to 50.0% in 2011 but increased to 57.6% in 2012, while the proportion of S. Manhattan isolates significantly increased from 26.4 to 50% from 2009 to 2011, and decreased moderately to 40.9% in 2012. Most of the recovered Salmonella isolates were resistant to three antimicrobials, i.e., streptomycin (95.1%), sulfamethoxazole (91.0%) and oxytetracycline (91.4%). In contrast, all Salmonella strains were susceptible to chloramphenicol. Comparison of this study to previous studies of the antimicrobial susceptibility of Salmonella isolates showed that: the percentage of antibiotic-resistance isolates increased dramatically for two antibiotics, ampicillin (from 22.4 to 55.1%) and cefotaxime (from 9.1 to 52.7%). In contrast, the percentage of ofloxacin-resistant isolates decreased across the three survey periods, from 20.8% in 2004-2006 to 1.6% in the present study period (2009-2012). In addition, S. Infantis exhibited a variety of resistance to antimicrobials examined from sensitive to resistance to eight antimicrobials. Multidrug resistance to more than 6 six antimicrobials was detected in 113 (46.5%) of the isolates, and most of them were S. Manhattan. CONCLUSIONS: There was a marked change in the serovars and antimicrobial resistance profiles of the Salmonella isolates in this study compared to those in previous studies. The percentage of S. Manhattan isolates increased as did the percentages of ampicillin- and cefotaxime-resistant isolates.


Assuntos
Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/epidemiologia , Salmonella/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Japão/epidemiologia , Testes de Sensibilidade Microbiana/veterinária , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/epidemiologia , Prevalência , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Sorogrupo
20.
Br Poult Sci ; 60(4): 388-394, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31066296

RESUMO

1. Salmonella is one of the most important pathogens in public health and it is usually associated with food-borne diseases. Salmonella serovars Enteritidis and Typhimurium are widespread in the world with outbreaks frequently associated with consumption of poultry products; furthermore, there is an increasing public health concern with the wide dissemination of the serovar Heidelberg in poultry flocks. 2. The aim of the experiment was to develop and to validate rapid methods to detect Salmonella serovars Enteritidis, Typhimurium, and Heidelberg by real-time PCRs and test isolates from pre-enriched poultry samples. 3. Three real-time PCRs were developed and used in combination to detect the serovars Enteritidis, Typhimurium and Heidelberg. These assays were validated by the analysis of 126 Salmonella isolates, eight other enteric bacterial species and 34 naturally contaminated poultry samples after pre-enrichment with buffered peptone water (BPW). 4. Real-time PCRs detected the isolates of the most important poultry serovars (Enteritidis, Typhimurium and Heidelberg) with 100% inclusivity and exclusivity in each assay. The PCR identified monophasic variants of the serovars Typhimurium and Heidelberg. All PCRs were validated in detecting these specific serovars directly from pre-enriched poultry samples. The whole analytical procedure was performed in less than 24 h in a veterinary diagnostic laboratory.


Assuntos
Técnicas Bacteriológicas/métodos , Galinhas , Doenças das Aves Domésticas/tratamento farmacológico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmonelose Animal/tratamento farmacológico , Salmonella enterica/isolamento & purificação , Perus , Animais , Técnicas Bacteriológicas/instrumentação , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA