Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 166(3): 253-261, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896394

RESUMO

We found an elastolytic activity in the culture supernatant of Streptomyces sp. P-3, and the corresponding enzyme (streptomycetes elastase, SEL) was purified to apparent homogeneity from the culture supernatant. The molecular mass of purified SEL was approximately 18 kDa as judged by SDS-PAGE analysis and gel-filtration chromatography. Utilizing information from N-terminal amino acid sequencing of SEL and mass spectrometry of SEL tryptic fragments, we succeeded in cloning the gene-encoding SEL. The cloned SEL gene contains a 726 bp ORF, which encodes a 241 amino acid polypeptide containing a putative signal peptide for secretion (28 amino acid) and pro-sequence (14 amino acid). Although the deduced primary structure of SEL has sequence similarity to proteins in the S1 protease family, the amino acid sequence shares low identity (< 31.5 %) with any known elastase. SEL efficiently hydrolyses synthetic peptides having Ala or Val in the P1 position such as N-succinyl-Ala-Ala-(Pro or Val)-Ala-p-nitroanilide (pNA), whereas reported proteases by streptomycetes having elastolytic activity prefer large residues, such as Phe and Leu. Compared of kcat/Km ratios for Suc-Ala-Ala-Val-Ala-pNA and Suc-Ala-Ala-Pro-Ala-pNA with subtilisin YaB, which has high elastolytic activity, Streptomyces sp. P-3 SEL exhibits 12- and 121-fold higher, respectively. Phylogenetic analyses indicate that the predicted SEL protein, together with predicted proteins in streptomycetes, constitutes a novel group within the S1 serine protease family. These characteristics suggest that SEL-like proteins are new members of the S1 serine protease family, which display elastolytic activity.


Assuntos
Elastase Pancreática , Serina Proteases , Streptomyces/enzimologia , Genes Bacterianos , Elastase Pancreática/biossíntese , Elastase Pancreática/química , Elastase Pancreática/genética , Elastase Pancreática/isolamento & purificação , Filogenia , Serina Proteases/biossíntese , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/isolamento & purificação
2.
Cell Microbiol ; 21(7): e13022, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30822363

RESUMO

Infection with Helicobacter pylori represents a major risk for developing peptic ulcer disease, gastric adenocarcinoma, and various other gastric and nongastric sicknesses. A series of H. pylori virulence factors can be secreted into the cell culture supernatant, and the secretome contains more than 100 different proteins. However, the quantities of proteins secreted by the bacteria over time are unknown. One of these factors is the serine protease high-temperature requirement A (HtrA), encoded by an essential bifunctional gene with crucial intracellular and extracellular activities. We have demonstrated recently that secreted HtrA can cleave off the ectodomains of the tight junction proteins occludin and claudin-8, as well as of the tumour suppressor and adherens junction protein E-cadherin on polarised gastric epithelial cells. The exact mechanism of secretion and the quantity of secreted HtrA, however, have not been studied in detail. Here, we applied protein purification and quantitative Western blotting to determine the number of HtrA molecules secreted by H. pylori cells in liquid culture during a time course. Over a period of 8 hr, actively dividing bacteria secreted HtrA at a similar rate, on average about 9,600 HtrA molecules per cell. We determined minor variation over time corresponding to 9,931 ± 1,768 at an OD600 of 0.4 after 2 hr, 9,403 ± 2,356 2 hr later, and 9,644 ± 2,067 molecules per cell after 8 hr of culturing, when the culture had reached an OD600 of 0.8. This is the first report on the quantification of a secreted virulence protein from the important gastric pathogen H. pylori. Because HtrA has been considered as a promising new target for antibacterial therapy, knowledge about secreted protein quantities is crucial for optimising corresponding treatment regimes.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/enzimologia , Serina Proteases/genética , Caderinas/genética , Claudinas/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Humanos , Ocludina/genética , Fatores de Risco , Serina Proteases/biossíntese , Serina Proteases/metabolismo , Virulência/genética , Fatores de Virulência/genética
3.
Microb Cell Fact ; 19(1): 135, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32580707

RESUMO

BACKGROUND: A neutral, heat-sensitive serine protease (NHSSP) originating from the feather-degrading fungus Onygena corvina (O. corvina) was described and defined as an alkaline serine protease of the subtilisin type S8 family, exhibiting an enzymatic activity at neutral pH. Generally, broad specificity proteases, such as proteinase K or trypsin, have found numerous applications in research and biotechnology. RESULTS: We report the cloning and expression in the yeast PichiaPink™ system, as well as purification, and characterization of the NHSSP. Recombinant, His6-tagged NHSSP was efficiently expressed from an optimized, synthetic gene and purified using a simple protocol based on ammonium sulfate fractionation and hydrophobic interaction chromatography. The enzyme shows atypical C-terminal processing, the coded preproprotein undergoes signal peptide removal and maturation through the clipping of a propeptide section and 10 amino acids (aa) from the C-terminus, including the His6-tag. The deletion variant has been constructed, devoid of the C-terminal ORF segment, thus eliminating the need for C-terminal processing. Both NHSSP variants exhibit very similar enzymatic characteristics. The purified enzymes were characterized to determine the optimal proteolytic conditions. We revealed that the mature NHSSP is reproducibly active over a wide pH range from neutral to mild acidic (pH of 5.0 to 8.5), with an optimum at pH 6.8, and at temperatures of 15 to 50 °C with an optimum at 38-42 °C. Interestingly, we demonstrated that the protease can be fully deactivated by a moderate increase in temperature of about 15 °C from the optimum to over 50 °C. The protease was partially sensitive to serine protease inhibitors, and not inhibited by chelating or reducing agents and detergents. SDS induced autolysis of NHSSP, which points to a high stimulation of its proteolytic activity. CONCLUSIONS: The NHSSP was produced as a recombinant protein with high efficiency. Compared to proteinase K, the most common serine protease used, NHSSP shows an approx. twofold higher specific activity. Protein sequencing can be a valuable technical application for the protease. The protein coverage is significantly higher in comparison to trypsin and reaches about 84-100% for ß-lactoglobulin (BLG), antibody (mAb) light and heavy chains. Furthermore, the option to perform digestions at neutral to slightly acidic pH-values down to pH 5.0 avoids modification of peptides, e.g. due to deamidation.


Assuntos
Proteínas Fúngicas , Onygenales/enzimologia , Serina Proteases , Estabilidade Enzimática , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Cinética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Serina Proteases/biossíntese , Serina Proteases/química
4.
PLoS Genet ; 13(6): e1006860, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28628612

RESUMO

Dorsal closure (DC) is a developmental process in which two contralateral epithelial sheets migrate to seal a large hole in the dorsal ectoderm of the Drosophila embryo. Two signaling pathways act sequentially to orchestrate this dynamic morphogenetic process. First, c-Jun N-terminal kinase (JNK) signaling activity in the dorsal-most leading edge (LE) cells of the epidermis induces expression of decapentaplegic (dpp). Second, Dpp, a secreted TGF-ß homolog, triggers cell shape changes in the adjacent, ventrally located lateral epidermis, that guide the morphogenetic movements and cell migration mandatory for DC. Here we uncover a cell non-autonomous requirement for the Epidermal growth factor receptor (Egfr) pathway in the lateral epidermis for sustained dpp expression in the LE. Specifically, we demonstrate that Egfr pathway activity in the lateral epidermis prevents expression of the gene scarface (scaf), encoding a secreted antagonist of JNK signaling. In embryos with compromised Egfr signaling, upregulated Scaf causes reduction of JNK activity in LE cells, thereby impeding completion of DC. Our results identify a new developmental role for Egfr signaling in regulating epithelial plasticity via crosstalk with the JNK pathway.


Assuntos
Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Receptores ErbB/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Receptores de Peptídeos de Invertebrados/genética , Serina Proteases/genética , Animais , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ectoderma/crescimento & desenvolvimento , Ectoderma/metabolismo , Embrião não Mamífero , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Receptores ErbB/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Morfogênese/genética , Receptores de Peptídeos de Invertebrados/biossíntese , Serina Proteases/biossíntese , Transdução de Sinais
5.
Prep Biochem Biotechnol ; 50(6): 619-626, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32013723

RESUMO

The protease from Aspergillus tamarii Kita UCP1279 extraction by aqueous two-phase PEG-Citrate (ATPS) systems, using a factorial design 24, was investigated. Then, the variables studied were polyethylene glycol (PEG) molar mass (MPEG), concentrations of PEG (CPEG) and citrate (CCIT), and pH. The responses analyzed were the partition coefficient (K), activity yield (Y) and purification factor (PF). The thermodynamic parameters of the ATPS partition were estimated as a function of temperature. ATPS was able to pre-purify the protease (PF = 1.6) and obtained 84% activity yield. The thermodynamic parameters ΔG°m (-10.89 kJ mol-1), ΔHm (-5.0 kJ mol-1) and partition ΔSm (19.74 J mol-1 K-1) showed that the preferential migration of almost all protein contaminants of the crude extract to the salt-rich phase, while the preferred protease was the PEG rich phase. The extracted enzyme presents optimum temperature and pH at range of 40-50 °C and 9.0-11.0, respectively. Moreover, the enzyme was identified as serine protease based on inhibition profile. ATPS showed the satisfactory performance as the first step for Aspergillus tamarii Kita UCP1279 protease pre-purification.


Assuntos
Aspergillus/enzimologia , Polietilenoglicóis/química , Serina Proteases/biossíntese , Serina Proteases/isolamento & purificação , Citrato de Sódio/química , Termodinâmica , Água/química , Concentração de Íons de Hidrogênio , Íons/farmacologia , Metais/farmacologia , Peso Molecular , Inibidores de Proteases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Temperatura
6.
Antonie Van Leeuwenhoek ; 112(12): 1775-1784, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31363875

RESUMO

FSH1 belongs to the family of serine hydrolases in yeast and is homologous to the human ovarian tumor suppressor gene (OVAC2). Our preliminary results showed that cells lacking Fsh1p exhibit an increase in cell growth, and a decrease in the expression of AIF1 and NUC1 (apoptosis responsive genes) when compared to the wild type cells. Growth inhibition of cells overexpressing FSH1 is due to induction of cell death associated with cell death markers typical of mammalian apoptosis namely DNA fragmentation, phosphatidylserine externalization, ROS accumulation, Cytochrome c release, and altered mitochondrial membrane potential. When wild type cells were overexpressed with FSH1 there was up regulation of AIF1 level when compared to control cells suggesting that overexpression of FSH1 regulated cell death in yeast.


Assuntos
Apoptose , Expressão Gênica , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Serina Proteases/biossíntese , Endonucleases/biossíntese , Exonucleases/biossíntese , Deleção de Genes , Viabilidade Microbiana , NADH NADPH Oxirredutases/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Serina Proteases/genética
7.
BMC Biotechnol ; 18(1): 34, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859069

RESUMO

BACKGROUND: Mesophilic alkaline serine proteases from various bacteria have been commercially applied in a range of industries owing to their high catalytic efficiency and wide substrate specificity. However, these proteases have an optimal catalytic temperature of approximately 50 °C, and their activity decreases significantly at low temperature. Therefore, to enhance their cold activity, it is necessary to improve the catalytic performance of these proteases at low temperature. The alkaline serine protease (DHAP) from Bacillus pumilus BA06 is a typical mesophilic enzyme, which has demonstrated great potential in various industrial applications. Here we attempted to improve the cold activity of DHAP via directed evolution. RESULTS: Seven variants (P9S, A1G/K27Q, A38V, A116T, T162I, S182R, and T243S) of DHAP from B. pumilus were obtained via directed evolution. The results showed that all of the variants had increased proteolytic activity at 15 °C towards both the casein and synthetic peptide substrates. With the exception of variant T243S, the thermostability of these variants did not decrease in comparison with the wild-type enzyme. Kinetic analysis indicated that the increase in catalytic efficiency was largely attributed to the increase in turnover number (kcat). Furthermore, the combined variants generated by site-directed mutagenesis showed a further increase in specific caseinolytic activity and the kcat value for hydrolysis of the synthetic peptide. The combined variants of P9S/K27Q and P9S/T162I exhibited an approximate 5-fold increase in caseinolytic activity at 15 °C and almost no loss of thermostability. Finally, the possible mechanism responsible for the change in catalytic properties for these variants was interpreted based on structural modeling. CONCLUSIONS: Directed evolution and site-directed mutagenesis were combined to engineer variants of the DHAP from B. pumilus. All of the variants exhibited an increase in hydrolytic efficiency at low temperature towards both of the substrates, casein and synthetic peptide, without any loss of thermostability compared with the wild-type. These data suggest that engineering low-temperature activity for a bacterial protease is not always associated with the loss of thermostability. Furthermore, our findings demonstrate that enhanced cold activity and thermostability could be integrated into a single variant.


Assuntos
Bacillus pumilus/enzimologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Endopeptidases/biossíntese , Endopeptidases/metabolismo , Serina Proteases/biossíntese , Serina Proteases/metabolismo , Proteínas de Bactérias/genética , Evolução Molecular Direcionada/métodos , Endopeptidases/genética , Estabilidade Enzimática , Engenharia Genética , Cinética , Mutagênese Sítio-Dirigida/métodos , Proteólise , Serina Proteases/genética , Especificidade por Substrato , Temperatura
8.
World J Microbiol Biotechnol ; 34(5): 68, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29752585

RESUMO

Vibrio parahaemolyticus, a Gram-negative bacterium, inhabits marine and estuarine environments and it is a major pathogen responsible globally for most cases of seafood-associated gastroenteritis in humans and acute hepatopancreatic necrosis syndrome in shrimps. There has been a dramatic worldwide increase in V. parahaemolyticus infections over the last two decades. The pathogenicity of V. parahaemolyticus has been linked to the expression of different kinds of virulence factors including extracellular proteases, such as metalloproteases and serine proteases. V. parahaemolyticus expresses the metalloproteases; PrtV, VppC, VPM and the serine proteases; VPP1/Protease A, VpSP37, PrtA. Extracellular proteases have been identified as potential virulence factors which directly digest many kinds of host proteins or indirectly are involved in the processing of other toxic protein factors. This review summarizes findings on the metalloproteases and serine proteases produced by V. parahaemolyticus and their roles in infections. Identifying the role of V. parahaemolyticus virulence-associated extracellular proteases deepens our understanding of diseases caused by this bacterium.


Assuntos
Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/classificação , Vibrio parahaemolyticus/enzimologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Metaloproteases/biossíntese , Metaloproteases/genética , Metaloproteases/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Alimentos Marinhos/microbiologia , Serina Proteases/biossíntese , Serina Proteases/genética , Serina Proteases/metabolismo , Vibrioses/microbiologia , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidade , Virulência , Fatores de Virulência/genética
9.
Protein Expr Purif ; 129: 162-172, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26363113

RESUMO

We have previously published a report on the cloning and characterization of Harobin, a fibrinolytic serine protease. However, the broad application of this fibrinolytic enzyme is limited by its low expression level that was achieved in Pichia pastoris. To counteract this shortcoming, random and site-directed mutagenesis have been combined in order to improve functional expression and activity of Harobin. By screening 400 clones from random mutant libraries for enhanced fibrinolytic activity, two mutants were obtained: N111R, R230G. By performing site-directed mutagenesis, a Harobin double mutant, N111R/R230G, was constructed and can be functionally expressed at higher level than the wild type enzyme. In addition, it possessed much higher fibrinolytic and amidolytic activity than the wild type enzyme and other single mutants. The N111R/R230G expressed in basal salts medium was purified by a three step purification procedure. At pH of 6.0-9.0, and the temperature range of 40-90 °C, N111R/R230G was more active and more heat resistant. The fibrinolytic activities of Harobin mutants were completely inhibited by PMSF and SBTI, but not by EDTA, EGTA, DTT, indicating that Harobin is a serine protease. N111R/R230G showed much better anti-thrombosis effect than wild type Harobin and single mutants, and could significantly increase bleeding and clotting time. Intravenous injection of N111R/R230G in spontaneous hypertensive rats (SHR) led to a significant reduction in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) (p < 0.01), while heart rate (HR) was not affected. The in vitro and in vivo results of the present study revealed that Harobin double mutant N111R/R230G is an appropriate candidate for biotechnological applications due to its high expression level and high activity in area of thrombosis and hypertension.


Assuntos
Venenos Elapídicos/genética , Elapidae/genética , Fibrinólise/efeitos dos fármacos , Fibrinolíticos , Mutagênese Sítio-Dirigida , Serina Proteases , Animais , Venenos Elapídicos/enzimologia , Elapidae/metabolismo , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/metabolismo , Fibrinolíticos/farmacologia , Humanos , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Serina Proteases/biossíntese , Serina Proteases/genética , Serina Proteases/isolamento & purificação , Serina Proteases/farmacologia
10.
Mol Microbiol ; 97(2): 330-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869813

RESUMO

An exoprotease of Vibrio vulnificus, VvpS, exhibits an autolytic function during the stationary phase. To understand how vvpS expression is controlled, the regulators involved in vvpS transcription and their regulatory mechanisms were investigated. LeuO was isolated in a ligand-fishing experiment, and experiments using a leuO-deletion mutant revealed that LeuO represses vvpS transcription. LeuO bound the extended region including LeuO-binding site (LBS)-I and LBS-II. Further screening of additional regulators revealed that SmcR and cyclic adenosine monophosphate-receptor protein (CRP) play activating roles in vvpS transcription. SmcR and CRP bound the regions overlapping LBS-I and -II, respectively. In addition, the LeuO occupancy of LBS-I and LBS-II was competitively exchanged by SmcR and CRP, respectively. To examine the mechanism of stationary-phase induction of vvpS expression, in vivo levels of three transcription factors were monitored. Cellular level of LeuO was maximal at exponential phase, while those of SmcR and CRP were maximal at stationary phase and relatively constant after the early-exponential phase, respectively. Thus, vvpS transcription was not induced during the exponential phase by high cellular content of LeuO. When entering the stationary phase, however, LeuO content was significantly reduced and repression by LeuO was relieved through simultaneous binding of SmcR and CRP to LBS-I and -II, respectively.


Assuntos
Exopeptidases/biossíntese , Fatores de Transcrição/metabolismo , Vibrio vulnificus/metabolismo , Proteínas de Bactérias/metabolismo , Indução Enzimática , Exopeptidases/genética , Exopeptidases/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Ligação Proteica , Serina Proteases/biossíntese , Serina Proteases/genética , Serina Proteases/metabolismo , Vibrio vulnificus/enzimologia , Vibrio vulnificus/genética , Vibrio vulnificus/crescimento & desenvolvimento
11.
J Virol ; 89(5): 2962-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520511

RESUMO

Acanthamoeba is a genus of free-living amoebas distributed worldwide. Few studies have explored the interactions between these protozoa and their infecting giant virus, Acanthamoeba polyphaga mimivirus (APMV). Here we show that, once the amoebal encystment is triggered, trophozoites become significantly resistant to APMV. Otherwise, upon infection, APMV is able to interfere with the expression of a serine proteinase related to amoebal encystment and the encystment can no longer be triggered.


Assuntos
Acanthamoeba/enzimologia , Acanthamoeba/virologia , Interações Hospedeiro-Parasita , Mimiviridae/crescimento & desenvolvimento , Serina Proteases/biossíntese , Esporos de Protozoários/crescimento & desenvolvimento , Acanthamoeba/crescimento & desenvolvimento
12.
J Biol Chem ; 289(37): 25987-95, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25077965

RESUMO

Factor C, a serine protease zymogen involved in innate immune responses in horseshoe crabs, is known to be autocatalytically activated on the surface of bacterial lipopolysaccharides, but the molecular mechanism of this activation remains unknown. In this study, we show that wild-type factor C expressed in HEK293S cells exhibits a lipopolysaccharide-induced activity equivalent to that of native factor C. Analysis of the N-terminal addition, deletion, or substitution mutants shows that the N-terminal Arg residue and the distance between the N terminus and the tripartite of lipopolysaccharide-binding site are essential factors for autocatalytic activation, and that the positive charge of the N terminus may interact with an acidic amino acid(s) of the molecule to convert the zymogen into an active form. Chemical cross-linking experiments indicate that the N terminus is required to form a complex of the factor C molecules in a sufficiently close vicinity to be chemically cross-linked on the surface of lipopolysaccharides. We propose a molecular mechanism of the autocatalytic activation of the protease zymogen on lipopolysaccharides functioning as a platform to induce specific protein-protein interaction between the factor C molecules.


Assuntos
Proteínas de Artrópodes/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Caranguejos Ferradura/enzimologia , Imunidade Inata/genética , Serina Proteases/genética , Serina Proteases/metabolismo , Sequência de Aminoácidos , Animais , Precursores Enzimáticos/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lipopolissacarídeos/toxicidade , Serina Proteases/biossíntese
13.
Environ Microbiol ; 17(4): 1152-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24919412

RESUMO

Vibrio tasmaniensis LGP32, a facultative intracellular pathogen of oyster haemocytes, was shown here to release outer membrane vesicles (OMVs) both in the extracellular milieu and inside haemocytes. Intracellular release of OMVs occurred inside phagosomes of intact haemocytes having phagocytosed few vibrios as well as in damaged haemocytes containing large vacuoles heavily loaded with LGP32. The OMV proteome of LGP32 was shown to be rich in hydrolases (25%) including potential virulence factors such as proteases, lipases, phospholipases, haemolysins and nucleases. One major caseinase/gelatinase named Vsp for vesicular serine protease was found to be specifically secreted through OMVs in which it is enclosed. Vsp was shown to participate in the virulence phenotype of LGP32 in oyster experimental infections. Finally, OMVs were highly protective against antimicrobial peptides, increasing the minimal inhibitory concentration of polymyxin B by 16-fold. Protection was conferred by OMV titration of polymyxin B but did not depend on the activity of Vsp or another OMV-associated protease. Altogether, our results show that OMVs contribute to the pathogenesis of LGP32, being able to deliver virulence factors to host immune cells and conferring protection against antimicrobial peptides.


Assuntos
Ostreidae/microbiologia , Vacúolos/microbiologia , Vibrio/patogenicidade , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Farmacorresistência Bacteriana , Gelatinases/biossíntese , Proteínas Hemolisinas/biossíntese , Metaloendopeptidases/biossíntese , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Ostreidae/imunologia , Fagossomos/microbiologia , Polimixina B/farmacologia , Serina Endopeptidases/biossíntese , Serina Proteases/biossíntese , Vibrio/genética
14.
Exp Dermatol ; 24(9): 675-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25940096

RESUMO

NKp46 (natural cytotoxic receptor 1/CD335) is expressed on natural killer cells and Th2-type innate lymphocytes. However, NKp46 expression in human mast cells has not yet been reported. Here, we explored the expression of, and possible role played by, NKp46 in such cells. NKp46 protein was expressed in human mast cells in urticaria pigmentosa principally of the tryptase-positive/chymase-negative type (MCT), but not in human non-neoplastic skin mast cells of the tryptase-positive/chymase-positive (MCTC) type. NKp46 expression was also evident in the human neoplastic mast cell line HMC1.2. NKp46 knockdown changed the phenotype of this cell line from MCT to MCTC and downregulated GrB production, but did not influence IL-22 production. An agonistic anti-NKp46 antibody upregulated production of GrB and IL-22, but did not change the MCT-like phenotype of HMC1.2 cells. NKp46 was thus involved in the production of serine proteases and IL-22 in human mast cells.


Assuntos
Interleucinas/biossíntese , Mastócitos/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Serina Proteases/biossíntese , Urticaria Pigmentosa/metabolismo , Adolescente , Adulto , Idoso , Linhagem Celular Tumoral , Criança , Pré-Escolar , Quimases/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Granzimas/biossíntese , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Fenótipo , Triptases/metabolismo , Urticaria Pigmentosa/enzimologia , Adulto Jovem , Interleucina 22
15.
Reprod Biol Endocrinol ; 13: 93, 2015 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26276571

RESUMO

BACKGROUND: GJA1 and PTX3 were proposed as gene markers for oocyte and embryo developmental competence, while SERPINE2 was reported to be associated with pregnancy outcome. PRSS35, which is exclusively expressed in the ovary, may be correlated with oocyte competence. This study was conducted to evaluate the correlation of cumulus GJA1, PRSS35, PTX3, and SERPINE2 gene expression levels with oocyte maturation, fertilization, and early embryo development. METHODS: In total, 308 cumulus cell samples separated from individual cumulus-oocyte complex were obtained from 40 patients undergoing the intracytoplasmic sperm injection treatment procedure. Gene expression levels (mRNA levels) in cumulus cells were assessed using quantitative real-time polymerase chain reaction. RESULTS: Gene expression levels of GJA1 and SERPINE2 in cumulus cells surrounding mature oocytes were significantly lower than those in cumulus cells enclosing immature oocytes. PRSS35 mRNA levels in cumulus cells of fertilized oocytes were significantly higher than those in cumulus cells of unfertilized oocytes. GJA1 and SERPINE2 seemed to express higher mRNA levels, while PRSS35 showed lower expression in cumulus cells of oocytes that developed into embryos with good morphology; however, the expression levels of all three genes and PTX3 showed no significant differences between embryos with good or poor morphology. CONCLUSIONS: GJA1 and SERPINE2 represent potential gene markers associated with oocyte maturation. PRSS35 may be correlated with oocyte fertilization potential. However, GJA1, PRSS35, PTX3, and SERPINE2 may not be considered as marker genes for predicting embryo morphology.


Assuntos
Proteína C-Reativa/biossíntese , Conexina 43/biossíntese , Células do Cúmulo/metabolismo , Fertilização/fisiologia , Oogênese/fisiologia , Serina Proteases/biossíntese , Serpina E2/biossíntese , Componente Amiloide P Sérico/biossíntese , Biomarcadores/metabolismo , Proteína C-Reativa/genética , Conexina 43/genética , Células do Cúmulo/citologia , Desenvolvimento Embrionário/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Gravidez , Serina Proteases/genética , Serpina E2/genética , Componente Amiloide P Sérico/genética , Injeções de Esperma Intracitoplásmicas/métodos
16.
Cell Mol Life Sci ; 71(5): 745-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23689588

RESUMO

Serine proteases exist in eukaryotic and prokaryotic organisms and have emerged during evolution as the most abundant and functionally diverse group. In Gram-negative bacteria, there is a growing family of high molecular weight serine proteases secreted to the external milieu by a fascinating and widely employed bacterial secretion mechanism, known as the autotransporter pathway. They were initially found in Neisseria, Shigella, and pathogenic Escherichia coli, but have now also been identified in Citrobacter rodentium, Salmonella, and Edwardsiella species. Here, we focus on proteins belonging to the serine protease autotransporter of Enterobacteriaceae (SPATEs) family. Recent findings regarding the predilection of serine proteases to host intracellular or extracellular protein-substrates involved in numerous biological functions, such as those implicated in cytoskeleton stability, autophagy or innate and adaptive immunity, have helped provide a better understanding of SPATEs' contributions in pathogenesis. Here, we discuss their classification, substrate specificity, and potential roles in pathogenesis.


Assuntos
Sistemas de Secreção Bacterianos/genética , Enterobacteriaceae/enzimologia , Evasão da Resposta Imune/fisiologia , Modelos Moleculares , Conformação Proteica , Serina Proteases/biossíntese , Serina Proteases/química , Serina Proteases/metabolismo , Sequência de Aminoácidos , Sistemas de Secreção Bacterianos/fisiologia , Enterobacteriaceae/patogenicidade , Evolução Molecular , Variação Genética , Evasão da Resposta Imune/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Serina Proteases/classificação , Especificidade da Espécie , Especificidade por Substrato , Virulência
17.
Genet Mol Res ; 14(3): 8847-60, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26345816

RESUMO

Prophenoloxidase activating factors (PPAFs) are a group of clip domain serine proteinases that can convert prophenoloxidase (pro-PO) to the active form of phenoloxidase (PO), causing melanization of pathogens. Here, two full-length PPAF cDNAs from Scylla paramamosain (SpPPAF1 and SpPPAF2) were cloned and characterized. The full-length SpPPAF1 cDNA was 1677 bp in length, including a 5'-untranslated region (UTR) of 52 bp, an open reading frame (ORF) of 1131 bp coding for a polypeptide of 376 amino acids, and a 3'-UTR of 494 bp. The full-length SpPPAF2 cDNA was 1808 bp in length, including a 5'-UTR of 88 bp, an ORF of 1125 bp coding for a polypeptide of 374 amino acids, and a 3'-UTR of 595 bp. The estimated molecular weight of SpPPAF1 and SpPPAF2 was 38.43 and 38.56 kDa with an isoelectric point of 7.54 and 7.14, respectively. Both SpPPAF1 and SpPPAF2 proteins consisted of a signal peptide, a characteristic structure of clip domain, and a carboxyl-terminal trypsin-like serine protease domain. Expression analysis by qRT-PCR showed that SpPPAF1 mRNA was mainly expressed in the gill, testis, and hemocytes, and SpPPAF2 mRNA was mainly expressed in hemocytes. In addition, SpPPAF1 and SpPPAF2 mRNA was expressed in a time-dependent manner after Vibrio parahaemolyticus challenge. The results showed that expression of both SpPPAF1 and SpPPAF2 was related to the bacterial challenge but the expression patterns differed. These findings suggest that SpPPAF is a serine proteinase and may be involved in the pro-PO activation pathway of the crab innate immune system.


Assuntos
Braquiúros/metabolismo , Catecol Oxidase/biossíntese , Precursores Enzimáticos/biossíntese , Serina Proteases/biossíntese , Sequência de Aminoácidos , Animais , Braquiúros/genética , Catecol Oxidase/genética , Clonagem Molecular/métodos , DNA Complementar/genética , Ativação Enzimática , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Estrutura Terciária de Proteína , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo , Transcriptoma
18.
PLoS Pathog ; 8(12): e1003083, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23300441

RESUMO

Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance ("housekeeping") tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger "house" bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease resistance and fitness without considering the effects of age-related development.


Assuntos
Abelhas/imunologia , Resistência à Doença/imunologia , Metarhizium/imunologia , Fatores Etários , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Abelhas/microbiologia , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Serina Proteases/biossíntese , Serpinas/biossíntese , Meio Social , Receptores Toll-Like/biossíntese
19.
Plasmid ; 71: 16-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24418391

RESUMO

The filamentous fungus Trichoderma reesei has received attention as a host for heterologous protein production because of its high secretion capacity and eukaryotic post-translational modifications. However, the heterologous production of proteins in T. reesei is limited by its high expression of proteases. The pH control strategies have been proposed for eliminating acidic, but not alkaline, protease activity. In this study, we verified the expression of a relatively major extracellular alkaline protease (GenBank accession number: EGR49466.1, named spw in this study) from 20 candidates through real-time polymerase chain reaction. The transcriptional level of spw increased about 136 times in response to bovine serum albumin as the sole nitrogen source. Additionally, extracellular protease activity was reduced by deleting the spw gene. Therefore, using this gene expression system, we observed enhanced production and stability of the heterologous alkaline endoglucanase EGV from Humicola insolens using the Δspw strain as compared to the parental strain RUT-C30.


Assuntos
Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica , Serina Proteases/biossíntese , Trichoderma/enzimologia , Celulase/biossíntese , Celulase/genética , Clonagem Molecular , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Concentração de Íons de Hidrogênio , Plasmídeos/genética , Plasmídeos/metabolismo , Processamento de Proteína Pós-Traducional , RNA Fúngico/genética , Reação em Cadeia da Polimerase em Tempo Real , Serina Proteases/genética , Transformação Genética , Trichoderma/genética
20.
Exp Mol Pathol ; 97(3): 484-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25303899

RESUMO

Neuronal ceroid lipofuscinosis (NCL) diseases consist of a group of genetically inherited neurodegenerative disorders that share common symptoms such as seizures, psychomotor retardation, blindness, and premature death. Although gene defects behind the NCL diseases are well characterized, very little is known how these defects affect normal development of the brain and cause the pathology of the disease. To obtain understanding of the development of the cell types that are mostly affected by defective function of CLN proteins, timing of expression of CLN2, CLN3 and CLN5 genes was investigated in developing mouse brain. The relationship between the expression pattern and the developmental stage of the brain showed that these genes are co-expressed spatially and temporally during brain development. Throughout the development strong expression of the three mRNAs was detected in germinal epithelium and in ventricle regions, hippocampus and cerebellum, all representing regions that are known to be associated with the formation of new neurons. More specifically, RT-PCR studies on developing mouse cortices revealed that the CLN genes were temporally co-expressed in the neural progenitor cells together with known stem cell markers. This suggested that CLN2, CLN3 and CLN5 genes may play an important role in early embryonal neurogenesis.


Assuntos
Aminopeptidases/biossíntese , Encéfalo/embriologia , Dipeptidil Peptidases e Tripeptidil Peptidases/biossíntese , Glicoproteínas de Membrana/biossíntese , Chaperonas Moleculares/biossíntese , Células-Tronco Neurais/metabolismo , Serina Proteases/biossíntese , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana Lisossomal , Camundongos , Camundongos Endogâmicos C57BL , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Tripeptidil-Peptidase 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA