Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 175(3): e13905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005220

RESUMO

Many organisms use functional surfaces to collect water from the atmosphere. Salsola ferganica Drob. is one of the most abundant plants in desert regions and thrives in extreme environments with multiple but limited water resources, including dew and fog; however, its mechanisms of water harvesting remain unclear. We investigated trichome structural characteristics and their influence on the surface wettability of S. ferganica leaves using a variety of approaches (scanning electron microscopy, optical microscopy, immunolabelling staining, x-ray diffractometry, and infrared spectroscopy). Microstructural observations revealed that the trichomes of S. ferganica presented a curved upper part, the 'spindle node'-like structure in the middle, and the micro-grooves structure in between; such unique structures may aid in capturing moisture from the air. The physicochemical characteristics of the trichome surface, including hydrophobic functional groups, hydrophilic pectins, and low crystallinity, may enhance the adhesion of water drops to trichomes. Furthermore, we discovered that the piliferous S. ferganica leaves were more effective in retaining water than the glabrous S. aralocaspica leaves, and the dense trichome layer exhibited a significantly unwettable surface (high contact angle with droplets), whereas the individual trichomes retained water effectively (more so under drought conditions). The combination of these two properties is consistent with the 'rose petal effect', which describes rough surfaces that are hydrophobic but exhibit high adhesion with water. These factors suggest that the evolutionary optimisation of water acquisition by coupling relevant microstructures with the physicochemical properties of trichomes enables S. ferganica to survive harsh conditions in the seedling stage.


Assuntos
Salsola , Tricomas , Molhabilidade , Plantas Tolerantes a Sal , Folhas de Planta/química , Água/química
2.
Environ Monit Assess ; 195(7): 838, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310472

RESUMO

Dust causes adverse effects on the physiological and biochemical properties of plants, and under soil salinity conditions, these effects seem to be intensified, which limits their use in the development of the green belt around or within cities. In the research, the effect of salt (0, 30, and 60 dS m-1) on air pollution (dust, 0 and 1.5 g m-2 30 days-1) tolerance index (APTI), peroxidase activity, and protein content of three desert species Seidlitzia rosmarinus, Haloxylon aphyllum, and Nitraria schoberi was investigated. The results indicated that the use of dust alone did not change the concentration of total chlorophyll in H. aphyllum, while it decreased the concentration of total chlorophyll by 18% in N. schoberi and 21% in S. rosmarinus. Under salt stress conditions, before and after applying dust, the concentration of total chlorophyll decreased in S. rosmarinus and N. schoberi plants, but there was no change in H. aphyllum. The amount of ascorbic acid, peroxide activity, and pH increased significantly with increasing salinity level before and after applying dust. Applying dust alone increased pH value only in N. schoberi and the amount of ascorbic acid and peroxidase in all three plants. Applying dust alone reduced relative water content and APTI only in N. schoberi plant and the amount of protein in all three plants. At salinity level of 60 dS m-1 and with application of dust treatment, APTI was decreased by 10, 15, and 9% compared to its control before application of dust, respectively, in H. aphyllum, N. schoberi, and S. rosmarinus plants. Therefore, it was found that N. schoberi, which may be used as a bioindicator of air quality, has a lower APTI than S. rosmarinus and H. aphyllum, which may be served as suitable sinks to survive the air pollution (the development of a design on green belt around or within the city), under conditions of simultaneous application of dust and salt.


Assuntos
Poluição do Ar , Chenopodiaceae , Magnoliopsida , Rosmarinus , Salsola , Poeira , Monitoramento Ambiental , Ácido Ascórbico , Clorofila , Peroxidases
3.
BMC Plant Biol ; 22(1): 551, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447160

RESUMO

BACKGROUND: To survive harsh environmental conditions, desert plants show various adaptions, such as the evolution of trichomes, which are protective epidermal protrusions. Currently, the morphogenesis and function of trichomes in desert plants are not well understood. Salsola ferganica is an annual halophyte distributed in cold deserts; at the seedling stage, its rod-shaped true leaves are covered with long and thick trichomes and are affected by habitat conditions. Therefore, we evaluated the trichomes on morphogenesis and cell wall composition of S. ferganica compared to Arabidopsis thaliana and cotton, related gene expression, and preliminary function in salt accumulation of the leaves. RESULTS: The trichomes of S. ferganica were initiated from the epidermal primordium, followed by two to three rounds of cell division to form a multicellular trichome, while some genes associated with them were positively involved. Cell wall composition analysis showed that different polysaccharides including heavily methyl-esterified and fully de-esterified pectins (before maturation, probably in the primary wall), xyloglucans (in the mid-early and middle stages, probably in the secondary wall), and extensin (during the whole developmental period) were detected, which were different from those found in trichomes of Arabidopsis and cotton. Moreover, trichome development was affected by abiotic stress, and might accumulate salt from the mesophyll cells and secrete outside. CONCLUSIONS: S. ferganica has multicellular, non-branched trichomes that undergo two to three rounds of cell division and are affected by abiotic stress. They have a unique cell wall composition which is different from that of Arabidopsis and cotton. Furthermore, several genes positively or negatively regulate trichome development. Our findings should contribute to our further understanding of the biogenesis and adaptation of plant accessory structures in desert plant species.


Assuntos
Arabidopsis , Salsola , Plantas Tolerantes a Sal/genética , Tricomas , Arabidopsis/genética , Cloreto de Sódio , Parede Celular , Morfogênese , Gossypium
4.
New Phytol ; 234(5): 1876-1890, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288945

RESUMO

C2 photosynthesis is characterised using recapturing photorespiratory CO2 by RuBisCo in Kranz-like cells and is therefore physiologically intermediate between C3 and C4 photosynthesis. C2 can be interpreted as an evolutionary precursor of C4 and/or as the result of hybridisation between a C3 and C4 lineage. We compared the expression of photosynthetic traits among populations of the Salsola divaricata agg. (C2 ) from humid subtropical to arid habitats on the coasts of the Canary Islands and Morocco and subjected them to salt and drought treatments. We screened for enhanced C4 -like expression of traits related to habitat or treatment. We estimated species trees with a transcriptome dataset of Salsoleae and explored patterns of gene tree discordance. With phylogenetic networks and hybridisation analyses we tested for the hybrid origin of the Salsola divaricata agg. We observed distinct independent variation of photosynthetic traits within and among populations and no clear evidence for selection towards C4 -like trait expression in more stressful habitats or treatments. We found reticulation and gene tree incongruence in Salsoleae supporting a putative hybrid origin of the Salsola divaricata agg. C2 photosynthesis in the Salsola divaricata agg. combines traits inherited from its C3 and C4 parental lineages and seems evolutionarily stable, possibly well adapted to a wide climatic amplitude.


Assuntos
Amaranthaceae , Salsola , Fotossíntese/fisiologia , Filogenia , Folhas de Planta/genética , Ribulose-Bifosfato Carboxilase/genética , Salsola/fisiologia
5.
J Enzyme Inhib Med Chem ; 37(1): 2036-2062, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35875938

RESUMO

Salsola is an important genus in the plant kingdom with diverse traditional, industrial, and environmental applications. Salsola species are widely distributed in temperate regions and represent about 45% of desert plants. They are a rich source of diverse phytochemical classes, such as alkaloids, cardenolides, triterpenoids, coumarins, flavonoids, isoflavonoids, and phenolic acids. Salsola spp. were traditionally used as antihypertensive, anti-inflammatory, and immunostimulants. They attracted great interest from researchers as several pharmacological activities were reported, including analgesic, antipyretic, antioxidant, cytotoxic, hepatoprotective, contraceptive, antidiabetic, neuroprotective, and antimicrobial activities. Genus Salsola is one of the most notorious plant genera from the taxonomical point of view. Our study represents a comprehensive review of the previous phytochemical and biological research on the old world Salsola secies. It is designed to be a guide for future research on different plant species that still belong to this genus or have been transferred to other genera.


Assuntos
Salsola , Flavonoides , Medicina Tradicional , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
6.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361966

RESUMO

The above-ground part of the Salsola passerine was found to contain ~13% (w/w) of polysaccharides extractable with water and aqueous solutions of ammonium oxalate and sodium carbonate. The fractions extracted with aqueous sodium carbonate solutions had the highest yield. The polysaccharides of majority fractions are characterized by similar monosaccharide composition; namely, galacturonic acid and arabinose residues are the principal components of their carbohydrate chains. The present study focused on the determination of antioxidant activity of the extracted polysaccharide fractions and elucidation of the structure of polysaccharides using nuclear magnetic resonance (NMR) spectroscopy. Homogalacturonan (HG), consisting of 1,4-linked residues of α-D-galactopyranosyluronic acid (GalpA), rhamnogalacturonan-I (RG-I), which contains a diglycosyl repeating unit with a strictly alternating sequence of 1,4-linked D-GalpA and 1,2-linked L-rhamnopyranose (Rhap) residues in the backbone, and arabinan, were identified as the structural units of the obtained polysaccharides. HMBC spectra showed that arabinan consisted of alternating regions formed by 3,5-substituted and 1,5-linked arabinofuranose residues, but there was no alternation of these residues in the arabinan structure. Polysaccharide fractions scavenged the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical at 0.2-1.8 mg/mL. The correlation analysis showed that the DPPH scavenging activity of polysaccharide fractions was associated with the content of phenolic compounds (PCs).


Assuntos
Antioxidantes , Salsola , Antioxidantes/farmacologia , Pectinas/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Monossacarídeos/química
7.
Physiol Plant ; 173(4): 1695-1714, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34741316

RESUMO

Salsola drummondii is a perennial habitat-indifferent halophyte growing in saline and nonsaline habitats of the Arabian hyperarid deserts. It offers an invaluable opportunity to examine the molecular mechanisms of salt tolerance. The present study was conducted to elucidate these mechanisms through transcriptome profiling of seedlings grown from seeds collected in a saline habitat. The Illumina Hiseq 2500 platform was employed to sequence cDNA libraries prepared from shoots and roots of nonsaline-treated plants (controls) and plants treated with 1200 mM NaCl. Transcriptomic comparison between salt-treated and control samples resulted in 17,363 differentially expressed genes (DEGs), including 12,000 upregulated genes (7870 in roots, 4130 in shoots) and 5363 downregulated genes (4258 in roots and 1105 in shoots). The majority of identified DEGs are known to be involved in transcription regulation (79), signal transduction (82), defense metabolism (101), transportation (410), cell wall metabolism (27), regulatory processes (392), respiration (85), chaperoning (9), and ubiquitination (98) during salt tolerance. This study identified potential genes associated with the salt tolerance of S. drummondii and demonstrated that this tolerance may depend on the induction of certain genes in shoot and root tissues. These gene expressions were validated using reverse-transcription quantitative PCR, the results of which were consistent with transcriptomics results. To the best of our knowledge, this is the first study providing genetic information on salt tolerance mechanisms in S. drummondii.


Assuntos
Salsola , Plantas Tolerantes a Sal , Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Plantas Tolerantes a Sal/genética , Transcriptoma/genética
8.
Eur Ann Allergy Clin Immunol ; 53(5): 228-233, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32551465

RESUMO

Summary: Background. Sensitization to Salsola kali (Sk) weed pollen allergen is the most common cause of seasonal allergic rhinitis (SAR) in Middle East countries. Aim. To identify Salsola kali skin prick test (SkSPT) wheal size cut-off, able to determine true allergy among adult patients with moderate to severe SAR, who are in need of Salsola kali allergen specific immunotherapy (SkAIT). Methods. In 151 adults with moderate to severe SAR, mean age 32.79 ± 10.79 years, of both gender (females: 43.05%), with a positive SkSPT, (i.e., cut off wheal longest diameter of 3 mm) and one or more other local weed pollens, Salsola kali nasal provocation test (SkNPT) was carried out. Response was assessed both subjectively, with scores, and objectively, by measuring peak nasal inspiratory flow (PNIF). Safety profile of SkNPT was assessed using peak expiratory flow rate (PEF) measurements. Results. SkNPT positive response was found in 125 patients (82.78%). Mean skin prick test (SPT) wheal size to Sk was bigger in the nasal provocatin test (NPT) positive group (9 mm) compared to the NPT negative patients (5 mm), p less than 0.0001. ROC analysis showed that a SPT wheal size to Sk at the threshold of > 7.5 mm enabled identification of SkNPT positivity with a sensitivity of 73.6% and specificity of 100.0% (area under the curve 0.9498, standard error 0.01808; 95% confidence interval (CI): 0.9144 to 0.9853; p less than 0.0001). Conclusions. SPT wheal size of 3 mm might overestimate the presence of real allergy to Sk in a desert environment. A SPT wheal size > 7.5 mm for Sk appears to distinguish individuals who develop disease from those who does not. Physicians should select the proper SPT wheal size value as an appropriate criterion according to the allergen than using a uniform cut off value in patients eligible for SkAIT.


Assuntos
Hipersensibilidade , Salsola , Adulto , Alérgenos , Feminino , Humanos , Hipersensibilidade/diagnóstico , Imunoglobulina E , Testes de Provocação Nasal , Testes Cutâneos/métodos , Adulto Jovem
9.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672654

RESUMO

Salsola collina Pall has a long history of being used as a traditional medicine to treat hypertension, headache, insomnia, constipation and vertigo. However, only a few biologically active substances have been identified from S. collina. Here, the shoots and roots of S. collina, namely L-Sc and R-Sc, were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 637 putative metabolites were identified and these metabolites were mainly classified into ten different categories. Correlation analysis, hierarchical clustering analysis, principal component analysis and orthogonal partial least squares discriminant analysis of metabolites showed that the L-Sc samples could be clearly separated from the R-Sc samples. Differential accumulated metabolite analysis revealed that most of differential primary metabolites were significantly lower in the L-Sc than in the R-Sc. Conversely, the major differential secondary metabolites had higher levels in the L-Sc than in the R-Sc. Further analysis indicated that the flavonoids were the major putative antioxidant components and most of putative antioxidant components exhibited higher relative concentrations in the L-Sc than the R-Sc. These results improve our understanding of metabolite accumulation and provide a reference for the study of medicinal value in S. collina.


Assuntos
Flavonoides/metabolismo , Metabolômica , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Salsola/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Raízes de Plantas/química , Brotos de Planta/química , Análise de Componente Principal , Salsola/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
10.
Molecules ; 26(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923964

RESUMO

Salsola cyclophylla, an edible halophyte, is traditionally used for inflammation and pain. To confirm the claimed anti-inflammatory and analgesic properties, a detailed study on respective pharmacological actions was undertaken. The activities are contemplated to arise from its phytoconstituents. The LC-MS analysis of S. cyclophylla 95% aqueous-ethanolic extract revealed the presence of 52 compounds belonging to phenols, flavonoids, coumarins, and aliphatics class. A high concentration of Mn, Fe, and Zn was detected by atomic absorption spectroscopic analysis. The ethyl acetate extract showed the highest flavonoid contents (5.94 ± 0.04 mg/g, Quercetin Equivalents) and Fe2+-chelation (52%) potential with DPPH radicals-quenching IC50 at 1.35 ± 0.16 mg/mL, while the aqueous ethanolic extract exhibited maximum phenolics contents (136.08 ± 0.12 mg/g, gallic acid equivalents) with DPPH scavenging potential at IC50 0.615 ± 0.06 mg/mL. Aqueous ethanolic extract and standard quercetin DPPH radicals scavenging's were equal potent at 10 mg/mL concentrations. The aqueous ethanolic extract showed highest analgesic effect with pain reduction rates 89.86% (p = 0.03), 87.50% (p < 0.01), and 99.66% (p = 0.0004) after 60, 90, and 120 min, respectively. Additionally, aqueous ethanolic extract exhibited the highest anti-inflammation capacity at 41.07% (p < 0.0001), 34.51% (p < 0.0001), and 24.82% (p < 0.0001) after 2, 3, and 6 h of extract's administration, respectively. The phytochemical constituents, significant anti-oxidant potential, remarkable analgesic, and anti-inflammatory bioactivities of extracts supported the traditionally claimed anti-inflammatory and analgesic plant activities.


Assuntos
Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Salsola/química , Plantas Tolerantes a Sal/química , Analgésicos/química , Analgésicos/farmacologia , Antioxidantes/química , Flavonoides/química , Flavonoides/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Dor/tratamento farmacológico , Dor/patologia , Fenóis/química , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química
11.
J Sci Food Agric ; 100(2): 794-802, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31612484

RESUMO

BACKGROUND: Low-sodium sausages were manufactured using sodium substitution and biopolymer encapsulation. A diet comprising 10% treatment sausages (six treatment groups: C (100% NaCl), T1 (55% sodium substitute + 45% saltwort salt), T2 (55% sodium substitute + 45% saltwort salt with chitosan), T3 (55% sodium substitute + 45% saltwort salt with cellulose), T4 (55% sodium substitute + 45% saltwort salt with dextrin), and T5 (55% sodium substitute + 45% saltwort salt with pectin)) was added to a 90% commercial mouse diet for 4 weeks. RESULTS: Subacute toxicity, hematology, liver function, and organ weight tests in low-sodium sausage groups showed results similar to those of the control group, and all toxicity test levels were within normal ranges. CONCLUSIONS: All low-sodium sausage types tested are suggested to be safe in terms of subacute toxicity. Moreover, low-sodium sausages can be manufactured by biopolymer encapsulation of saltwort using pectin, chitosan, cellulose, and dextrin without toxicity. © 2019 Society of Chemical Industry.


Assuntos
Biopolímeros/análise , Aditivos Alimentares/análise , Manipulação de Alimentos/métodos , Produtos da Carne/análise , Salsola/química , Sódio/análise , Animais , Biopolímeros/metabolismo , Biopolímeros/toxicidade , Celulose/análise , Celulose/metabolismo , Celulose/toxicidade , Quitosana/análise , Quitosana/metabolismo , Quitosana/toxicidade , Feminino , Aditivos Alimentares/metabolismo , Aditivos Alimentares/toxicidade , Manipulação de Alimentos/instrumentação , Masculino , Produtos da Carne/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Salsola/metabolismo , Salsola/toxicidade , Sódio/metabolismo , Sódio/toxicidade , Suínos
12.
BMC Microbiol ; 19(1): 311, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888482

RESUMO

BACKGROUND: Many phytophagous insects, whose diet is generally nitrogen-poor, rely on gut bacteria to compensate for nutritional deficits. Accordingly, we hypothesized that insects in desert environments may evolve associations with gut bacteria to adapt to the extremely low nutrient availability. For this, we conducted a systematic survey of bacterial communities in the guts of weevils developing inside mud chambers affixed to plant roots in the Negev Desert of Israel, based on 16S rRNA gene amplicon sequencing. RESULTS: Our analyses revealed that gut bacterial communities in weevil larvae were similar across a wide geographical range, but differed significantly from those of the mud chambers and of the surrounding soils. Nevertheless, a high proportion of bacteria (including all of the core bacteria) found in the weevils were also detected in the mud chambers and soils at low relative abundances. The genus Citrobacter (of the Enterobacteriaceae family) was the predominant group in the guts of all individual weevils. The relative abundance of Citrobacter significantly decreased at the pupal and adult stages, while bacterial diversity increased. A mini literature survey revealed that members of the genus Citrobacter are associated with nitrogen fixation, recycling of uric acid nitrogen, and cellulose degradation in different insects. CONCLUSIONS: The results suggest that although weevils could potentially acquire their gut bacteria from the soil, weevil host internal factors, rather than external environmental factors, were more important in shaping their gut bacterial communities, and suggest a major role for Citrobacter in weevil nutrition in this challenging environment. This study highlights the potential involvement of gut bacteria in the adaptation of insects to nutritional deficiencies under extreme desert conditions.


Assuntos
Bactérias/classificação , Clima Desértico , Microbioma Gastrointestinal , Raízes de Plantas , Gorgulhos/microbiologia , Animais , Bactérias/isolamento & purificação , Israel , Larva/microbiologia , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética , Salsola , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Simbiose , Gorgulhos/fisiologia
13.
Environ Monit Assess ; 191(3): 148, 2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30737571

RESUMO

In the present day, plants are increasingly being utilized to safeguard the environment. In this study, we used Salsola crassa M. B. and Suaeda maritima L. Dumort for phytoremediation of water contaminated with heavy metals and simultaneous examination of the effect of industrial pollution on their root structures. After irrigation of a treatment group with wastewater and a control group with fresh water for 3 months, we fixed the root parts in the FAA fixator for developmental study, and measured the concentrations of Co, Ni, Zn, As, Cu, and Pb in the roots, shoots, soil, and irrigating water. The plants irrigated with wastewater showed significant accumulation of heavy metals in the roots and some translocation of heavy metals from the roots to the shoots. We also performed an experiment with two 0.3 m3 pools to more closely study the feasibility of these plants for filtering water of contaminants, including mineral compounds, and altering its chemical characteristics. In our anatomical studies, the cells of the treatment roots showed irregularities and abnormal appearances in all tissue layers. The diameter and area of the xylem and the size of the cortical parenchyma have increased in the treatment plants of both species, confirmed by Stereolite software. Phytoremediation studies indicated that S. crassa accumulated As, Cu, Zn, Pb, Co, and Ni, and S. maritima accumulated As, Co, Zn, and Cu. S. crassa accumulated more heavy metals in its roots, whereas S. maritima accumulated more in its shoots. The biological oxygen demand and chemical oxygen demand were also significantly reduced in the wastewater passed through pools with S. crassa. Our results indicate that both genera are hyperaccumulators of heavy metals and therefore hold promise for industrial wastewater treatment, especially the absorption of As.


Assuntos
Chenopodiaceae/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Metais Pesados/análise , Salsola/crescimento & desenvolvimento , Águas Residuárias/análise , Irrigação Agrícola , Biodegradação Ambiental , Chenopodiaceae/química , Irã (Geográfico) , Metais Pesados/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Salsola/química , Águas Residuárias/toxicidade
14.
Plant Physiol ; 175(1): 272-289, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743765

RESUMO

Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.


Assuntos
Amaranthaceae/metabolismo , Chenopodiaceae/metabolismo , Cisteína/metabolismo , Proteínas de Plantas/metabolismo , Salsola/metabolismo , Enxofre/metabolismo , Amaranthaceae/efeitos dos fármacos , Biomassa , Chenopodiaceae/efeitos dos fármacos , Cisteína Sintase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Salinidade , Salsola/efeitos dos fármacos , Plantas Tolerantes a Sal , Sódio/farmacologia , Sulfatos/farmacologia , Compostos de Sulfidrila/metabolismo
15.
Int Arch Allergy Immunol ; 177(4): 290-301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30173224

RESUMO

BACKGROUND: Cross-reactivity reactions between allergenic polygalacturonases (PGs) from different biological sources, especially foods and pollens from the Oleaceae family, have been described using Salsola kali PG (Sal k 6). No PG from olive pollen has been characterized to date, hampering further knowledge about cross-reactions through PGs. OBJECTIVES: The aim of this work was to determine the potential allergenicity of the PG from olive pollen and clarify its role in cross-reactivity. METHODS: A cDNA-encoding olive pollen PG sequence was subcloned into the pET41b vector and used to transform BL21(DE3) Escherichia coli cells to produce a His-tag fusion recombinant protein. The allergenic properties of olive pollen PG were determined by immunoblotting and ELISA in comparison to Sal k 6. The cross-reactivity potential of the protein with other pollen sources was analyzed by inhibition immunoassays. RESULTS: The existence of other isoforms of Ole e 14 with different allergenicity was confirmed by proteomics and a meta-analysis of the recently reported olive genome. Sal k 6 showed a higher IgE recognition than Ole e 14 regardless of patient sensitization, suggesting the existence of more allergenic Ole e 14 isoforms in olive pollen. IgG and IgE inhibition assays supported the existence of cross-reactions between them and with other PGs from Oleaceae and Poaceae plant families. CONCLUSIONS: A new allergen from olive pollen, Ole e 14, has been identified, produced as a recombinant isoform, and structurally and immunologically characterized. Its role in cross-reactivity has been confirmed and, due to its smaller IgE binding capacity, it could have an important role for therapeutic purposes.


Assuntos
Alérgenos/metabolismo , Antígenos de Plantas/metabolismo , Poligalacturonase/metabolismo , Rinite Alérgica Sazonal/imunologia , Alérgenos/genética , Alérgenos/imunologia , Sequência de Aminoácidos/genética , Antígenos de Plantas/genética , Western Blotting , Clonagem Molecular , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Imunoglobulina E/metabolismo , Olea/imunologia , Pólen/genética , Pólen/metabolismo , Poligalacturonase/genética , Isoformas de Proteínas/genética , Proteômica , Salsola/imunologia
16.
Can J Microbiol ; 64(8): 567-579, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29701484

RESUMO

Salinity is one of the major abiotic stresses; a total of 3% of the world's land mass is affected by salinity. Approximately 6.3 million hectares of land in Pakistan is affected by salinity to varying degrees, and most of the areas are arid to semiarid with low annual precipitation. The aim of the present study is to identify and characterize Bacillus and Bacillus-derived bacterial genera from the rhizospheric and non-rhizospheric soil samples from the Khewra Salt Mine, Pakistan, by using culture-independent and -dependent methods. Seven Bacillus-like bacterial genera, Bacillus, Halobacillus, Virgibacillus, Brevibacillus, Paenibacillus, Tumebacillus, and Lysinibacillus, were detected by using pyrosequencing analysis, whereas only four genera, Bacillus, Halobacillus, Oceanobacillus, and Virgibacillus, were identified by culture-dependent methods. Most of the Bacillus-like isolates identified in this study were moderately halophilic, alkaliphilic, and mesophilic bacteria and were considered a good source of hydrolytic enzymes because of their ability to degrade proteins, carbohydrates, and lipids. Eight Bacillus-like strains from the genera Bacillus, Halobacillus, Oceanobacillus, and Virgibacillus showed positive results for the presence of ectABC gene cluster (ectoine), six strains could synthesize betaine from choline, and six strains tested positive for the synthesis of proline from either glutamate or ornithine by using proline dehydrogenase enzyme.


Assuntos
Atriplex/microbiologia , Bacillaceae/classificação , Bacillaceae/genética , Biodiversidade , Osmorregulação/genética , Salsola/microbiologia , Plantas Tolerantes a Sal/microbiologia , Diamino Aminoácidos/genética , Bacillaceae/metabolismo , DNA Bacteriano/genética , Paquistão , Filogenia , Microbiologia do Solo
17.
Artigo em Inglês | MEDLINE | ID: mdl-28960180

RESUMO

BACKGROUND: There are no studies on cross-reactivity between Salsola kali and Salsola imbricata pollens. The main goals of the present study were to compare the degree of the cross-reactivity between S kali and S imbricata and to compare the various allergenic components shared by S kali and S imbricata. METHODS: erum samples were obtained from rhinitis patients with or without asthma living in Kuwait and presenting with a positive skin test result to S kali. SDS-PAGE/IgE Western blot and ELISA inhibition assay were performed. RESULTS: The study population comprised 37 patients. The most frequent IgE proteins against S imbricata weighed around 12, 15, 18, 37, and 50+55 kDa. 2D electrophoresis revealed a correlation between S kali and S imbricata at 40, 60, and 75 kDa, with similar isoelectric points. ELISA inhibition revealed an Ag50 value of 1.7 µg/mL for S kali and 500.5 µg/mL for S imbricata when the solid phase was S kali and an Ag50 value of 1.4 µg/mL for S kali and 3.0 µg/mL for S imbricata when the solid phase was S imbricata. CONCLUSIONS: ELISA inhibition revealed strong cross-reactivity between S kali and S imbricata. This finding might be clinically relevant for the efficacy of allergen-specific immunotherapy. We report, for the first time, the allergenic profile of S imbricata and potentially allergenic proteins for S kali and S imbricata.


Assuntos
Reações Cruzadas/imunologia , Salsola/imunologia , Adolescente , Adulto , Alérgenos/imunologia , Antígenos de Plantas/imunologia , Dessensibilização Imunológica/métodos , Feminino , Humanos , Imunoglobulina E/imunologia , Masculino , Pessoa de Meia-Idade , Proteínas de Plantas/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Testes Cutâneos/métodos , Adulto Jovem
18.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 1067-1076, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28502749

RESUMO

A highly prevalent IgE-binding protein band of 28kDa is observed when Salsola kali pollen extract is incubated with individual sera from Amaranthaceae pollen sensitized patients. By an immunoproteomic analysis of S. kali pollen extract, we identified this protein band as an allergenic polygalacturonase enzyme. The allergen, named Sal k 6, exhibits a pI of 7.14 and a molecular mass of 39,554.2Da. It presents similarities to Platanaceae, Poaceae, and Cupressaceae allergenic polygalacturonases. cDNA-encoding sequence was subcloned into the pET41b vector and produced in bacteria as a His-tag fusion recombinant protein. The far-UV CD spectrum determined that rSal k 6 was folded. Immunostaining of the S. kali pollen protein extract with a rSal k 6-specific pAb and LC-MS/MS proteomic analyses confirmed the co-existence of the 28kDa band together with an allergenic band of about 47kDa in the pollen extract. Therefore, the 28kDa was assigned as a natural degradation product of the 47kDa integral polygalacturonase. The IgE-binding inhibition to S. kali pollen extract using rSal k 6 as inhibitor showed that signals directed to both protein bands of 28 and 47kDa were completely abrogated. The average prevalence of rSal k 6 among the three populations analyzed was 30%, with values correlating well with the levels of grains/m3 of Amaranthaceae pollen. Sal k 6 shares IgE epitopes with Oleaceae members (Fraxinus excelsior, Olea europaea and Syringa vulgaris), with IgE-inhibition values ranging from 20% to 60%, respectively. No IgE-inhibition was observed with plant-derived food extracts.


Assuntos
Antígenos de Plantas/metabolismo , Glicosídeos/metabolismo , Imunoglobulina E/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Salsola/metabolismo , Amaranthaceae/química , Amaranthaceae/metabolismo , Sequência de Aminoácidos , Antígenos de Plantas/química , Sequência de Bases , Clonagem Molecular/métodos , Reações Cruzadas/fisiologia , Glicosídeos/química , Oleaceae/química , Oleaceae/metabolismo , Proteínas de Plantas/química , Pólen/química , Ligação Proteica/fisiologia , Proteômica/métodos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Salsola/química , Alinhamento de Sequência
19.
J Exp Bot ; 68(2): 161-176, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660482

RESUMO

Some species of Salsoleae (Chenopodiaceae) convert from C3 photosynthesis during the seedling stage to the C4 pathway in adult leaves. This unique developmental transition of photosynthetic pathways offers the exceptional opportunity to follow the development of the derived C4 syndrome from the C3 condition within individual plants, avoiding phylogenetic noise. Here we investigate Salsola soda, a little-studied species from tribe Salsoleae, using an ontogenetic approach. Anatomical sections, carbon isotope (δ13C) values, transcriptome analysis by means of mRNA sequencing, and protein levels of the key C4 enzyme phosphoenolpyruvate carboxylase (PEPC) were examined from seed to adult plant stages. Despite a previous report, our results based on δ13C values, anatomy and transcriptomics clearly indicate a C3 phase during the cotyledon stage. During this stage, the entire transcriptional repertoire of the C4 NADP-malic enzyme type is detected at low levels compared to a significant increase in true leaves. In contrast, abundance of transcripts encoding most of the major photorespiratory enzymes is not significantly decreased in leaves compared to cotyledons. PEPC polypeptide was detected only in leaves, correlating with increased PEPC transcript abundance from the cotyledon to leaf stage.


Assuntos
Cotilédone/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Salsola/metabolismo , Isótopos de Carbono/metabolismo , Cotilédone/anatomia & histologia , Perfilação da Expressão Gênica , Folhas de Planta/anatomia & histologia , Salsola/anatomia & histologia , Salsola/crescimento & desenvolvimento , Transcriptoma
20.
Exp Appl Acarol ; 73(3-4): 327-338, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29210002

RESUMO

Aceria salsolae (Acari: Eriophyidae) is being evaluated as a candidate biological control agent of Russian thistle (Salsola tragus, Chenopodiaceae), a major invasive weed of rangelands and dryland crops in the western USA. Prior laboratory host range testing under artificial lighting indicated reproduction on non-native Bassia hyssopifolia and on a native plant, Suaeda calceoliformis. However, in field tests in the native range, mite populations released on these 'nontarget' plants remained low. We hypothesized that UV-A light, which can affect behavior of tetranychid mites, would affect populations of the eriophyid A. salsolae differently on the target and nontarget plant species, decreasing the mite's realized host range. Plants were infested with A. salsolae under lamps that emitted UV-A, along with broad-spectrum lighting, and the size of mite populations and plant growth was compared to infested plants exposed only to broad-spectrum light. Russian thistle supported 3- to 55-fold larger mite populations than nontarget plants regardless of UV-A treatment. UV-A exposure did not affect mite populations on Russian thistle or S. calceoliformis, whereas it increased populations 7-fold on B. hyssopifolia. Main stems on nontarget plants grew 2- to 6-fold faster than did Russian thistle under either light treatment. The two nontarget plants attained greater volume under the control light regime than UV-A, but Russian thistle was unaffected. Although Russian thistle was always the superior host, addition of UV-A light to the artificial lighting regime did not reduce the ability of A. salsolae to reproduce on the two nontarget species, suggesting that UV-B or other environmental factors may be more important in limiting mite populations in the field.


Assuntos
Herbivoria/efeitos da radiação , Ácaros/efeitos da radiação , Controle Biológico de Vetores , Salsola , Raios Ultravioleta/efeitos adversos , Animais , Ácaros/fisiologia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA